1
|
Salomao N, Karakostis K, Hupp T, Vollrath F, Vojtesek B, Fahraeus R. What do we need to know and understand about p53 to improve its clinical value? J Pathol 2021; 254:443-453. [DOI: 10.1002/path.5677] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Revised: 03/25/2021] [Accepted: 04/01/2021] [Indexed: 12/19/2022]
Affiliation(s)
- Norman Salomao
- Inserm UMRS1131, Institut de Génétique Moléculaire, Université Paris 7, Hôpital St Louis Paris France
| | - Konstantinos Karakostis
- Inserm UMRS1131, Institut de Génétique Moléculaire, Université Paris 7, Hôpital St Louis Paris France
| | - Ted Hupp
- University of Gdansk, International Centre for Cancer Vaccine Science Gdansk Poland
- University of Edinburgh, Institute of Genetics and Molecular Medicine Edinburgh UK
| | - Friz Vollrath
- Department of Zoology, Zoology Research and Administration Building University of Oxford Oxford UK
| | | | - Robin Fahraeus
- Inserm UMRS1131, Institut de Génétique Moléculaire, Université Paris 7, Hôpital St Louis Paris France
- University of Gdansk, International Centre for Cancer Vaccine Science Gdansk Poland
- RECAMO, Masaryk Memorial Cancer Institute Brno Czech Republic
- Department of Medical Biosciences Building 6M, Umeå University Umeå Sweden
| |
Collapse
|
2
|
Epigenetic Targeting of Autophagy via HDAC Inhibition in Tumor Cells: Role of p53. Int J Mol Sci 2018; 19:ijms19123952. [PMID: 30544838 PMCID: PMC6321134 DOI: 10.3390/ijms19123952] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2018] [Revised: 12/05/2018] [Accepted: 12/06/2018] [Indexed: 12/19/2022] Open
Abstract
Tumor development and progression is the consequence of genetic as well as epigenetic alterations of the cell. As part of the epigenetic regulatory system, histone acetyltransferases (HATs) and deacetylases (HDACs) drive the modification of histone as well as non-histone proteins. Derailed acetylation-mediated gene expression in cancer due to a delicate imbalance in HDAC expression can be reversed by histone deacetylase inhibitors (HDACi). Histone deacetylase inhibitors have far-reaching anticancer activities that include the induction of cell cycle arrest, the inhibition of angiogenesis, immunomodulatory responses, the inhibition of stress responses, increased generation of oxidative stress, activation of apoptosis, autophagy eliciting cell death, and even the regulation of non-coding RNA expression in malignant tumor cells. However, it remains an ongoing issue how tumor cells determine to respond to HDACi treatment by preferentially undergoing apoptosis or autophagy. In this review, we summarize HDACi-mediated mechanisms of action, particularly with respect to the induction of cell death. There is a keen interest in assessing suitable molecular factors allowing a prognosis of HDACi-mediated treatment. Addressing the results of our recent study, we highlight the role of p53 as a molecular switch driving HDACi-mediated cellular responses towards one of both types of cell death. These findings underline the importance to determine the mutational status of p53 for an effective outcome in HDACi-mediated tumor therapy.
Collapse
|
3
|
The Extraordinary Progress in Very Early Cancer Diagnosis and Personalized Therapy: The Role of Oncomarkers and Nanotechnology. JOURNAL OF NANOTECHNOLOGY 2016. [DOI: 10.1155/2016/3020361] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
The impact of nanotechnology on oncology is revolutionizing cancer diagnosis and therapy and largely improving prognosis. This is mainly due to clinical translation of the most recent findings in cancer research, that is, the application of bio- and nanotechnologies. Cancer genomics and early diagnostics are increasingly playing a key role in developing more precise targeted therapies for most human tumors. In the last decade, accumulation of basic knowledge has resulted in a tremendous breakthrough in this field. Nanooncology, through the discovery of new genetic and epigenetic biomarkers, has facilitated the development of more sensitive biosensors for early cancer detection and cutting-edge multifunctionalized nanoparticles for tumor imaging and targeting. In the near future, nanooncology is expected to enable a very early tumor diagnosis, combined with personalized therapeutic approaches.
Collapse
|
4
|
Abstract
Unrestrained p53 activity during development, as occurs upon loss of the p53 negative regulators Mdm2 or Mdmx, causes early embryonic lethality. Surprisingly, co-expression of wild-type p53 and a transcriptionally-dead variant of p53, with mutations in both transactivation domains (p53(L25Q,W26S,F53Q,F54S)), also causes lethality, but later in gestation and in association with a host of very specific phenotypes reminiscent of a syndrome known as CHARGE. Molecular analyses revealed that wild-type p53 is inappropriately activated in p53(5,26,53,54/)(+) embryos, triggering cell-cycle arrest or apoptosis during development to cause CHARGE phenotypes. In addition, CHARGE syndrome is typically caused by mutations in the CHD7 chromatin remodeler, and we have shown that activated p53 contributes to phenotypes caused by CHD7-deficiency. Together, these studies provide new insight into CHARGE syndrome and expand our understanding of the role of p53 in diseases other than cancer.
