1
|
Huang L, Zhao B, Wan Y. Disruption of RNA-binding proteins in neurological disorders. Exp Neurol 2024; 385:115119. [PMID: 39709152 DOI: 10.1016/j.expneurol.2024.115119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Revised: 11/30/2024] [Accepted: 12/15/2024] [Indexed: 12/23/2024]
Abstract
RNA-binding proteins (RBPs) are multifunctional proteins essential for the regulation of RNA processing and metabolism, contributing to the maintenance of cell homeostasis by modulating the expression of target genes. Many RBPs have been associated with neuron-specific processes vital for neuronal development and survival. RBP dysfunction may result in aberrations in RNA processing, which subsequently initiate a cascade of effects. Notably, RBPs are involved in the onset and progression of neurological disorders via diverse mechanisms. Disruption of RBPs not only affects RNA processing, but also promotes the abnormal aggregation of proteins into toxic inclusion bodies, and contributes to immune responses that drive the progression of neurological diseases. In this review, we summarize recent discoveries relating to the roles of RBPs in neurological diseases, discuss their contributions to such conditions, and highlight the unique functions of these RBPs within the nervous system.
Collapse
Affiliation(s)
- Luyang Huang
- Cancer Biology Laboratory, China-Japan Union Hospital of Jilin University, Changchun 130062, Jilin, China
| | - Bo Zhao
- Cancer Biology Laboratory, China-Japan Union Hospital of Jilin University, Changchun 130062, Jilin, China
| | - Youzhong Wan
- Cancer Biology Laboratory, China-Japan Union Hospital of Jilin University, Changchun 130062, Jilin, China.
| |
Collapse
|
2
|
Ziff OJ, Harley J, Wang Y, Neeves J, Tyzack G, Ibrahim F, Skehel M, Chakrabarti AM, Kelly G, Patani R. Nucleocytoplasmic mRNA redistribution accompanies RNA binding protein mislocalization in ALS motor neurons and is restored by VCP ATPase inhibition. Neuron 2023; 111:3011-3027.e7. [PMID: 37480846 DOI: 10.1016/j.neuron.2023.06.019] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 05/09/2023] [Accepted: 06/22/2023] [Indexed: 07/24/2023]
Abstract
Amyotrophic lateral sclerosis (ALS) is characterized by nucleocytoplasmic mislocalization of the RNA-binding protein (RBP) TDP-43. However, emerging evidence suggests more widespread mRNA and protein mislocalization. Here, we employed nucleocytoplasmic fractionation, RNA sequencing, and mass spectrometry to investigate the localization of mRNA and protein in induced pluripotent stem cell-derived motor neurons (iPSMNs) from ALS patients with TARDBP and VCP mutations. ALS mutant iPSMNs exhibited extensive nucleocytoplasmic mRNA redistribution, RBP mislocalization, and splicing alterations. Mislocalized proteins exhibited a greater affinity for redistributed transcripts, suggesting a link between RBP mislocalization and mRNA redistribution. Notably, treatment with ML240, a VCP ATPase inhibitor, partially restored mRNA and protein localization in ALS mutant iPSMNs. ML240 induced changes in the VCP interactome and lysosomal localization and reduced oxidative stress and DNA damage. These findings emphasize the link between RBP mislocalization and mRNA redistribution in ALS motor neurons and highlight the therapeutic potential of VCP inhibition.
Collapse
Affiliation(s)
- Oliver J Ziff
- The Francis Crick Institute, 1 Midland Road, NW1 1AT London, UK; Department of Neuromuscular Diseases, Queen Square Institute of Neurology, University College London, WC1N 3BG London, UK; National Hospital for Neurology and Neurosurgery, University College London NHS Foundation Trust, WC1N 3BG London, UK.
| | - Jasmine Harley
- The Francis Crick Institute, 1 Midland Road, NW1 1AT London, UK; Department of Neuromuscular Diseases, Queen Square Institute of Neurology, University College London, WC1N 3BG London, UK; Institute of Molecular and Cell Biology, A(∗)STAR Research Entities, Singapore 138673, Singapore
| | - Yiran Wang
- The Francis Crick Institute, 1 Midland Road, NW1 1AT London, UK; Department of Neuromuscular Diseases, Queen Square Institute of Neurology, University College London, WC1N 3BG London, UK
| | - Jacob Neeves
- The Francis Crick Institute, 1 Midland Road, NW1 1AT London, UK; Department of Neuromuscular Diseases, Queen Square Institute of Neurology, University College London, WC1N 3BG London, UK
| | - Giulia Tyzack
- The Francis Crick Institute, 1 Midland Road, NW1 1AT London, UK; Department of Neuromuscular Diseases, Queen Square Institute of Neurology, University College London, WC1N 3BG London, UK
| | - Fairouz Ibrahim
- The Francis Crick Institute, 1 Midland Road, NW1 1AT London, UK
| | - Mark Skehel
- The Francis Crick Institute, 1 Midland Road, NW1 1AT London, UK
| | | | - Gavin Kelly
- The Francis Crick Institute, 1 Midland Road, NW1 1AT London, UK; Department of Neuromuscular Diseases, Queen Square Institute of Neurology, University College London, WC1N 3BG London, UK
| | - Rickie Patani
- The Francis Crick Institute, 1 Midland Road, NW1 1AT London, UK; Department of Neuromuscular Diseases, Queen Square Institute of Neurology, University College London, WC1N 3BG London, UK; National Hospital for Neurology and Neurosurgery, University College London NHS Foundation Trust, WC1N 3BG London, UK.
