1
|
Wu L, Gao C. Comprehensive Overview the Role of Glycosylation of Extracellular Vesicles in Cancers. ACS OMEGA 2023; 8:47380-47392. [PMID: 38144130 PMCID: PMC10734006 DOI: 10.1021/acsomega.3c07441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 11/09/2023] [Accepted: 11/15/2023] [Indexed: 12/26/2023]
Abstract
Extracellular vesicles (EVs) are membranous structures secreted by various cells carrying diverse biomolecules. Recent advancements in EV glycosylation research have underscored their crucial role in cancer. This review provides a global overview of EV glycosylation research, covering aspects such as specialized techniques for isolating and characterizing EV glycosylation, advances on how glycosylation affects the biogenesis and uptake of EVs, and the involvement of EV glycosylation in intracellular protein expression, cellular metastasis, intercellular interactions, and potential applications in immunotherapy. Furthermore, through an extensive literature review, we explore recent advances in EV glycosylation research in the context of cancer, with a focus on lung, colorectal, liver, pancreatic, breast, ovarian, prostate, and melanoma cancers. The primary objective of this review is to provide a comprehensive update for researchers, whether they are seasoned experts in the field of EVs or newcomers, aiding them in exploring new avenues and gaining a deeper understanding of EV glycosylation mechanisms. This heightened comprehension not only enhances researchers' knowledge of the pathogenic mechanisms of EV glycosylation but also paves the way for innovative cancer diagnostic and therapeutic strategies.
Collapse
Affiliation(s)
- Linlin Wu
- Department of Clinical
Laboratory
Medicine Center, Yueyang Hospital of Integrated Traditional Chinese
and Western Medicine, Shanghai University
of Traditional Chinese Medicine, Shanghai 200437, China
| | - Chunfang Gao
- Department of Clinical
Laboratory
Medicine Center, Yueyang Hospital of Integrated Traditional Chinese
and Western Medicine, Shanghai University
of Traditional Chinese Medicine, Shanghai 200437, China
| |
Collapse
|
2
|
Updates and Original Case Studies Focused on the NMR-Linked Metabolomics Analysis of Human Oral Fluids Part II: Applications to the Diagnosis and Prognostic Monitoring of Oral and Systemic Cancers. Metabolites 2022; 12:metabo12090778. [PMID: 36144183 PMCID: PMC9505390 DOI: 10.3390/metabo12090778] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Revised: 08/12/2022] [Accepted: 08/15/2022] [Indexed: 11/24/2022] Open
Abstract
Human saliva offers many advantages over other biofluids regarding its use and value as a bioanalytical medium for the identification and prognostic monitoring of human diseases, mainly because its collection is largely non-invasive, is relatively cheap, and does not require any major clinical supervision, nor supervisory input. Indeed, participants donating this biofluid for such purposes, including the identification, validation and quantification of surrogate biomarkers, may easily self-collect such samples in their homes following the provision of full collection details to them by researchers. In this report, the authors have focused on the applications of metabolomics technologies to the diagnosis and progressive severity monitoring of human cancer conditions, firstly oral cancers (e.g., oral cavity squamous cell carcinoma), and secondly extra-oral (systemic) cancers such as lung, breast and prostate cancers. For each publication reviewed, the authors provide a detailed evaluation and critical appraisal of the experimental design, sample size, ease of sample collection (usually but not exclusively as whole mouth saliva (WMS)), their transport, length of storage and preparation for analysis. Moreover, recommended protocols for the optimisation of NMR pulse sequences for analysis, along with the application of methods and techniques for verifying and resonance assignments and validating the quantification of biomolecules responsible, are critically considered. In view of the authors’ specialisms and research interests, the majority of these investigations were conducted using NMR-based metabolomics techniques. The extension of these studies to determinations of metabolic pathways which have been pathologically disturbed in these diseases is also assessed here and reviewed. Where available, data for the monitoring of patients’ responses to chemotherapeutic treatments, and in one case, radiotherapy, are also evaluated herein. Additionally, a novel case study featured evaluates the molecular nature, levels and diagnostic potential of 1H NMR-detectable salivary ‘acute-phase’ glycoprotein carbohydrate side chains, and/or their monomeric saccharide derivatives, as biomarkers for cancer and inflammatory conditions.
