1
|
Deminami M, Hashimoto M, Takahashi H, Harada N, Minami Y, Kitakaze T, Masuda W, Takenaka S, Inui H, Yamaji R. Androgens suppress the sialyltransferases ST3GAL1 and ST3GAL4 and modulate mucin 10 glycosylation in the submandibular gland, related to sex differences in commensal microbiota composition in mice. Biosci Biotechnol Biochem 2025; 89:241-254. [PMID: 39572079 DOI: 10.1093/bbb/zbae175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Accepted: 11/15/2024] [Indexed: 01/25/2025]
Abstract
Sex differences exist in the commensal microbiota that impact on multiple physiological processes in the host. Here, we examined the mechanism by which the sex differences are formed. In addition to the epithelial ductal cell, the acinar cell mass in the submandibular gland was associated with androgen-androgen receptor (AR) signaling. Sex differences in the formation of submandibular mucin 10 (MUC10) were identified using SDS-PAGE. Neuraminidase treatment, which hydrolyzes terminal sialic acid, influenced the mobility shift of MUC10. Androgen-AR signaling negatively regulated ST3 β-galactoside α-2,3-sialyltransferase 1 (St3gal1) and St3gal4 in the submandibular gland. There was a trend and significant sex differences in α-diversity (Shannon, P = .09) and β-diversity (unweighted UniFrac) in oral microbiota composition, respectively. Some female-preferring bacteria including Akkermansia muciniphila can assimilate mucin by degrading terminal sialic acids. Our results indicate that androgen-AR signaling suppresses ST3GAL1 and ST3GAL4, which can influence sex differences in commensal microbiota composition.
Collapse
Affiliation(s)
- Mana Deminami
- Division of Applied Life Sciences, Graduate School of Life and Environmental Sciences, Osaka Prefecture University, Sakai, Osaka, Japan
| | - Miku Hashimoto
- Division of Applied Life Sciences, Graduate School of Life and Environmental Sciences, Osaka Prefecture University, Sakai, Osaka, Japan
| | - Hiroki Takahashi
- Department of Applied Biological Chemistry, Graduate School of Agriculture, Osaka Metropolitan University, Sakai, Osaka, Japan
| | - Naoki Harada
- Division of Applied Life Sciences, Graduate School of Life and Environmental Sciences, Osaka Prefecture University, Sakai, Osaka, Japan
- Department of Applied Biological Chemistry, Graduate School of Agriculture, Osaka Metropolitan University, Sakai, Osaka, Japan
| | - Yukari Minami
- Division of Applied Life Sciences, Graduate School of Life and Environmental Sciences, Osaka Prefecture University, Sakai, Osaka, Japan
| | - Tomoya Kitakaze
- Division of Applied Life Sciences, Graduate School of Life and Environmental Sciences, Osaka Prefecture University, Sakai, Osaka, Japan
- Department of Applied Biological Chemistry, Graduate School of Agriculture, Osaka Metropolitan University, Sakai, Osaka, Japan
| | - Wataru Masuda
- Department of Nutrition, Faculty of Home Economics, Kyushu Women's University, Kitakyushu, Fukuoka, Japan
| | - Shigeo Takenaka
- Division of Nutrition, Graduate School of Human Life and Ecology, Osaka Metropolitan University, Habikino, Osaka, Japan
| | - Hiroshi Inui
- Division of Applied Life Sciences, Graduate School of Life and Environmental Sciences, Osaka Prefecture University, Sakai, Osaka, Japan
- Department of Applied Biological Chemistry, Graduate School of Agriculture, Osaka Metropolitan University, Sakai, Osaka, Japan
- Department of Health and Nutrition, Otemae University, Osaka, Japan
| | - Ryoichi Yamaji
- Division of Applied Life Sciences, Graduate School of Life and Environmental Sciences, Osaka Prefecture University, Sakai, Osaka, Japan
