1
|
Yadav P, Jain R, Yadav RK. Emerging roles of cancer-associated histone mutations in genomic instabilities. Front Cell Dev Biol 2024; 12:1455572. [PMID: 39439908 PMCID: PMC11494296 DOI: 10.3389/fcell.2024.1455572] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Accepted: 09/10/2024] [Indexed: 10/25/2024] Open
Abstract
Epigenetic mechanisms often fuel the quick evolution of cancer cells from normal cells. Mutations or aberrant expressions in the enzymes of DNA methylation, histone post-translational modifications, and chromatin remodellers have been extensively investigated in cancer pathogenesis; however, cancer-associated histone mutants have gained momentum in recent decades. Next-generation sequencing of cancer cells has identified somatic recurrent mutations in all the histones (H3, H4, H2A, H2B, and H1) with different frequencies for various tumour types. Importantly, the well-characterised H3K27M, H3G34R/V, and H3K36M mutations are termed as oncohistone mutants because of their wide roles, from defects in cellular differentiation, transcriptional dysregulation, and perturbed epigenomic profiles to genomic instabilities. Mechanistically, these histone mutants impart their effects on histone modifications and/or on irregular distributions of chromatin complexes. Recent studies have identified the crucial roles of the H3K27M and H3G34R/V mutants in the DNA damage response pathway, but their impacts on chemotherapy and tumour progression remain elusive. In this review, we summarise the recent developments in their functions toward genomic instabilities and tumour progression. Finally, we discuss how such a mechanistic understanding can be harnessed toward the potential treatment of tumours harbouring the H3K27M, H3G34R/V, and H3K36M mutations.
Collapse
|
2
|
Lu Y, Han X, Zhang H, Zheng L, Li X. Multi-omics study on the molecular mechanism of anlotinib in regulating tumor metabolism. Eur J Pharmacol 2024; 975:176639. [PMID: 38729415 DOI: 10.1016/j.ejphar.2024.176639] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 05/08/2024] [Accepted: 05/08/2024] [Indexed: 05/12/2024]
Abstract
Anlotinib, an orally administered small molecule inhibitor of receptor tyrosine kinases (RTKs), exerts significant anti-angiogenic and vascular normalization effects. However, the mechanisms underlying its involvement in tumor metabolic reprogramming are still unclear. This study aims to investigate the distribution and expression levels of metabolites within tumors after anlotinib treatment using spatial metabolomics analysis. Subsequently, by integrating the transcriptomics and proteomics analyses, we identified that anlotinib treatment primarily modulated four metabolic pathways, including taurine and hypotaurine metabolism, steroid synthesis, pentose phosphate pathway, and lipid biosynthesis. This regulation significantly influenced the metabolic levels of compounds such as sulfonic acids, cholesterol, inositol phosphate pyrophosphate, and palmitoyl-CoA in the tumor, thereby impacting tumor initiation and progression. This study provides potential metabolic biomarkers for anlotinib treatment in tumors.
Collapse
Affiliation(s)
- Yu Lu
- School of Life Science and Technology, State Key Laboratory of Natural Medicines, China Pharmaceutical University, 639 Longmian Road, Nanjing, 211198, China
| | - Xuedan Han
- School of Life Science and Technology, State Key Laboratory of Natural Medicines, China Pharmaceutical University, 639 Longmian Road, Nanjing, 211198, China
| | - Hongwei Zhang
- Department of Anesthesiology, The First Affiliated Hospital of Xinxiang Medical University, Wei Hui, 453100, China
| | - Lufeng Zheng
- School of Life Science and Technology, State Key Laboratory of Natural Medicines, China Pharmaceutical University, 639 Longmian Road, Nanjing, 211198, China.
| | - Xiaoman Li
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, China.