Collapse
|
3
|
Characterization of Mesothelin Glycosylation in Pancreatic Cancer: Decreased Core Fucosylated Glycoforms in Pancreatic Cancer Patients’ Sera. Biomedicines 2022; 10:biomedicines10081942. [PMID: 36009489 PMCID: PMC9405996 DOI: 10.3390/biomedicines10081942] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Revised: 07/27/2022] [Accepted: 08/08/2022] [Indexed: 11/21/2022] Open
Abstract
Currently, there are no reliable biomarkers for the diagnosis of pancreatic cancer (PaC). Glycoproteomic approaches that analyze the glycan determinants on specific glycoproteins have proven useful to develop more specific cancer biomarkers than the corresponding protein levels. In PaC, mesothelin (MSLN) is a neo-expressed glycoprotein. MSLN glycosylation has not been described and could be altered in PaC. In this work, we aimed to characterize MSLN glycans from PaC cells and serum samples to assess their potential usefulness as PaC biomarkers. First, we analyzed MSLN glycans from PaC cell lines and then we developed an enzyme-linked lectin assay to measure core fucosylated-MSLN (Cf-MSLN) glycoforms. MSLN glycans from PaC cells were analyzed by glycan sequencing and through Western blotting with lectins. All of the cell lines secreted MSLN, with its three N-glycosylation sites occupied by complex-type N-glycans, which were mainly α2,3-sialylated, core fucosylated and highly branched. The Cf-MSLN glycoforms were quantified on PaC serum samples, and compared with MSLN protein levels. The Cf-MSLN was significantly decreased in PaC patients compared to control sera, while no differences were detected by using MSLN protein levels. In conclusion, Cf-MSLN glycoforms were differently expressed in PaC, which opens the way to further investigate their usefulness as PaC biomarkers.
Collapse
|
4
|
Vázquez-Del Mercado M, Martínez-García EA, Daneri-Navarro A, Gómez-Bañuelos E, Martín-Márquez BT, Pizano-Martínez O, Wilson-Manríquez EA, Corona-Sánchez EG, Chavarria-Avila E, Sandoval-García F, Satoh M. Presence of anti-TIF-1γ, anti-Ro52, anti-SSA/Ro60 and anti-Su/Ago2 antibodies in breast cancer: a cross-sectional study. Immunopharmacol Immunotoxicol 2021; 43:328-333. [PMID: 33876712 DOI: 10.1080/08923973.2021.1910833] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
OBJECTIVES The presence of myositis-specific antibodies (MSA), was recently reported in healthy individuals, cancer patients without myopathy and paraneoplastic rheumatic syndromes. We sought to analyze the frequency of MSA, myositis-associated antibodies (MAA) and autoantibodies related to systemic autoimmune rheumatic diseases (SARD) in breast cancer patients. METHODS One hundred fifty-two breast cancer patients were enrolled in a cross-sectional study. Clinical information was collected, and autoantibodies tested by immunoprecipitation of an 35S-methionine-labeled K562 cell extract, enzyme-linked immunosorbent assay (ELISA) and Western blot when indicated. All statistical tests were performed using the software statistical package for the social science (SPSS) ver. 19.0 (IBM Inc., NYSE, USA). RESULTS Autoantibodies associated with SARD: anti-52 kD ribonucleoprotein/tripartite motif-containing 21 (anti-Ro52/TRIM21) was found in 5.9% (9/152), anti-Sjögren syndrome-related antigen A/60 kD ribonucleoprotein antibody (anti-SSA/Ro60) in 3.9% (6/152) and anti-Su antigen/Argonaute 2 antibody (anti-Su/Ago2) in 2.6% (4/152). Meanwhile, anti-transcription intermediary factor-1γ (anti-TIF-1γ, p155/140) antibody was positive in 2 cases and anti-polymyositis/scleroderma antibody was detected in one case. As a whole, 14.47% (22/152) of breast cancer patients showed autoantibodies associated with SARD. These specific autoantibodies were not associated with the presence of rheumatic diseases except one rheumatoid arthritis patient positive for anti-Ro52/TRIM21. CONCLUSIONS Autoantibodies to TIF-1γ were found in two patients with breast cancer without dermatomyositis (DM). More common specificities were autoantibodies anti-SSA/Ro60, anti-Ro52/TRIM21 and anti-Su/Ago2. More studies are needed in order to establish the biological meaning of the presence of SARD-associated autoantibodies in breast cancer.