Collapse
Affiliation(s)
- Jeanine L Van Nostrand
- a Division of Radiation and Cancer Biology; Department of Radiation Oncology ; Stanford School of Medicine ; Stanford , CA USA
| | | |
Collapse
|
5
|
Soussi T, Wiman KG. TP53: an oncogene in disguise. Cell Death Differ 2015; 22:1239-49. [PMID: 26024390 PMCID: PMC4495363 DOI: 10.1038/cdd.2015.53] [Citation(s) in RCA: 211] [Impact Index Per Article: 23.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2015] [Revised: 03/31/2015] [Accepted: 04/01/2015] [Indexed: 12/11/2022] Open
Abstract
The standard classification used to define the various cancer genes confines tumor protein p53 (TP53) to the role of a tumor suppressor gene. However, it is now an indisputable fact that many p53 mutants act as oncogenic proteins. This statement is based on multiple arguments including the mutation signature of the TP53 gene in human cancer, the various gains-of-function (GOFs) of the different p53 mutants and the heterogeneous phenotypes developed by knock-in mouse strains modeling several human TP53 mutations. In this review, we will shatter the classical and traditional image of tumor protein p53 (TP53) as a tumor suppressor gene by emphasizing its multiple oncogenic properties that make it a potential therapeutic target that should not be underestimated. Analysis of the data generated by the various cancer genome projects highlights the high frequency of TP53 mutations and reveals that several p53 hotspot mutants are the most common oncoprotein variants expressed in several types of tumors. The use of Muller's classical definition of mutations based on quantitative and qualitative consequences on the protein product, such as ‘amorph', ‘hypomorph', ‘hypermorph' ‘neomorph' or ‘antimorph', allows a more meaningful assessment of the consequences of cancer gene modifications, their potential clinical significance, and clearly demonstrates that the TP53 gene is an atypical cancer gene.
Collapse
Affiliation(s)
- T Soussi
- 1] Department of Oncology-Pathology, Karolinska Institutet, Cancer Center Karolinska (CCK) R8:04, Stockholm SE-171 76, Sweden [2] Sorbonne Universités, UPMC Univ Paris 06, Paris F-75005, France [3] INSERM, U1138, Centre de Recherche des Cordeliers, Paris, France [4] Université Paris Descartes, Sorbonne Paris Cité, Paris, France
| | - K G Wiman
- Department of Oncology-Pathology, Karolinska Institutet, Cancer Center Karolinska (CCK) R8:04, Stockholm SE-171 76, Sweden
| |
Collapse
|
6
|
Baskin Y, Dagdeviren YK, Calibasi G, Canda AE, Sarioglu S, Ellidokuz H, Oztop I. KRAS mutation profile differences between rectosigmoid localized adenocarcinomas and colon adenocarcinomas. J Gastrointest Oncol 2014; 5:265-9. [PMID: 25083299 DOI: 10.3978/j.issn.2078-6891.2014.038] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/14/2014] [Accepted: 05/27/2014] [Indexed: 01/26/2023] Open
Abstract
BACKGROUND Colorectal cancer has a heterogeneous nature that is influenced by the tumour site. Many improvements have been made in identifying and characterizing the genetic alterations between colon and rectal cancers. However, there is not enough information about KRAS mutational differences between rectosigmoid and colon cancers arising elsewhere in the large bowel. The aim of this study was to determine the differences in the frequency of KRAS genetic alterations between rectosigmoid cancers and colon cancers. METHODS Eighty-four patients diagnosed with colorectal cancer were included in this study. Genomic DNA was extracted from formalin-fixed paraffin-embedded tumour tissue sections. KRAS mutation analysis which was designed to detect the seven most common KRAS gene mutations (Gly12Ala, Gly12Asp, Gly12Arg, Gly12Cys, Gly12Ser, Gly12Val and Gly13Asp) was performed. Chi-square test was used to test the association between mutation status and other variables. RESULTS This study represents the first KRAS mutational results from Turkish rectosigmoid cancer patients. The KRAS mutation frequency of rectosigmoid tumours is higher (34.3%, 12/35) than that of colon-localized tumours (30.6%, 15/49). However, there is no significant correlation between the KRAS mutation status and tumour location (rectosigmoid and colon). CONCLUSIONS KRAS mutation analysis has a predictive and prognostic value in identifying tumours that may be resistant to treatment. Our study shows that differences in the biological behaviour of rectosigmoid and colon cancers should be considered. This finding highlights the importance of personalized cancer management, which could be assisted by cancer genotyping tools.