- Department of Applied Biological Chemistry, Graduate School of Agriculture, Osaka Metropolitan University, Sakai, Osaka, Japan
- Center for Research and Development of Bioresources, Osaka Metropolitan University, Sakai, Osaka, Japan
| |
Collapse
|
2
|
Dalal K, Yang W, Tian E, Chernish A, McCluggage P, Lara AJ, Ten Hagen KG, Tabak LA. In vivo mapping of the mouse Galnt3-specific O-glycoproteome. J Biol Chem 2024; 300:107628. [PMID: 39098533 PMCID: PMC11402288 DOI: 10.1016/j.jbc.2024.107628] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 07/23/2024] [Accepted: 07/24/2024] [Indexed: 08/06/2024] Open
Abstract
The UDP-N-acetylgalactosamine polypeptide:N-acetylgalactosaminyltransferase (GalNAc-T) family of enzymes initiates O-linked glycosylation by catalyzing the addition of the first GalNAc sugar to serine or threonine on proteins destined to be membrane-bound or secreted. Defects in individual isoforms of the GalNAc-T family can lead to certain congenital disorders of glycosylation (CDG). The polypeptide N-acetylgalactosaminyltransferase 3 (GALNT)3-CDG, is caused by mutations in GALNT3, resulting in hyperphosphatemic familial tumoral calcinosis due to impaired glycosylation of the phosphate-regulating hormone fibroblast growth factor 23 (FGF23) within osteocytes of the bone. Patients with hyperphosphatemia present altered bone density, abnormal tooth structure, and calcified masses throughout the body. It is therefore important to identify all potential substrates of GalNAc-T3 throughout the body to understand the complex disease phenotypes. Here, we compared the Galnt3-/- mouse model, which partially phenocopies GALNT3-CDG, with WT mice and used a multicomponent approach using chemoenzymatic conditions, a product-dependent method constructed using EThcD triggered scans in a mass spectrometry workflow, quantitative O-glycoproteomics, and global proteomics to identify 663 Galnt3-specific O-glycosites from 269 glycoproteins across multiple tissues. Consistent with the mouse and human phenotypes, functional networks of glycoproteins that contain GalNAc-T3-specific O-glycosites involved in skeletal morphology, mineral level maintenance, and hemostasis were identified. This library of in vivo GalNAc-T3-specific substrate proteins and O-glycosites will serve as a valuable resource to understand the functional implications of O-glycosylation and to unravel the underlying causes of complex human GALNT3-CDG phenotypes.
Collapse
Affiliation(s)
- Kruti Dalal
- Biological Chemistry Section and Developmental Glycobiology Section, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, Maryland, USA
| | - Weiming Yang
- Biological Chemistry Section and Developmental Glycobiology Section, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, Maryland, USA
| | - E Tian
- Developmental Glycobiology Section, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, Maryland, USA
| | - Aliona Chernish
- Biological Chemistry Section and Developmental Glycobiology Section, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, Maryland, USA
| | - Peggy McCluggage
- Biological Chemistry Section and Developmental Glycobiology Section, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, Maryland, USA
| | - Alexander J Lara
- Biological Chemistry Section and Developmental Glycobiology Section, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, Maryland, USA
| | - Kelly G Ten Hagen
- Developmental Glycobiology Section, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, Maryland, USA
| | - Lawrence A Tabak
- Biological Chemistry Section and Developmental Glycobiology Section, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, Maryland, USA.