Collapse
Affiliation(s)
- Mónica Vázquez-Del Mercado
- Instituto de Investigación en Reumatología y del Sistema Músculo Esquelético, CUCS, Universidad de Guadalajara, Guadalajara, Jalisco, México.,Hospital Civil de Guadalajara "Juan I. Menchaca", Servicio de Reumatología, PNPC, CONACyT, Guadalajara, Jalisco, México.,UDG-CA-703, Inmunología y Reumatología, CUCS, Universidad de Guadalajara, Guadalajara, Jalisco, México
| | - Erika Aurora Martínez-García
- Instituto de Investigación en Reumatología y del Sistema Músculo Esquelético, CUCS, Universidad de Guadalajara, Guadalajara, Jalisco, México.,UDG-CA-703, Inmunología y Reumatología, CUCS, Universidad de Guadalajara, Guadalajara, Jalisco, México.,Departamento de Fisiología, CUCS, Universidad de Guadalajara, Guadalajara, Jalisco, México
| | - Adrián Daneri-Navarro
- Departamento de Fisiología, CUCS, Universidad de Guadalajara, Guadalajara, Jalisco, México.,Laboratorio de Inmunología, Departamento de Fisiología, CUCS, Universidad de Guadalajara, Guadalajara, Jalisco, México
| | - Eduardo Gómez-Bañuelos
- Instituto de Investigación en Reumatología y del Sistema Músculo Esquelético, CUCS, Universidad de Guadalajara, Guadalajara, Jalisco, México.,UDG-CA-703, Inmunología y Reumatología, CUCS, Universidad de Guadalajara, Guadalajara, Jalisco, México.,Departamento de Fisiología, CUCS, Universidad de Guadalajara, Guadalajara, Jalisco, México
| | - Beatriz Teresita Martín-Márquez
- Instituto de Investigación en Reumatología y del Sistema Músculo Esquelético, CUCS, Universidad de Guadalajara, Guadalajara, Jalisco, México.,UDG-CA-703, Inmunología y Reumatología, CUCS, Universidad de Guadalajara, Guadalajara, Jalisco, México
| | - Oscar Pizano-Martínez
- Instituto de Investigación en Reumatología y del Sistema Músculo Esquelético, CUCS, Universidad de Guadalajara, Guadalajara, Jalisco, México.,UDG-CA-703, Inmunología y Reumatología, CUCS, Universidad de Guadalajara, Guadalajara, Jalisco, México.,Departamento de Clínicas Médicas. CUCS, Universidad de Guadalajara, Guadalajara, Jalisco, México
| | - Eduardo A Wilson-Manríquez
- Instituto de Investigación en Reumatología y del Sistema Músculo Esquelético, CUCS, Universidad de Guadalajara, Guadalajara, Jalisco, México
| | - Esther Guadalupe Corona-Sánchez
- Instituto de Investigación en Reumatología y del Sistema Músculo Esquelético, CUCS, Universidad de Guadalajara, Guadalajara, Jalisco, México.,UDG-CA-703, Inmunología y Reumatología, CUCS, Universidad de Guadalajara, Guadalajara, Jalisco, México.,Departamento de Fisiología, CUCS, Universidad de Guadalajara, Guadalajara, Jalisco, México
| | - Efrain Chavarria-Avila
- Instituto de Investigación en Reumatología y del Sistema Músculo Esquelético, CUCS, Universidad de Guadalajara, Guadalajara, Jalisco, México.,Departamento de Disciplinas Filosóficas, Metodológicas e Instrumentales. CUCS, Universidad de Guadalajara, Guadalajara, Jalisco, México
| | - Flavio Sandoval-García
- Instituto de Investigación en Reumatología y del Sistema Músculo Esquelético, CUCS, Universidad de Guadalajara, Guadalajara, Jalisco, México.,Departamento de Clínicas Médicas. CUCS, Universidad de Guadalajara, Guadalajara, Jalisco, México
| | - Minoru Satoh
- Department of Clinical Nursing, School of Health Sciences, University of Occupational and Environmental Health, Kitakyushu, Fukuoka, Japan
| |
Collapse
|
5
|
Su H, Wang M, Pang X, Guan F, Li X, Cheng Y. When Glycosylation Meets Blood Cells: A Glance of the Aberrant Glycosylation in Hematological Malignancies. Rev Physiol Biochem Pharmacol 2021; 180:85-117. [PMID: 34031738 DOI: 10.1007/112_2021_60] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Among neoplasia-associated epigenetic alterations, changes in cellular glycosylation have recently received attention as a key component of hematological malignancy progression. Alterations in glycosylation appear to not only directly impact cell growth and survival, but also alter the adhesion of tumor cells and their interactions with the microenvironment, facilitating cancer-induced immunomodulation and eventual metastasis. Changes in glycosylation arise from altered expression of glycosyltransferases, enzymes that catalyze the transfer of saccharide moieties to a wide range of acceptor substrates, such as proteins, lipids, and other saccharides in the endoplasmic reticulum (ER) and Golgi apparatus. Novel glycan structures in hematological malignancies represent new targets for the diagnosis and treatment of blood diseases. This review summarizes studies of the aberrant expression of glycans commonly found in hematological malignancies and their potential mechanisms and defines the specific roles of glycans as drivers or passengers in the development of hematological malignancies.
Collapse
Affiliation(s)
- Huining Su
- Center for Mitochondrial Biology and Medicine, The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, China
| | - Mimi Wang
- Center for Mitochondrial Biology and Medicine, The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, China
| | - Xingchen Pang
- Key Laboratory of Resource Biology and Biotechnology Western China, College of Life Science, Northwest University, Xi'an, China
| | - Feng Guan
- Key Laboratory of Resource Biology and Biotechnology Western China, College of Life Science, Northwest University, Xi'an, China
| | - Xiang Li
- Key Laboratory of Resource Biology and Biotechnology Western China, College of Life Science, Northwest University, Xi'an, China.
| | - Ying Cheng
- Center for Mitochondrial Biology and Medicine, The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, China.