| |
Collapse
|
3
|
Calderón-Garcidueñas L, Kulesza R, Greenough GP, García-Rojas E, Revueltas-Ficachi P, Rico-Villanueva A, Flores-Vázquez JO, Brito-Aguilar R, Ramírez-Sánchez S, Vacaseydel-Aceves N, Cortes-Flores AP, Mansour Y, Torres-Jardón R, Villarreal-Ríos R, Koseoglu E, Stommel EW, Mukherjee PS. Fall Risk, Sleep Behavior, and Sleep-Related Movement Disorders in Young Urbanites Exposed to Air Pollution. J Alzheimers Dis 2023; 91:847-862. [PMID: 36502327 DOI: 10.3233/jad-220850] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
BACKGROUND Quadruple aberrant hyperphosphorylated tau, amyloid-β, α-synuclein, and TDP-43 pathology had been documented in 202/203 forensic autopsies in Metropolitan Mexico City ≤40-year-olds with high exposures to ultrafine particulate matter and engineered nanoparticles. Cognition deficits, gait, equilibrium abnormalities, and MRI frontal, temporal, caudate, and cerebellar atrophy are documented in young adults. OBJECTIVE This study aimed to identify an association between falls, probable Rapid Eye Movement Sleep Behavior Disorder (pRBD), restless leg syndrome (RLS), and insomnia in 2,466 Mexican, college-educated volunteers (32.5±12.4 years). METHODS The anonymous, online study applied the pRBD and RLS Single-Questions and self-reported night-time sleep duration, excessive daytime sleepiness, insomnia, and falls. RESULTS Fall risk was strongly associated with pRBD and RLS. Subjects who fell at least once in the last year have an OR = 1.8137 [1.5352, 2.1426] of answering yes to pRBD and/or RLS questions, documented in 29% and 24% of volunteers, respectively. Subjects fell mostly outdoors (12:01 pm to 6:00 pm), 43% complained of early wake up hours, and 35% complained of sleep onset insomnia (EOI). EOI individuals have an OR of 2.5971 [2.1408, 3.1506] of answering yes to the RLS question. CONCLUSION There is a robust association between falls, pRBD, and RLS, strongly suggesting misfolded proteinopathies involving critical brainstem arousal and motor hubs might play a crucial role. Nanoparticles are likely a significant risk for falls, sleep disorders, insomnia, and neurodegenerative lethal diseases, thus characterizing air particulate pollutants' chemical composition, emission sources, and cumulative exposure concentrations are strongly recommended.
Collapse
Affiliation(s)
| | - Randy Kulesza
- Auditory Research Center, Lake Erie College of Osteopathic Medicine, Erie, PA, USA
| | - Glen P Greenough
- Department of Neurology, Geisel School of Medicine at Dartmouth, Hanover NH, USA
| | | | | | | | | | | | | | | | | | - Yusra Mansour
- Department of Otolaryngology -Head and Neck Surgery, Henry Ford Macomb Hospital, Clinton Township, MI, USA
| | - Ricardo Torres-Jardón
- Instituto de Ciencias de la Atmósfera y Cambio Climático, Universidad Nacional, Autónoma de México, México
| | | | - Emel Koseoglu
- Neurology Department, Erciyes University, Kayseri, Turkey
| | - Elijah W Stommel
- Department of Neurology, Geisel School of Medicine at Dartmouth, Hanover NH, USA
| | - Partha S Mukherjee
- Interdisciplinary Statistical Research Unit, Indian Statistical Institute, Kolkata, India
| |
Collapse
|
4
|
Proaño B, Casani-Cubel J, Benlloch M, Rodriguez-Mateos A, Navarro-Illana E, Lajara-Romance JM, de la Rubia Ortí JE. Is Dutasteride a Therapeutic Alternative for Amyotrophic Lateral Sclerosis? Biomedicines 2022; 10:biomedicines10092084. [PMID: 36140184 PMCID: PMC9495995 DOI: 10.3390/biomedicines10092084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 08/17/2022] [Accepted: 08/23/2022] [Indexed: 11/24/2022] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a neurodegenerative disease that is characterized by the loss of upper and lower motor neurons (MNs) in the cerebral cortex, brainstem and spinal cord, with consequent weakness, atrophy and the progressive paralysis of all muscles. There is currently no medical cure, and riluzole and edaravone are the only two known approved drugs for treating this condition. However, they have limited efficacy, and hence there is a need to find new molecules. Dutasteride, a dual inhibitor of type 1 and type 2 5α-reductase (5AR) enzymes, the therapeutic purposes of which, to date, are the treatment of benign prostatic hyperplasia and androgenic alopecia, shows great anti-ALS properties by the molecular-topology methodology. Based on this evidence, this review aims to assess the effects of dutasteride on testosterone (T), progesterone (PROG) and 17β-estradiol (17BE) as a therapeutic alternative for the clinical improvement of ALS, based on the hormonal, metabolic and molecular pathways related to the pathogenesis of the disease. According to the evidence found, dutasteride shows great neuroprotective, antioxidant and anti-inflammatory effects. It also appears effective against glutamate toxicity, and it is capable of restoring altered dopamine activity (DA). These effects are achieved both directly and through steroid hormones. Therefore, dutasteride seems to be a promising molecule for the treatment of ALS, although clinical studies are required for confirmation.
