Shanbhag AP, Ghatak A, Rajagopal S. Industrial light at the end of the Iron-containing (group III) alcohol dehydrogenase tunnel.
Biotechnol Appl Biochem 2022;
70:537-552. [PMID:
35751426 DOI:
10.1002/bab.2376]
[Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2022] [Accepted: 06/10/2022] [Indexed: 11/05/2022]
Abstract
There are three prominent alcohol dehydrogenases superfamilies: Short-chain, Medium-chain, and Iron-containing alcohol dehydrogenases (FeADHs). Many members are valuable catalysts for producing industrially relevant products such as Active pharmaceutical Intermediates, Chiral synthons, Biopolymers, Biofuels and secondary metabolites. However, FeADHs are the least explored enzymes among the superfamilies for commercial tenacities. They portray a conserved structure having a 'tunnel-like' cofactor and substrate binding site with particular functions, despite representing high sequence diversity. Interestingly, phylogenetic analysis demarcates enzymes catalyzing distinct native substrates where closely related clades convert similar molecules. Further, homologs from various mesophilic and thermophilic microbes have been explored for designing a solvent and temperature resistant enzyme for industrial purposes. The review explores different Iron-containing alcohol dehydrogenases potential engineering of the enzymes and substrates helpful in manufacturing commercial products. This article is protected by copyright. All rights reserved.
Collapse