| |
Collapse
|
3
|
Slivka JP, Bauer C, Younsi A, Wong MBF, Chan MKS, Skutella T. Exploring the Molecular Tapestry: Organ-Specific Peptide and Protein Ultrafiltrates and Their Role in Therapeutics. Int J Mol Sci 2024; 25:2863. [PMID: 38474110 DOI: 10.3390/ijms25052863] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2024] [Revised: 02/05/2024] [Accepted: 02/09/2024] [Indexed: 03/14/2024] Open
Abstract
This study aims to characterize the proteome composition of organ-derived protein extracts from rabbits. Protein isolation was performed using soft homogenization and size exclusion via ultrafiltration. The proteome analysis of the ultrafiltrates was conducted using gel electrophoresis, and the mass spectrometry data were subjected to gene ontology analysis. Proteomic profiling revealed comprehensive protein profiles associated with RNA regulation, fatty acid binding, inflammatory response, oxidative stress, and metabolism. Additionally, our results demonstrate the presence of abundant small proteins, as observed in the mass spectrometry datasets. Small proteins and peptides are crucial in transcription modulation and various biological processes. The protein networks identified in the ultrafiltrates have the potential to enhance and complement biological therapeutic interventions. Data are available via ProteomeXchange with identifier PXD050039.
Collapse
Affiliation(s)
| | | | - Alexander Younsi
- Department of Neurosurgery, Heidelberg University Hospital, 69120 Heidelberg, Germany
| | - Michelle B F Wong
- Stellar Biomolecular Research GmbH, Klosterstrasse 205a, 67480 Edenkoben, Germany
- EW European Wellness International GmbH, Sommerhalde 21, 72184 Eutingen im Gäu, Germany
| | - Mike K S Chan
- Stellar Biomolecular Research GmbH, Klosterstrasse 205a, 67480 Edenkoben, Germany
- EW European Wellness International GmbH, Sommerhalde 21, 72184 Eutingen im Gäu, Germany
| | - Thomas Skutella
- Institute for Anatomy and Cell Biology, Medical Faculty, University of Heidelberg, Im Neuenheimer Feld 307, 69120 Heidelberg, Germany
| |
Collapse
|
4
|
Ushida K, Inui H, Kaneko T, Tanaka S, Mochizuki A, Kaise S, Sugiyama M. Preparation of Jellyfish Mucin. Methods Mol Biol 2024; 2763:3-36. [PMID: 38347396 DOI: 10.1007/978-1-0716-3670-1_1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/15/2024]
Abstract
A mucin-type glycoprotein extracted from various species of jellyfish (JF) is named qniumucin (Q-mucin). Compared with general mucins, most of which are from mammals including humans, Q-mucin can be collected on a relatively large scale with high yield. Owing to its simple structure with low heterogeneity, Q-mucin has a potential to be developed into material mucins which opens various applications valuable to humans. On the basis of our present knowledge, here, we describe our protocol for the extraction of Q-mucin, which can be extracted from any JF species worldwide. Experimental protocols to identify the structure of Q-mucin are also introduced.
Collapse
Affiliation(s)
- Kiminori Ushida
- Department of Chemistry, School of Science, Kitasato University, Sagamihara, Japan.
| | - Hiroshi Inui
- Department of Chemistry, School of Science, Kitasato University, Sagamihara, Japan
| | - Takuma Kaneko
- Department of Chemistry, School of Science, Kitasato University, Sagamihara, Japan
| | - Shinra Tanaka
- Department of Chemistry, School of Science, Kitasato University, Sagamihara, Japan
| | - Anri Mochizuki
- Department of Chemistry, School of Science, Kitasato University, Sagamihara, Japan
| | - Shiori Kaise
- Department of Chemistry, School of Science, Kitasato University, Sagamihara, Japan
| | - Minami Sugiyama
- Department of Chemistry, School of Science, Kitasato University, Sagamihara, Japan
| |
Collapse
|
5
|
Sugiura T, Kameyama A. Preparation of Soluble Mucin Solutions from the Salivary Glands. Methods Mol Biol 2024; 2763:45-50. [PMID: 38347398 DOI: 10.1007/978-1-0716-3670-1_3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/15/2024]
Abstract
Studying salivary gland mucins is important for elucidating the pathogenesis of salivary gland diseases, including tumors and xerostomia, and developing diagnostic methods for them. Classic methods for isolating mucins from salivary glands require sacrificing several animals to obtain sufficient quantities of mucin and are time-consuming. Supported molecular matrix electrophoresis (SMME) was used to characterize mucins and their glycans. With this method, mucins can be analyzed within 2 days using less than 100 mg of tissue and without using expensive equipment, such as an ultracentrifuge. This chapter describes a method for preparing mucin solutions for SMME analysis of salivary gland mucins.