Collapse
Affiliation(s)
- Belén Proaño
- Doctoral Degree School, Health Sciences, Catholic University of Valencia San Vicente Mártir, 46001 Valencia, Spain
| | - Julia Casani-Cubel
- School of Medicine and Health Sciences, Catholic University San Vicente Mártir, 46001 Valencia, Spain
- Correspondence: (J.C.-C.); (M.B.)
| | - María Benlloch
- Department Nursing, Catholic University San Vicente Mártir, 46001 Valencia, Spain
- Correspondence: (J.C.-C.); (M.B.)
| | - Ana Rodriguez-Mateos
- Department of Nutritional Sciences, King’s College London, Franklin Wilkins Building, London SE1 9NH, UK
| | | | | | | |
Collapse
|
5
|
Raghunathan R, Turajane K, Wong LC. Biomarkers in Neurodegenerative Diseases: Proteomics Spotlight on ALS and Parkinson’s Disease. Int J Mol Sci 2022; 23:ijms23169299. [PMID: 36012563 PMCID: PMC9409485 DOI: 10.3390/ijms23169299] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 08/13/2022] [Accepted: 08/14/2022] [Indexed: 11/21/2022] Open
Abstract
Neurodegenerative diseases such as amyotrophic lateral sclerosis (ALS) and Parkinson’s disease (PD) are both characterized by pathogenic protein aggregates that correlate with the progressive degeneration of neurons and the loss of behavioral functions. Both diseases lack biomarkers for diagnosis and treatment efficacy. Proteomics is an unbiased quantitative tool capable of the high throughput quantitation of thousands of proteins from minimal sample volumes. We review recent proteomic studies in human tissues, plasma, cerebrospinal fluid (CSF), and exosomes in ALS and PD that identify proteins with potential utility as biomarkers. Further, we review disease-related post-translational modifications in key proteins TDP43 in ALS and α-synuclein in PD studies, which may serve as biomarkers. We compare relative and absolute quantitative proteomic approaches in key biomarker studies in ALS and PD and discuss recent technological advancements which may identify suitable biomarkers for the early-diagnosis treatment efficacy of these diseases.
Collapse
|
6
|
Goldstein O, Inbar T, Kedmi M, Gana-Weisz M, Abramovich B, Orr-Urtreger A, Drory VE. FUS-P525L Juvenile Amyotrophic Lateral Sclerosis and Intellectual Disability. Neurol Genet 2022; 8:e200009. [PMID: 35812163 PMCID: PMC9258982 DOI: 10.1212/nxg.0000000000200009] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Accepted: 05/10/2022] [Indexed: 11/25/2022]
Abstract
Background and Objectives Amyotrophic lateral sclerosis (ALS) is characterized by upper and lower motor neuron degeneration, with juvenile ALS (jALS) defined as disease with age at onset (AAO) before 25 years. We aimed to identify the genetic basis of 2 unrelated patients with jALS with very rapid deterioration and early age intellectual disability (ID) and to assess association of genetic findings with both phenotypes in a large cohort of patients with ALS and controls, and in the literature. Methods Exome sequencing was performed in 2 unrelated probands and their parents. Trio analyses included de novo, rare homozygosity, and compound heterozygosity analyses. A TaqMan genotyping assay was used to genotype ALS cohorts. A systematic literature review was conducted and additional information from authors obtained to assess prevalence of fused in sarcoma (FUS)-ALS associated with ID. Results A de novo mutation FUS-P525L was identified in both patients. Additional variations were identified in other genes related to intellectual disabilities. Among 8 additional unrelated juvenile patients, one carried the same FUS mutation and had a similar medical history of mild ID and fulminant ALS, whereas the others did not carry any FUS coding mutations and had no reported learning or intellectual disabilities (p = 0.0083). In addition, 486 patients with ALS with AAO ≥25 years were negative for this mutation. An extensive literature review showed that among all patients with FUS-related ALS with full phenotype reports, 10.3% exhibited additional learning/intellectual disabilities. Discussion FUS-P525L mutation was identified in 3 among 10 patients with jALS (30%) in our clinical cohort, all with a very aggressive disease course and ID. Together with literature reports, these results support a novel association between mutations in FUS and early life ID. Additional variations identified in genes related to ID and brain development in our patients (GPT2, DNAH10, and SCUBE2) may suggest a complex oligogenic inheritance for this phenotype. We propose that this mutation should be screened in patients with ALS with very early AAO, aggressive disease course, and sporadic occurrence, especially when ALS is accompanied by ID.
Collapse
|