| |
Collapse
|
3
|
Huang Y, Jia Y, Chen X, Wang C, Wang Y, Wang M, Wu P, Shen J. CYP3A inhibitor itraconazole affect pharmacokinetic behavior of famitinib and its active metabolite: results of a single-center, single-arm, open-label and fixed sequence study. Expert Opin Drug Metab Toxicol 2023; 19:1005-1013. [PMID: 38053514 DOI: 10.1080/17425255.2023.2292112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2023] [Accepted: 11/29/2023] [Indexed: 12/07/2023]
Abstract
BACKGROUND Famitinib, the novel oral multitargeting tyrosine kinase inhibitor, was developed for treatment of patients with advanced solid cancer. This investigation assessed the pharmacokinetic (PK) effects of itraconazole, an officially recommended CYP3A4 strong inhibitor, on famitinib and its metabolite (SHR116637). METHODS A single-center, single-arm, open-label, and fixed sequence study was conducted in 22 healthy subjects. Famitinib was administered as a single oral 15 mg on Day1. Itraconazole 200 mg once daily was given from Day12 to Day24, concomitantly with famitinib on Day15 and for follow-up during Day30 to Day32. Blood sampling followed each famitinib dosage for PK analysis of famitinib and SHR116637. Safety and tolerability were also assessed throughout the treatment. RESULTS Cmax, AUC0-t and AUC0-∞ were raised by 40.6%, 77.7% and 81.6%, respectively, and t1/2 was prolonged from 36.08 hours to 48.24 hours for famitinib. In contrast, Cmax, AUC0-t and AUC0-∞ were reduced by 63.5%, 42.6%, and 39.0%, respectively, for SHR116637. Eight (36.4%) subjects reported seventeen treatments that emerged adverse events (all grade 1-2 in severity) all recovered at follow-up period. CONCLUSIONS Single oral dose of 15 mg famitinib and co-therapy with 200 mg intraconazole were safe and well tolerated in healthy subjects. Famitinib should be avoided in conjunction with strong CYP3A inhibitors if possible. TRIAL REGISTRATION This trial was registered at http://www.chinadrugtrials.org.cn/index.html. (Registration number: CTR20201824.).
Collapse
Affiliation(s)
- Yunzhe Huang
- Anhui provincial Center of Drug Clinical Evaluation, Yijishan Hospital of Wannan Medical College, Wuhu, Anhui, People's Republic of China
- School of pharmacy, Wannan Medical College, Wuhu, Anhui, People's Republic of China
| | - Yuanwei Jia
- Anhui provincial Center of Drug Clinical Evaluation, Yijishan Hospital of Wannan Medical College, Wuhu, Anhui, People's Republic of China
- School of pharmacy, Wannan Medical College, Wuhu, Anhui, People's Republic of China
| | - Xinyan Chen
- School of pharmacy, Wannan Medical College, Wuhu, Anhui, People's Republic of China
| | - Changmao Wang
- Anhui provincial Center of Drug Clinical Evaluation, Yijishan Hospital of Wannan Medical College, Wuhu, Anhui, People's Republic of China
| | - Yaqin Wang
- Anhui provincial Center of Drug Clinical Evaluation, Yijishan Hospital of Wannan Medical College, Wuhu, Anhui, People's Republic of China
| | - Minhui Wang
- Anhui provincial Center of Drug Clinical Evaluation, Yijishan Hospital of Wannan Medical College, Wuhu, Anhui, People's Republic of China
| | - Ping Wu
- Anhui provincial Center of Drug Clinical Evaluation, Yijishan Hospital of Wannan Medical College, Wuhu, Anhui, People's Republic of China
| | - Jie Shen
- Anhui provincial Center of Drug Clinical Evaluation, Yijishan Hospital of Wannan Medical College, Wuhu, Anhui, People's Republic of China
- School of pharmacy, Wannan Medical College, Wuhu, Anhui, People's Republic of China
| |
Collapse
|
4
|
Liu C, Kuang S, Wu L, Cheng Q, Gong X, Wu J, Zhang L. Radiotherapy and radio-sensitization in H3 K27M -mutated diffuse midline gliomas. CNS Neurosci Ther 2023. [PMID: 37157237 DOI: 10.1111/cns.14225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Revised: 04/07/2023] [Accepted: 04/10/2023] [Indexed: 05/10/2023] Open
Abstract
BACKGROUND H3K27M mutated diffuse midline gliomas (DMGs) are extremely aggressive and the leading cause of cancer-related deaths in pediatric brain tumors with 5-year survival <1%. Radiotherapy is the only established adjuvant treatment of H3K27M DMGs; however, the radio-resistance is commonly observed. METHODS We summarized current understandings of the molecular responses of H3K27M DMGs to radiotherapy and provide crucial insights into current advances in radiosensitivity enhancement. RESULTS Ionizing radiation (IR) can mainly inhibit tumor cell growth by inducing DNA damage regulated by the cell cycle checkpoints and DNA damage repair (DDR) system. In H3K27M DMGs, the aberrant genetic and epigenetic changes, stemness genotype, and epithelial-mesenchymal transition (EMT) disrupt the cell cycle checkpoints and DDR system by altering the associated regulatory signaling pathways, which leads to the development of radio-resistance. CONCLUSIONS The advances in mechanisms of radio-resistance in H3K27M DMGs promote the potential targets to enhance the sensitivity to radiotherapy.