| |
Collapse
|
6
|
Shen D, Xu B, Liang K, Tang R, Sudlow GP, Egbulefu C, Guo K, Som A, Gilson R, Maji D, Mondal S, Habimana-Griffin L, Akers WJ, Li S, Liu Y, Bloch S, Kurkure S, Nussinov Z, Seidel A, Tsen SWD, Achilefu S. Selective imaging of solid tumours via the calcium-dependent high-affinity binding of a cyclic octapeptide to phosphorylated Annexin A2. Nat Biomed Eng 2020; 4:298-313. [PMID: 32165732 PMCID: PMC7135742 DOI: 10.1038/s41551-020-0528-7] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2019] [Accepted: 02/07/2020] [Indexed: 01/05/2023]
Abstract
The heterogeneity and continuous genetic adaptation of tumours complicate their detection and treatment via the targeting of genetic mutations. However, hallmarks of cancer such as aberrant protein phosphorylation and calcium-mediated cell signalling provide broadly conserved molecular targets. Here, we show that, for a range of solid tumours, a cyclic octapeptide labelled with a near-infrared dye selectively binds to phosphorylated Annexin A2 (pANXA2), with high affinity at high levels of calcium. Because of cancer-cell-induced pANXA2 expression in tumour-associated stromal cells, the octapeptide preferentially binds to the invasive edges of tumours, and then traffics within macrophages to the tumour’s necrotic core. As proof-of-concept applications, we used the octapeptide to detect tumour xenografts and metastatic lesions, and to perform fluorescence-guided surgical tumour resection, in mice. Our findings suggest that high levels of pANXA2 in association with elevated calcium are present in the microenvironment of most solid cancers. The octapeptide might be broadly useful for selective tumour imaging and for delivering drugs to the edges and to the core of solid tumours.
Collapse
Affiliation(s)
- Duanwen Shen
- Department of Radiology, Washington University, St. Louis, MO, USA
| | - Baogang Xu
- Department of Radiology, Washington University, St. Louis, MO, USA
| | - Kexian Liang
- Department of Radiology, Washington University, St. Louis, MO, USA
| | - Rui Tang
- Department of Radiology, Washington University, St. Louis, MO, USA
| | - Gail P Sudlow
- Department of Radiology, Washington University, St. Louis, MO, USA
| | | | - Kevin Guo
- Department of Radiology, Washington University, St. Louis, MO, USA
| | - Avik Som
- Department of Radiology, Washington University, St. Louis, MO, USA.,Department of Biomedical Engineering, Washington University, St. Louis, MO, USA
| | - Rebecca Gilson
- Department of Radiology, Washington University, St. Louis, MO, USA.,Department of Biomedical Engineering, Washington University, St. Louis, MO, USA
| | - Dolonchampa Maji
- Department of Radiology, Washington University, St. Louis, MO, USA.,Department of Biomedical Engineering, Washington University, St. Louis, MO, USA
| | - Suman Mondal
- Department of Radiology, Washington University, St. Louis, MO, USA.,Department of Biomedical Engineering, Washington University, St. Louis, MO, USA
| | - LeMoyne Habimana-Griffin
- Department of Radiology, Washington University, St. Louis, MO, USA.,Department of Biomedical Engineering, Washington University, St. Louis, MO, USA
| | - Walter J Akers
- Department of Radiology, Washington University, St. Louis, MO, USA
| | - Shunqiang Li
- Department of Medicine, Washington University, St. Louis, MO, USA
| | - Yang Liu
- Department of Radiology, Washington University, St. Louis, MO, USA
| | - Sharon Bloch
- Department of Radiology, Washington University, St. Louis, MO, USA
| | - Sid Kurkure
- Department of Radiology, Washington University, St. Louis, MO, USA
| | - Zohar Nussinov
- Department of Physics, Washington University, St. Louis, MO, USA
| | - Alexander Seidel
- Department of Physics, Washington University, St. Louis, MO, USA
| | - Shaw-Wei D Tsen
- Department of Radiology, Washington University, St. Louis, MO, USA
| | - Samuel Achilefu
- Department of Radiology, Washington University, St. Louis, MO, USA. .,Department of Biomedical Engineering, Washington University, St. Louis, MO, USA. .,Department of Medicine, Washington University, St. Louis, MO, USA. .,Department of Biochemistry & Molecular Biophysics, Washington University, St. Louis, MO, USA.