Collapse
Affiliation(s)
- Yasemin Baskin
- 1 Department of Basic Oncology, Institute of Oncology, 2 Department of Medical Informatics and Biostatistics, Faculty of Medicine, 3 Department of Surgery, Faculty of Medicine, 4 Department of Pathology, Faculty of Medicine, 5 Department of Preventive Oncology, Institute of Oncology, 6 Department of Medical Oncology, Faculty of Medicine, Dokuz Eylul University, Izmir, Turkey
| | - Yusuf Kagan Dagdeviren
- 1 Department of Basic Oncology, Institute of Oncology, 2 Department of Medical Informatics and Biostatistics, Faculty of Medicine, 3 Department of Surgery, Faculty of Medicine, 4 Department of Pathology, Faculty of Medicine, 5 Department of Preventive Oncology, Institute of Oncology, 6 Department of Medical Oncology, Faculty of Medicine, Dokuz Eylul University, Izmir, Turkey
| | - Gizem Calibasi
- 1 Department of Basic Oncology, Institute of Oncology, 2 Department of Medical Informatics and Biostatistics, Faculty of Medicine, 3 Department of Surgery, Faculty of Medicine, 4 Department of Pathology, Faculty of Medicine, 5 Department of Preventive Oncology, Institute of Oncology, 6 Department of Medical Oncology, Faculty of Medicine, Dokuz Eylul University, Izmir, Turkey
| | - Aras Emre Canda
- 1 Department of Basic Oncology, Institute of Oncology, 2 Department of Medical Informatics and Biostatistics, Faculty of Medicine, 3 Department of Surgery, Faculty of Medicine, 4 Department of Pathology, Faculty of Medicine, 5 Department of Preventive Oncology, Institute of Oncology, 6 Department of Medical Oncology, Faculty of Medicine, Dokuz Eylul University, Izmir, Turkey
| | - Sulen Sarioglu
- 1 Department of Basic Oncology, Institute of Oncology, 2 Department of Medical Informatics and Biostatistics, Faculty of Medicine, 3 Department of Surgery, Faculty of Medicine, 4 Department of Pathology, Faculty of Medicine, 5 Department of Preventive Oncology, Institute of Oncology, 6 Department of Medical Oncology, Faculty of Medicine, Dokuz Eylul University, Izmir, Turkey
| | - Hulya Ellidokuz
- 1 Department of Basic Oncology, Institute of Oncology, 2 Department of Medical Informatics and Biostatistics, Faculty of Medicine, 3 Department of Surgery, Faculty of Medicine, 4 Department of Pathology, Faculty of Medicine, 5 Department of Preventive Oncology, Institute of Oncology, 6 Department of Medical Oncology, Faculty of Medicine, Dokuz Eylul University, Izmir, Turkey
| | - Ilhan Oztop
- 1 Department of Basic Oncology, Institute of Oncology, 2 Department of Medical Informatics and Biostatistics, Faculty of Medicine, 3 Department of Surgery, Faculty of Medicine, 4 Department of Pathology, Faculty of Medicine, 5 Department of Preventive Oncology, Institute of Oncology, 6 Department of Medical Oncology, Faculty of Medicine, Dokuz Eylul University, Izmir, Turkey
| |
Collapse
|
7
|
Leroy B, Girard L, Hollestelle A, Minna JD, Gazdar AF, Soussi T. Analysis of TP53 mutation status in human cancer cell lines: a reassessment. Hum Mutat 2014; 35:756-65. [PMID: 24700732 DOI: 10.1002/humu.22556] [Citation(s) in RCA: 150] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2014] [Accepted: 03/20/2014] [Indexed: 12/14/2022]
Abstract
Tumor-derived cell lines play an important role in the investigation of tumor biology and genetics. Across a wide array of studies, they have been tools of choice for the discovery of important genes involved in cancer and for the analysis of the cellular pathways that are impaired by diverse oncogenic events. They are also invaluable for screening novel anticancer drugs. The TP53 protein is a major component of multiple pathways that regulate cellular response to various types of stress. Therefore, TP53 status affects the phenotype of tumor cell lines profoundly and must be carefully ascertained for any experimental project. In the present review, we use the 2014 release of the UMD TP53 database to show that TP53 status is still controversial for numerous cell lines, including some widely used lines from the NCI-60 panel. Our analysis clearly confirms that, despite numerous warnings, the misidentification of cell lines is still present as a silent and neglected issue, and that extreme care must be taken when determining the status of p53, because errors may lead to disastrous experimental interpretations. A novel compendium gathering the TP53 status of 2,500 cell lines has been made available (http://p53.fr). A stand-alone application can be used to browse the database and extract pertinent information on cell lines and associated TP53 mutations. It will be updated regularly to minimize any scientific issues associated with the use of misidentified cell lines (http://p53.fr).