Collapse
Affiliation(s)
- Takanori Sugiura
- Division of Oral and Maxillofacial Surgery, Ushiku Aiwa General Hospital, Ushiku, Japan
- Department of Oral Oncology, Oral and Maxillofacial Surgery, Ichikawa General Hospital, Tokyo Dental College, Ichikawa, Japan
| | - Akihiko Kameyama
- Cellular and Molecular Biotechnology Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Japan.
| |
Collapse
|
6
|
Sugiura T, Hashimoto K, Kikuta K, Anazawa U, Nomura T, Kameyama A. Expression and localisation of MUC1 modified with sialylated core-2 O-glycans in mucoepidermoid carcinoma. Sci Rep 2023; 13:5752. [PMID: 37031283 PMCID: PMC10082819 DOI: 10.1038/s41598-023-32597-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Accepted: 03/29/2023] [Indexed: 04/10/2023] Open
Abstract
Mucoepidermoid carcinoma (MEC) is the most frequent of the rare salivary gland malignancies. We previously reported high expression of Mucin 1 (MUC1) modified with sialylated core-2 O-glycans in MEC by using tissue homogenates. In this study, we characterised glycan structures of MEC and identified the localisation of cells expressing these distinctive glycans on MUC1. Mucins were extracted from the frozen tissues of three patients with MEC, and normal salivary glands (NSGs) extracted from seven patients, separated by supported molecular matrix electrophoresis (SMME) and the membranes stained with various lectins. In addition, formalin-fixed, paraffin-embedded sections from three patients with MEC were subjected to immunohistochemistry (IHC) with various monoclonal antibodies and analysed for C2GnT-1 expression by in situ hybridisation (ISH). Lectin blotting of the SMME membranes revealed that glycans on MUC1 from MEC samples contained α2,3-linked sialic acid. In IHC, MUC1 was diffusely detected at MEC-affected regions but was specifically detected at apical membranes in NSGs. ISH showed that C2GnT-1 was expressed at the MUC1-positive in MEC-affected regions but not in the NSG. MEC cells produced MUC1 modified with α2,3-linked sialic acid-containing core-2 O-glycans. MUC1 containing these glycans deserves further study as a new potential diagnostic marker of MEC.
Collapse
Affiliation(s)
- Takanori Sugiura
- Department of Oral Oncology, Oral and Maxillofacial Surgery, Ichikawa General Hospital, Tokyo Dental College, 5-11-13 Sugano, Ichikawa-Shi, Chiba, 272-8513, Japan
| | - Kazuhiko Hashimoto
- Department of Pathology and Laboratory Medicine, Ichikawa General Hospital, Tokyo Dental College, 5-11-13 Sugano, Ichikawa-Shi, Chiba, 272-8513, Japan
| | - Kazutaka Kikuta
- Department of Musculoskeletal Oncology and Orthopaedic Surgery, Tochigi Cancer Center, 4-9-13 Yohnan, Utsunomiya, Tochigi, 320-0834, Japan
| | - Ukei Anazawa
- Department of Orthopaedic Surgery, Ichikawa General Hospital, Tokyo Dental College, 5-11-13 Sugano, Ichikawa-Shi, Chiba, 272-8513, Japan
| | - Takeshi Nomura
- Department of Oral Oncology, Oral and Maxillofacial Surgery, Ichikawa General Hospital, Tokyo Dental College, 5-11-13 Sugano, Ichikawa-Shi, Chiba, 272-8513, Japan
- Oral Cancer Center, Tokyo Dental College, 5-11-13 Sugano, Ichikawa-Shi, Chiba, 272-8513, Japan
| | - Akihiko Kameyama
- Cellular and Molecular Biotechnology Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), 1-1-1 Higashi, Tsukuba, Ibaraki, 305-8565, Japan.