| |
Collapse
|
7
|
Fuertes-Martín R, Correig X, Vallvé JC, Amigó N. Title: Human Serum/Plasma Glycoprotein Analysis by 1H-NMR, an Emerging Method of Inflammatory Assessment. J Clin Med 2020; 9:E354. [PMID: 32012794 PMCID: PMC7073769 DOI: 10.3390/jcm9020354] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Revised: 01/13/2020] [Accepted: 01/17/2020] [Indexed: 12/17/2022] Open
Abstract
Several studies suggest that variations in the concentration of plasma glycoproteins can influence cellular changes in a large number of diseases. In recent years, proton nuclear magnetic resonance (1H-NMR) has played a major role as an analytical tool for serum and plasma samples. In recent years, there is an increasing interest in the characterization of glycoproteins through 1H-NMR in order to search for reliable and robust biomarkers of disease. The objective of this review was to examine the existing studies in the literature related to the study of glycoproteins from an analytical and clinical point of view. There are currently several techniques to characterize circulating glycoproteins in serum or plasma, but in this review, we focus on 1H-NMR due to its great robustness and recent interest in its translation to the clinical setting. In fact, there is already a marker in H-NMR representing the acetyl groups of the glycoproteins, GlycA, which has been increasingly studied in clinical studies. A broad search of the literature was performed showing a general consensus that GlycA is a robust marker of systemic inflammation. The results also suggested that GlycA better captures systemic inflammation even more than C-reactive protein (CRP), a widely used classical inflammatory marker. The applications reviewed here demonstrated that GlycA was potentially a key biomarker in a wide range of diseases such as cancer, metabolic diseases, cardiovascular risk, and chronic inflammatory diseases among others. The profiling of glycoproteins through 1H-NMR launches an encouraging new paradigm for its future incorporation in clinical diagnosis.
Collapse
Affiliation(s)
- Rocío Fuertes-Martín
- Biosfer Teslab SL, 43201 Reus, Spain; (R.F.-M.); (N.A.)
- Metabolomic s platform, IISPV, CIBERDEM, Rovira i Virgili University, 43007 Tarragona, Spain
| | - Xavier Correig
- Metabolomic s platform, IISPV, CIBERDEM, Rovira i Virgili University, 43007 Tarragona, Spain
| | - Joan-Carles Vallvé
- Metabolomic s platform, IISPV, CIBERDEM, Rovira i Virgili University, 43007 Tarragona, Spain
- Lipids and Arteriosclerosis Research Unit, Sant Joan de Reus University Hospital, 43201 Reus, Spain
| | - Núria Amigó
- Biosfer Teslab SL, 43201 Reus, Spain; (R.F.-M.); (N.A.)
- Metabolomic s platform, IISPV, CIBERDEM, Rovira i Virgili University, 43007 Tarragona, Spain
| |
Collapse
|
8
|
Ueda Y, Kawamoto K, Konno M, Noguchi K, Kaifuchi S, Satoh T, Eguchi H, Doki Y, Hirotsu T, Mori M, Ishii H. Application of C. elegans cancer screening test for the detection of pancreatic tumor in genetically engineered mice. Oncotarget 2019; 10:5412-5418. [PMID: 31534627 PMCID: PMC6739214 DOI: 10.18632/oncotarget.27124] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2019] [Accepted: 07/17/2019] [Indexed: 12/20/2022] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) exhibits a very early onset of metastasis. Thus, early detection and treatment are pivotal to successful eradication of pancreatic cancers. Economical and non-invasive cancer screening systems is indispensable for this purpose. Previously our group developed a novel method to detect various kinds of human cancer using nematode Caenorhabditis elegans (C. elegans) that respond to cancer odor in urine; however, whether this method is useful for non-human species remains to be understood. In this study, we examined its effectiveness in the detection of murine pancreatic tumor spontaneously generated in genetically-engineered mice. We generated pancreas-specific Kras G12D and/or c-Met deletion mutant mice and measured the probability of spontaneous tumor generation in these mice. The chemotactic indexes of C. elegans to the urine samples of these mutant mice were measured. As previously described, oncogenic KrasG12D was necessary to induce pancreatic intraepithelial neoplasia in this mouse model, while c-Met mutation did not show further effect. The chemotactic analysis indicated that C. elegans avoids urine of healthy recipient mice, while they tended to be attracted to urine of mice with KrasG12D . Our study demonstrated that C. elegans can recognize the odor of pancreatic cancer in urine of KrasG12D model mouse, suggesting the similarity of cancer odor between species. Our result facilitates further studies on mechanism of cancer detection by C. elegans.