Collapse
Affiliation(s)
- Bernard Leroy
- Université Pierre et Marie Curie-Paris 6, Paris, 75005, France
| | | | | | | | | | | |
Collapse
|
8
|
Critical Analysis of Strand-Biased Somatic Mutation Signatures in TP53 versus Ig Genes, in Genome-Wide Data and the Etiology of Cancer. ACTA ACUST UNITED AC 2013. [DOI: 10.1155/2013/921418] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Previous analyses of rearranged immunoglobulin (Ig) variable genes (VDJs) concluded that the mechanism of Ig somatic hypermutation (SHM) involves the Ig pre-mRNA acting as a copying template resulting in characteristic strand biased somatic mutation patterns at A:T and G:C base pairs. We have since analysed cancer genome data and found the same mutation strand-biases, in toto or in part, in nonlymphoid cancers. Here we have analysed somatic mutations in a single well-characterised gene TP53. Our goal is to understand the genesis of the strand-biased mutation patterns in TP53—and in genome-wide data—that may arise by “endogenous” mechanisms as opposed to adduct-generated DNA-targeted strand-biased mutations caused by well-characterised “external” carcinogenic influences in cigarette smoke, UV-light, and certain dietary components. The underlying strand-biased mutation signatures in TP53, for many non-lymphoid cancers, bear a striking resemblance to the Ig SHM pattern. A similar pattern can be found in genome-wide somatic mutations in cancer genomes that have also mutated TP53. The analysis implies a role for base-modified RNA template intermediates coupled to reverse transcription in the genesis of many cancers. Thus Ig SHM may be inappropriately activated in many non-lymphoid tissues via hormonal and/or inflammation-related processes leading to cancer.
Collapse
|
9
|
Leroy B, Fournier JL, Ishioka C, Monti P, Inga A, Fronza G, Soussi T. The TP53 website: an integrative resource centre for the TP53 mutation database and TP53 mutant analysis. Nucleic Acids Res 2012; 41:D962-9. [PMID: 23161690 PMCID: PMC3531172 DOI: 10.1093/nar/gks1033] [Citation(s) in RCA: 120] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
A novel resource centre for TP53 mutations and mutants has been developed (http://p53.fr). TP53 gene dysfunction can be found in the majority of human cancer types. The potential use of TP53 mutation as a biomarker for clinical studies or exposome analysis has led to the publication of thousands of reports describing the TP53 gene status in >10 000 tumours. The UMD TP53 mutation database was created in 1990 and has been regularly updated. The 2012 release of the database has been carefully curated, and all suspicious reports have been eliminated. It is available either as a flat file that can be easily manipulated or as novel multi-platform analytical software that has been designed to analyse various aspects of TP53 mutations. Several tools to ascertain TP53 mutations are also available for download. We have developed TP53MULTLoad, a manually curated database providing comprehensive details on the properties of 2549 missense TP53 mutants. More than 100 000 entries have been arranged in 39 different activity fields, such as change of transactivation on various promoters, apoptosis or growth arrest. For several hot spot mutants, multiple gain of function activities are also included. The database can be easily browsed via a graphical user interface.
Collapse
Affiliation(s)
- Bernard Leroy
- Université Pierre et Marie Curie-Paris6, 75005 Paris, France
| | | | | | | | | | | | | |
Collapse
|
10
|
Data-driven unbiased curation of the TP53 tumor suppressor gene mutation database and validation by ultradeep sequencing of human tumors. Proc Natl Acad Sci U S A 2012; 109:9551-6. [PMID: 22628563 DOI: 10.1073/pnas.1200019109] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Cancer mutation databases are expected to play central roles in personalized medicine by providing targets for drug development and biomarkers to tailor treatments to each patient. The accuracy of reported mutations is a critical issue that is commonly overlooked, which leads to mutation databases that include a sizable number of spurious mutations, either sequencing errors or passenger mutations. Here we report an analysis of the latest version of the TP53 mutation database, including 34,453 mutations. By using several data-driven methods on multiple independent quality criteria, we obtained a quality score for each report contributing to the database. This score can now be used to filter for high-confidence mutations and reports within the database. Sequencing the entire TP53 gene from various types of cancer using next-generation sequencing with ultradeep coverage validated our approach for curation. In summary, 9.7% of all collected studies, mostly comprising numerous tumors with multiple infrequent TP53 mutations, should be excluded when analyzing TP53 mutations. Thus, by combining statistical and experimental analyses, we provide a curated mutation database for TP53 mutations and a framework for mutation database analysis.
Collapse
|