| |
Collapse
|
7
|
Harvey DJ. Analysis of carbohydrates and glycoconjugates by matrix-assisted laser desorption/ionization mass spectrometry: An update for 2019-2020. MASS SPECTROMETRY REVIEWS 2022:e21806. [PMID: 36468275 DOI: 10.1002/mas.21806] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
This review is the tenth update of the original article published in 1999 on the application of matrix-assisted laser desorption/ionization (MALDI) mass spectrometry to the analysis of carbohydrates and glycoconjugates and brings coverage of the literature to the end of 2020. Also included are papers that describe methods appropriate to analysis by MALDI, such as sample preparation techniques, even though the ionization method is not MALDI. The review is basically divided into three sections: (1) general aspects such as theory of the MALDI process, matrices, derivatization, MALDI imaging, fragmentation, quantification and the use of arrays. (2) Applications to various structural types such as oligo- and polysaccharides, glycoproteins, glycolipids, glycosides and biopharmaceuticals, and (3) other areas such as medicine, industrial processes and glycan synthesis where MALDI is extensively used. Much of the material relating to applications is presented in tabular form. The reported work shows increasing use of incorporation of new techniques such as ion mobility and the enormous impact that MALDI imaging is having. MALDI, although invented nearly 40 years ago is still an ideal technique for carbohydrate analysis and advancements in the technique and range of applications show little sign of diminishing.
Collapse
Affiliation(s)
- David J Harvey
- Nuffield Department of Medicine, Target Discovery Institute, University of Oxford, Oxford, UK
- Department of Chemistry, University of Oxford, Oxford, Oxfordshire, United Kingdom
| |
Collapse
|
8
|
Isaka E, Sugiura T, Hashimoto K, Kikuta K, Anazawa U, Nomura T, Kameyama A. Characterization of tumor-associated MUC1 and its glycans expressed in mucoepidermoid carcinoma. Oncol Lett 2021; 22:702. [PMID: 34457057 PMCID: PMC8358622 DOI: 10.3892/ol.2021.12963] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Accepted: 06/21/2021] [Indexed: 11/22/2022] Open
Abstract
Mucoepidermoid carcinoma (MEC) is one of the most frequently misdiagnosed tumors. Glycans are modulated by malignant transformation. Mucin 1 (MUC1) is a mucin whose expression is upregulated in various tumors, including MEC, and it has previously been investigated as a diagnostic and prognostic tumor marker. The present study aimed to reveal the differences in the mucin glycans between MEC and normal salivary glands (NSGs) to discover novel diagnostic markers. Soluble fractions of salivary gland homogenate prepared from three MEC salivary glands and 7 NSGs were evaluated. Mucins in MEC and NSGs were separated using supported molecular matrix electrophoresis, and stained with Alcian blue and monoclonal antibodies. The glycans of the separated mucins were analyzed by mass spectrometry. MUC1 was found in MEC but not in NSGs, and almost all glycans of MUC1 in MEC were sialylated, whereas the glycans of mucins in NSGs were less sialylated. The core 2 type glycans, (Hex)2(HexNAc)2(NeuAc)1 and (Hex)2(HexNAc)2(NeuAc)2, were found to be significantly abundant glycans of MUC1 in MEC. MEC markedly produced MUC1 modified with sialylated core 2 glycans. These data were obtained from the soluble fractions of salivary gland homogenates. These findings provide a basis for the utilization of MUC1 as a serum diagnostic marker for the preoperative diagnosis of MEC.