Collapse
Affiliation(s)
- Yuji Ueda
- Department of Gastroenterological Surgery, Graduate School of Medicine, Osaka University, Osaka 565-0871, Japan.,Department of Medical Data Science, Graduate School of Medicine, Osaka University, Osaka 565-0871, Japan.,Department of Frontier Science for Cancer and Chemotherapy, Graduate School of Medicine, Osaka University, Osaka 565-0871, Japan
| | - Koichi Kawamoto
- Department of Gastroenterological Surgery, Graduate School of Medicine, Osaka University, Osaka 565-0871, Japan.,Department of Medical Data Science, Graduate School of Medicine, Osaka University, Osaka 565-0871, Japan.,Department of Frontier Science for Cancer and Chemotherapy, Graduate School of Medicine, Osaka University, Osaka 565-0871, Japan
| | - Masamitsu Konno
- Department of Medical Data Science, Graduate School of Medicine, Osaka University, Osaka 565-0871, Japan.,Department of Frontier Science for Cancer and Chemotherapy, Graduate School of Medicine, Osaka University, Osaka 565-0871, Japan
| | - Kozo Noguchi
- Department of Gastroenterological Surgery, Graduate School of Medicine, Osaka University, Osaka 565-0871, Japan.,Department of Medical Data Science, Graduate School of Medicine, Osaka University, Osaka 565-0871, Japan
| | | | - Taroh Satoh
- Department of Frontier Science for Cancer and Chemotherapy, Graduate School of Medicine, Osaka University, Osaka 565-0871, Japan
| | - Hidetoshi Eguchi
- Department of Gastroenterological Surgery, Graduate School of Medicine, Osaka University, Osaka 565-0871, Japan
| | - Yuichiro Doki
- Department of Gastroenterological Surgery, Graduate School of Medicine, Osaka University, Osaka 565-0871, Japan
| | - Takaaki Hirotsu
- Hirotsu Bioscience Co., Ltd., Tokyo 107-0062, Japan.,Department of Biology, Graduate School of Science, Kyushu University, Fukuoka 819-0395, Japan
| | - Masaki Mori
- Department of Gastroenterological Surgery, Graduate School of Medicine, Osaka University, Osaka 565-0871, Japan
| | - Hideshi Ishii
- Department of Medical Data Science, Graduate School of Medicine, Osaka University, Osaka 565-0871, Japan.,Department of Frontier Science for Cancer and Chemotherapy, Graduate School of Medicine, Osaka University, Osaka 565-0871, Japan
| |
Collapse
|
9
|
Llop E, Guerrero PE, Duran A, Barrabés S, Massaguer A, Ferri MJ, Albiol-Quer M, de Llorens R, Peracaula R. Glycoprotein biomarkers for the detection of pancreatic ductal adenocarcinoma. World J Gastroenterol 2018; 24:2537-2554. [PMID: 29962812 PMCID: PMC6021768 DOI: 10.3748/wjg.v24.i24.2537] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/23/2018] [Revised: 05/04/2018] [Accepted: 06/09/2018] [Indexed: 02/06/2023] Open
Abstract
Pancreatic cancer (PaC) shows a clear tendency to increase in the next years and therefore represents an important health and social challenge. Currently, there is an important need to find biomarkers for PaC early detection because the existing ones are not useful for that purpose. Recent studies have indicated that there is a large window of time for PaC early detection, which opens the possibility to find early biomarkers that could greatly improve the dismal prognosis of this tumor. The present manuscript reviews the state of the art of the existing PaC biomarkers. It focuses on the anomalous glycosylation process and its role in PaC. Glycan structures of glycoconjugates such as glycoproteins are modified in tumors and these modifications can be detected in biological fluids of the cancer patients. Several studies have found serum glycoproteins with altered glycan chains in PaC patients, but they have not shown enough specificity for PaC. To find more specific cancer glycoproteins we propose to analyze the glycan moieties of a battery of glycoproteins that have been reported to increase in PaC tissues and that can also be found in serum. The combination of these new candidate glycoproteins with their aberrant glycosylation together with the existing biomarkers could result in a panel, which would expect to give better results as a new tool for early diagnosis of PaC and to monitor the disease.
Collapse
Affiliation(s)
- Esther Llop
- Department of Biology, Biochemistry and Molecular Biology Unit, University of Girona, Girona 17003, Spain
- Biomedical Research Institute of Girona (IdIBGi). Parc Hospitalari Martí i Julià-Edifici M2, Salt 17190, Spain
| | - Pedro E Guerrero
- Department of Biology, Biochemistry and Molecular Biology Unit, University of Girona, Girona 17003, Spain
- Biomedical Research Institute of Girona (IdIBGi). Parc Hospitalari Martí i Julià-Edifici M2, Salt 17190, Spain
| | - Adrià Duran
- Department of Biology, Biochemistry and Molecular Biology Unit, University of Girona, Girona 17003, Spain
- Biomedical Research Institute of Girona (IdIBGi). Parc Hospitalari Martí i Julià-Edifici M2, Salt 17190, Spain
| | - Sílvia Barrabés
- Department of Biology, Biochemistry and Molecular Biology Unit, University of Girona, Girona 17003, Spain
- Biomedical Research Institute of Girona (IdIBGi). Parc Hospitalari Martí i Julià-Edifici M2, Salt 17190, Spain
| | - Anna Massaguer
- Department of Biology, Biochemistry and Molecular Biology Unit, University of Girona, Girona 17003, Spain
- Biomedical Research Institute of Girona (IdIBGi). Parc Hospitalari Martí i Julià-Edifici M2, Salt 17190, Spain
| | - María José Ferri
- Department of Biology, Biochemistry and Molecular Biology Unit, University of Girona, Girona 17003, Spain
- Biomedical Research Institute of Girona (IdIBGi). Parc Hospitalari Martí i Julià-Edifici M2, Salt 17190, Spain
- Clinic Laboratory, University Hospital Dr Josep Trueta, Girona 17007, Spain
| | - Maite Albiol-Quer
- Department of Surgery, Hepato-biliary and Pancreatic Surgery Unit, University Hospital Dr Josep Trueta, Girona 17007, Spain
| | - Rafael de Llorens
- Department of Biology, Biochemistry and Molecular Biology Unit, University of Girona, Girona 17003, Spain
- Biomedical Research Institute of Girona (IdIBGi). Parc Hospitalari Martí i Julià-Edifici M2, Salt 17190, Spain
| | - Rosa Peracaula
- Department of Biology, Biochemistry and Molecular Biology Unit, University of Girona, Girona 17003, Spain