Collapse
Affiliation(s)
- Eisaku Isaka
- Department of Oral Oncology, Oral and Maxillofacial Surgery, Ichikawa General Hospital, Tokyo Dental College, Ichikawa-shi, Chiba 272-8513, Japan
| | - Takanori Sugiura
- Department of Oral Oncology, Oral and Maxillofacial Surgery, Ichikawa General Hospital, Tokyo Dental College, Ichikawa-shi, Chiba 272-8513, Japan
| | - Kazuhiko Hashimoto
- Department of Pathology and Laboratory Medicine, Ichikawa General Hospital, Tokyo Dental College, Ichikawa-shi, Chiba 272-8513, Japan
| | - Kazutaka Kikuta
- Department of Musculoskeletal Oncology and Orthopaedic Surgery, Tochigi Cancer Center, Utsunomiya, Tochigi 320-0834, Japan
| | - Ukei Anazawa
- Department of Orthopaedic Surgery, Tokyo Dental College, Ichikawa-shi, Chiba 272-8513, Japan
| | - Takeshi Nomura
- Department of Oral Oncology, Oral and Maxillofacial Surgery, Ichikawa General Hospital, Tokyo Dental College, Ichikawa-shi, Chiba 272-8513, Japan.,Oral Cancer Center, Tokyo Dental College, Ichikawa-shi, Chiba 272-8513, Japan
| | - Akihiko Kameyama
- Cellular and Molecular Biotechnology Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Ibaraki 305-8565, Japan
| |
Collapse
|
9
|
Bmi-1 regulates mucin levels and mucin O-glycosylation in the submandibular gland of mice. PLoS One 2021; 16:e0245607. [PMID: 33465144 PMCID: PMC7815129 DOI: 10.1371/journal.pone.0245607] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Accepted: 01/04/2021] [Indexed: 11/20/2022] Open
Abstract
Mucins, the major components of salivary mucus, are large glycoproteins abundantly modified with O-glycans. Mucins present on the surface of oral tissues contribute greatly to the maintenance of oral hygiene by selectively adhering to the surfaces of microbes via mucin O-glycans. However, due to the complex physicochemical properties of mucins, there have been relatively few detailed analyses of the mechanisms controlling the expression of mucin genes and the glycosyltransferase genes involved in glycosylation. Analysis performed using supported molecular matrix electrophoresis, a methodology developed for mucin analysis, and knockout mice without the polycomb group protein Bmi-1 revealed that Bmi-1 regulates mucin levels in the submandibular gland by suppressing the expression of the mucin Smgc gene, and that Bmi-1 also regulates mucin O-glycosylation via suppression of the glycosyltransferase Gcnt3 gene in the submandibular gland.
Collapse
|
10
|
Kameyama A, Thet Tin WW, Nishijima R, Yamakoshi K. Alteration of mucins in the submandibular gland during aging in mice. Arch Oral Biol 2020; 121:104967. [PMID: 33197804 DOI: 10.1016/j.archoralbio.2020.104967] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Revised: 10/08/2020] [Accepted: 10/23/2020] [Indexed: 12/25/2022]
Abstract
OBJECTIVE Mucins are large glycosylated glycoproteins that are produced in the salivary glands, and their changes may contribute to the development of xerostomia due to aging and the accompanying deterioration of oral hygiene. This study aimed to characterize the changes in the mucins produced in submandibular gland (SMG) during the aging process. METHODS SMG mucins derived from mice of each age were separated using supported molecular matrix electrophoresis (SMME). Subsequently, the membranes were stained with Alcian blue (AB) or blotted with MAL-II lectin. The SMME membranes stained with AB were subjected to densitometric analysis and glycan analysis. The detailed structures of O-glycan were investigated by tandem mass spectrometry (MS/MS). RESULTS The SMG of mice secreted three mucins with different glycan profiles: age-specific mucin, youth-specific mucin, and a mucin expressed throughout life, and the expression patterns of these mucins change during aging. Additionally, age-specific mucin began to be detected at about 12 months of age. A mucin expressed throughout life and age-specific mucin had the same mass of major glycans but different structures. Furthermore, the proportion of mucin glycan species expressed throughout life changed during the aging process, and aging tended to decrease the proportion of fucosylated glycans and increase the proportion of sialoglycans. CONCLUSION There are three secretory mucins with different glycan profiles in the SMG of mice, and their expression patterns change according to the period of the aging process. The proportion of glycan species of mucin expressed throughout life also changes during the aging process.
Collapse
Affiliation(s)
- Akihiko Kameyama
- Cellular and Molecular Biotechnology Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), 1-1-1 Higashi, Tsukuba, Ibaraki, 305-8565, Japan
| | - Wai Wai Thet Tin
- Cellular and Molecular Biotechnology Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), 1-1-1 Higashi, Tsukuba, Ibaraki, 305-8565, Japan
| | - Risa Nishijima
- Department of Mechanism of Aging, Research Institute, National Center for Geriatrics and Gerontology, Obu, Aichi 474-8511, Japan
| | - Kimi Yamakoshi
- Department of Mechanism of Aging, Research Institute, National Center for Geriatrics and Gerontology, Obu, Aichi 474-8511, Japan.
| |
Collapse
|
11
|
Tamura M, Tanaka T, Fujii N, Tanikawa T, Oka S, Takeuchi T, Hatanaka T, Kishimoto S, Arata Y. Potential Interaction between Galectin-2 and MUC5AC in Mouse Gastric Mucus. Biol Pharm Bull 2020; 43:356-360. [PMID: 32009121 DOI: 10.1248/bpb.b19-00705] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Galectins are a group of animal lectins characterized by their specificity for β-galactosides. Of these, galectin-2 (Gal-2) is predominantly expressed in the gastrointestinal tract. In the current study, we used a mouse gastric mucous fraction to investigate whether Gal-2 is secreted from epithelial cells and identify its potential ligands in gastric mucus. Gal-2 was detected in the mouse gastric mucous fraction and could be eluted from it by the addition of lactose. Affinity chromatography using recombinant mouse galectin-2 (mGal-2)-immobilized adsorbent and subsequent LC-MS/MS identified MUC5AC, one of the major gastric mucin glycoproteins, as a potential ligand of mGal-2. Furthermore, MUC5AC was detected in the mouse gastric mucous fraction by Western blotting, and recombinant mGal-2 was adsorbed to this fraction in a carbohydrate-dependent manner. These results suggested that Gal-2 and MUC5AC in mouse gastric mucus interact in a β-galactoside-dependent manner, resulting in a stronger barrier structure protecting the mucosal surface.
Collapse
Affiliation(s)
| | - Toru Tanaka
- Faculty of Pharmacy and Pharmaceutical Sciences, Josai University
| | | | - Takashi Tanikawa
- Faculty of Pharma-Science, Teikyo University.,Faculty of Pharmacy and Pharmaceutical Sciences, Josai University
| | - Saori Oka
- Faculty of Pharma-Science, Teikyo University
| | | | - Tomomi Hatanaka
- Faculty of Pharmacy and Pharmaceutical Sciences, Josai University.,Tokai University School of Medicine
| | | | | |
Collapse
|
12
|
A practical method of liberating O-linked glycans from glycoproteins using hydroxylamine and an organic superbase. Biochem Biophys Res Commun 2019; 513:186-192. [PMID: 30952424 DOI: 10.1016/j.bbrc.2019.03.144] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2019] [Accepted: 03/22/2019] [Indexed: 12/17/2022]
Abstract
O-Linked glycan liberation from proteins through reductive beta-elimination and hydrazinolysis is widely used, but have yet to satisfy the recent needs for glycan analysis in glycan biomarker research and microheterogeneity evaluation of biopharmaceutical glycosylation. Here, we introduce an alternative method by using hydroxylamine and an organic superbase, 1,8-diazabicyclo[5.4.0]undec-7-ene (DBU), and optimize the reaction conditions. The developed method afforded comparable results to those of hydrazinolysis, but with less degraded products. In addition, we examined the compatibility of the optimized O-linked glycan liberation with denaturant and detergents. The optimized method also released glycans containing NeuGc without degradation or deacylation. To demonstrate the feasibility of the developed method, we analyzed O-linked glycans of porcine submaxillary mucins separated by supported molecular matrix electrophoresis (SMME) which is previously developed to characterize mucins. The method for O-linked glycan liberation and fluorescent labeling presented here was easy and rapid, and will be practically useful for O-linked glycan analyses.