- Biomedical Research Institute of Girona (IdIBGi). Parc Hospitalari Martí i Julià-Edifici M2, Salt 17190, Spain
| |
Collapse
|
10
|
Bollineni RC, Koehler CJ, Gislefoss RE, Anonsen JH, Thiede B. Large-scale intact glycopeptide identification by Mascot database search. Sci Rep 2018; 8:2117. [PMID: 29391424 PMCID: PMC5795011 DOI: 10.1038/s41598-018-20331-2] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2017] [Accepted: 01/15/2018] [Indexed: 01/16/2023] Open
Abstract
Workflows capable of determining glycopeptides in large-scale are missing in the field of glycoproteomics. We present an approach for automated annotation of intact glycopeptide mass spectra. The steps in adopting the Mascot search engine for intact glycopeptide analysis included: (i) assigning one letter codes for monosaccharides, (ii) linearizing glycan sequences and (iii) preparing custom glycoprotein databases. Automated annotation of both N- and O-linked glycopeptides was proven using standard glycoproteins. In a large-scale study, a total of 257 glycoproteins containing 970 unique glycosylation sites and 3447 non-redundant N-linked glycopeptide variants were identified in 24 serum samples. Thus, a single tool was developed that collectively allows the (i) elucidation of N- and O-linked glycopeptide spectra, (ii) matching glycopeptides to known protein sequences, and (iii) high-throughput, batch-wise analysis of large-scale glycoproteomics data sets.
Collapse
Affiliation(s)
| | | | - Randi Elin Gislefoss
- Cancer Registry of Norway, Institute of Population-based Cancer Research, Oslo, Norway
| | | | - Bernd Thiede
- Department of Biosciences, University of Oslo, Oslo, Norway.
| |
Collapse
|
11
|
Drabik A, Bodzon-Kulakowska A, Suder P, Silberring J, Kulig J, Sierzega M. Glycosylation Changes in Serum Proteins Identify Patients with Pancreatic Cancer. J Proteome Res 2017; 16:1436-1444. [PMID: 28244758 DOI: 10.1021/acs.jproteome.6b00775] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
After more than a decade of biomarker discovery using advanced proteomic and genomic approaches, very few biomarkers have been involved in clinical diagnostics. Most candidate biomarkers are focused on the protein component. Targeting post-translational modifications (PTMs) in combination with protein sequences will provide superior diagnostic information with regards to sensitivity and specificity. Glycosylation is one of the most common and functionally important PTMs. It plays a central role in many biological processes, including protein folding, host-pathogen interactions, immune response, and inflammation. Cancer-associated aberrant glycosylation has been identified in various types of cancer. Expression of cancer-specific glycan epitopes represents an excellent opportunity for diagnostics and potentially specific detection of tumors. Here, we report four proteins (LIFR, CE350, VP13A, HPT) found in sera from pancreatic cancer patients carrying aberrant glycan structures as compared to those of controls.
Collapse
Affiliation(s)
- Anna Drabik
- AGH University of Science and Technology , Krakow, Poland
| | | | - Piotr Suder
- AGH University of Science and Technology , Krakow, Poland
| | - Jerzy Silberring
- AGH University of Science and Technology , Krakow, Poland.,Centre of Polymer and Carbon Materials, Polish Academy of Sciences , Zabrze, Poland
| | - Jan Kulig
- First Department of Surgery, Jagiellonian University Medical College , Krakow, Poland
| | - Marek Sierzega
- First Department of Surgery, Jagiellonian University Medical College , Krakow, Poland
| |
Collapse
|
12
|
Cotton S, Azevedo R, Gaiteiro C, Ferreira D, Lima L, Peixoto A, Fernandes E, Neves M, Neves D, Amaro T, Cruz R, Tavares A, Rangel M, Silva AMN, Santos LL, Ferreira JA. Targeted O-glycoproteomics explored increased sialylation and identified MUC16 as a poor prognosis biomarker in advanced-stage bladder tumours. Mol Oncol 2017; 11:895-912. [PMID: 28156048 PMCID: PMC5537688 DOI: 10.1002/1878-0261.12035] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2016] [Revised: 01/24/2017] [Accepted: 01/24/2017] [Indexed: 12/30/2022] Open
Abstract
Bladder carcinogenesis and tumour progression is accompanied by profound alterations in protein glycosylation on the cell surface, which may be explored for improving disease management. In a search for prognosis biomarkers and novel therapeutic targets we have screened, using immunohistochemistry, a series of bladder tumours with differing clinicopathology for short-chain O-glycans commonly found in glycoproteins of human solid tumours. These included the Tn and T antigens and their sialylated counterparts sialyl-Tn(STn) and sialyl-T(ST), which are generally associated with poor prognosis. We have also explored the nature of T antigen sialylation, namely the sialyl-3-T(S3T) and sialyl-6-T(S6T) sialoforms, based on combinations of enzymatic treatments. We observed a predominance of sialoglycans over neutral glycoforms (Tn and T antigens) in bladder tumours. In particular, the STn antigen was associated with high-grade disease and muscle invasion, in accordance with our previous observations. The S3T and S6T antigens were detected for the first time in bladder tumours, but not in healthy urothelia, highlighting their cancer-specific nature. These glycans were also overexpressed in advanced lesions, especially in cases showing muscle invasion. Glycoproteomic analyses of advanced bladder tumours based on enzymatic treatments, Vicia villosa lectin-affinity chromatography enrichment and nanoLC-ESI-MS/MS analysis resulted in the identification of several key cancer-associated glycoproteins (MUC16, CD44, integrins) carrying altered glycosylation. Of particular interest were MUC16 STn+ -glycoforms, characteristic of ovarian cancers, which were found in a subset of advanced-stage bladder tumours facing the worst prognosis. In summary, significant alterations in the O-glycome and O-glycoproteome of bladder tumours hold promise for the development of novel noninvasive diagnostic tools and targeted therapeutics. Furthermore, abnormal MUC16 glycoforms hold potential as surrogate biomarkers of poor prognosis and unique molecular signatures for designing highly specific targeted therapeutics.