Collapse
|
13
|
Isaji T, Im S, Kameyama A, Wang Y, Fukuda T, Gu J. A complex between phosphatidylinositol 4-kinase IIα and integrin α3β1 is required for N-glycan sialylation in cancer cells. J Biol Chem 2019; 294:4425-4436. [PMID: 30659093 DOI: 10.1074/jbc.ra118.005208] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2018] [Revised: 01/08/2019] [Indexed: 01/08/2023] Open
Abstract
Aberrant N-glycan sialylation of glycoproteins is closely associated with malignant phenotypes of cancer cells and metastatic potential, which includes cell adhesion, migration, and growth. Recently, phosphatidylinositol 4-kinase IIα (PI4KIIα), which is localized to the trans-Golgi network, was identified as a regulator of Golgi phosphoprotein 3 (GOLPH3) and of vesicle transport in the Golgi apparatus. GOLPH3 is a target of PI4KIIα and helps anchor sialyltransferases and thereby regulates sialylation of cell surface receptors. However, how PI4KIIα-mediated sialyation of cell surface proteins is regulated remains unclear. In this study, using several cell lines, CRISPR/Cas9-based gene knockout and short hairpin RNA-mediated silencing, RT-PCR, lentivirus-mediated overexpression, and immunoblotting methods, we confirmed that PI4KIIα knockdown suppresses the sialylation of N-glycans on the cell surface, in Akt phosphorylation and activation, and integrin α3-mediated cell migration of MDA-MB-231 breast cancer cells. Interestingly, both integrin α3β1 and PI4KIIα co-localized to the trans-Golgi network, where they physically interacted with each other, and PI4KIIα specifically associated with integrin α3 but not α5. Furthermore, overexpression of both integrin α3β1 and PI4KIIα induced hypersialylation. Conversely, integrin α3 knockout significantly inhibited the sialylation of membrane proteins, such as the epidermal growth factor receptor, as well as in total cell lysates. These findings suggest that the malignant phenotype of cancer cells is affected by a sialylation mechanism that is regulated by a complex between PI4KIIα and integrin α3β1.
Collapse
Affiliation(s)
- Tomoya Isaji
- From the Division of Regulatory Glycobiology, Institute of Molecular Biomembrane and Glycobiology, Tohoku Medical and Pharmaceutical University, 4-4-1 Komatsushima, Aoba-ku, Sendai Miyagi 981-8558, Japan
| | - Sanghun Im
- From the Division of Regulatory Glycobiology, Institute of Molecular Biomembrane and Glycobiology, Tohoku Medical and Pharmaceutical University, 4-4-1 Komatsushima, Aoba-ku, Sendai Miyagi 981-8558, Japan
| | - Akihiko Kameyama
- the Department of Life Science and Biotechnology, National Institute of Advanced Industrial Science and Technology, 1-1-1 Umezono, Tsukuba, Ibaraki 305-8568, Japan, and
| | - Yuqin Wang
- the Department of Pharmacology, Pharmacy College, Nantong University, Nantong, Jiangsu 226001, China
| | - Tomohiko Fukuda
- From the Division of Regulatory Glycobiology, Institute of Molecular Biomembrane and Glycobiology, Tohoku Medical and Pharmaceutical University, 4-4-1 Komatsushima, Aoba-ku, Sendai Miyagi 981-8558, Japan
| | - Jianguo Gu
- From the Division of Regulatory Glycobiology, Institute of Molecular Biomembrane and Glycobiology, Tohoku Medical and Pharmaceutical University, 4-4-1 Komatsushima, Aoba-ku, Sendai Miyagi 981-8558, Japan,
| |
Collapse
|