Collapse
Affiliation(s)
- Sofia Cotton
- Experimental Pathology and Therapeutics Group, Portuguese Institute of Oncology, Porto, Portugal
| | - Rita Azevedo
- Experimental Pathology and Therapeutics Group, Portuguese Institute of Oncology, Porto, Portugal.,Institute of Biomedical Sciences Abel Salazar, University of Porto, Portugal
| | - Cristiana Gaiteiro
- Experimental Pathology and Therapeutics Group, Portuguese Institute of Oncology, Porto, Portugal
| | - Dylan Ferreira
- Experimental Pathology and Therapeutics Group, Portuguese Institute of Oncology, Porto, Portugal
| | - Luís Lima
- Experimental Pathology and Therapeutics Group, Portuguese Institute of Oncology, Porto, Portugal.,Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Portugal
| | - Andreia Peixoto
- Experimental Pathology and Therapeutics Group, Portuguese Institute of Oncology, Porto, Portugal.,Institute of Biomedical Sciences Abel Salazar, University of Porto, Portugal.,Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Portugal
| | - Elisabete Fernandes
- Experimental Pathology and Therapeutics Group, Portuguese Institute of Oncology, Porto, Portugal.,Institute of Biomedical Sciences Abel Salazar, University of Porto, Portugal.,Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Portugal
| | - Manuel Neves
- Experimental Pathology and Therapeutics Group, Portuguese Institute of Oncology, Porto, Portugal
| | - Diogo Neves
- Experimental Pathology and Therapeutics Group, Portuguese Institute of Oncology, Porto, Portugal
| | - Teresina Amaro
- Department of Pathology, Hospital Pedro Hispano, Matosinhos, Portugal
| | - Ricardo Cruz
- Department of Urology, Portuguese Institute of Oncology of Porto, Portugal
| | - Ana Tavares
- Experimental Pathology and Therapeutics Group, Portuguese Institute of Oncology, Porto, Portugal.,Department of Pathology, Portuguese Institute of Oncology of Porto, Portugal
| | - Maria Rangel
- UCIBIO-REQUIMTE, Instituto de Ciências Biomédicas Abel Salazar, University of Porto, Portugal
| | - André M N Silva
- UCIBIO-REQUIMTE/Department of Chemistry and Biochemistry, Faculty of Sciences, University of Porto, Portugal
| | - Lúcio Lara Santos
- Experimental Pathology and Therapeutics Group, Portuguese Institute of Oncology, Porto, Portugal.,Health School of University Fernando Pessoa, Porto, Portugal.,Department of Surgical Oncology, Portuguese Institute of Oncology, Porto, Portugal
| | - José Alexandre Ferreira
- Experimental Pathology and Therapeutics Group, Portuguese Institute of Oncology, Porto, Portugal.,Institute of Biomedical Sciences Abel Salazar, University of Porto, Portugal.,Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Portugal.,Porto Comprehensive Cancer Center (P.ccc), Portugal
| |
Collapse
|
13
|
Cooper J, Maupin K, Merrill N. Origins of cancer symposium 2015: posttranslational modifications and cancer. Genes Cancer 2015. [DOI: 10.18632/genesandcancer.75] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Affiliation(s)
- Jason Cooper
- Van Andel Institute Graduate School, Grand Rapids, Michigan, USA
| | - Kevin Maupin
- Van Andel Institute Graduate School, Grand Rapids, Michigan, USA
| | - Nathan Merrill
- Van Andel Institute Graduate School, Grand Rapids, Michigan, USA
| |
Collapse
|