Collapse
Affiliation(s)
- Chao Liu
- Departments of Oncology, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Shuwen Kuang
- Departments of Oncology, Xiangya Hospital, Central South University, Changsha, China
| | - Lei Wu
- Department of Neurosurgery, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Quan Cheng
- Departments of Neurosurgery, Xiangya Hospital, Central South University, Changsha, China
| | - Xuan Gong
- Departments of Neurosurgery, Xiangya Hospital, Central South University, Changsha, China
| | - Jun Wu
- Departments of Neurosurgery, Xiangya Hospital, Central South University, Changsha, China
| | - Longbo Zhang
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
- Departments of Neurosurgery, Xiangya Hospital, Central South University, Changsha, China
- Departments of Neurosurgery, Yale School of Medicine, New Haven, Connecticut, USA
| |
Collapse
|
5
|
Akiyama T, Yasuda T, Uchihara T, Yasuda-Yoshihara N, Tan BJY, Yonemura A, Semba T, Yamasaki J, Komohara Y, Ohnishi K, Wei F, Fu L, Zhang J, Kitamura F, Yamashita K, Eto K, Iwagami S, Tsukamoto H, Umemoto T, Masuda M, Nagano O, Satou Y, Saya H, Tan P, Baba H, Ishimoto T. Stromal Reprogramming through Dual PDGFRα/β Blockade Boosts the Efficacy of Anti-PD-1 Immunotherapy in Fibrotic Tumors. Cancer Res 2023; 83:753-770. [PMID: 36543251 DOI: 10.1158/0008-5472.can-22-1890] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 10/11/2022] [Accepted: 12/07/2022] [Indexed: 12/24/2022]
Abstract
Excess stroma and cancer-associated fibroblasts (CAF) enhance cancer progression and facilitate immune evasion. Insights into the mechanisms by which the stroma manipulates the immune microenvironment could help improve cancer treatment. Here, we aimed to elucidate potential approaches for stromal reprogramming and improved cancer immunotherapy. Platelet-derived growth factor C (PDGFC) and D expression were significantly associated with a poor prognosis in patients with gastric cancer, and PDGF receptor beta (PDGFRβ) was predominantly expressed in diffuse-type gastric cancer stroma. CAFs stimulated with PDGFs exhibited markedly increased expression of CXCL1, CXCL3, CXCL5, and CXCL8, which are involved in polymorphonuclear myeloid-derived suppressor cell (PMN-MDSC) recruitment. Fibrotic gastric cancer xenograft tumors exhibited increased PMN-MDSC accumulation and decreased lymphocyte infiltration, as well as resistance to anti-PD-1. Single-cell RNA sequencing and spatial transcriptomics revealed that PDGFRα/β blockade reversed the immunosuppressive microenvironment through stromal modification. Finally, combining PDGFRα/β blockade and anti-PD-1 treatment synergistically suppressed the growth of fibrotic tumors. These findings highlight the impact of stromal reprogramming on immune reactivation and the potential for combined immunotherapy for patients with fibrotic cancer. SIGNIFICANCE Stromal targeting with PDGFRα/β dual blockade reverses the immunosuppressive microenvironment and enhances the efficacy of immune checkpoint inhibitors in fibrotic cancer. See related commentary by Tauriello, p. 655.
Collapse
Affiliation(s)
- Takahiko Akiyama
- Department of Gastroenterological Surgery, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan.,Gastrointestinal Cancer Biology, International Research Center of Medical Sciences (IRCMS), Kumamoto University, Kumamoto, Japan
| | - Tadahito Yasuda
- Department of Gastroenterological Surgery, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan.,Gastrointestinal Cancer Biology, International Research Center of Medical Sciences (IRCMS), Kumamoto University, Kumamoto, Japan
| | - Tomoyuki Uchihara
- Department of Gastroenterological Surgery, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan.,Gastrointestinal Cancer Biology, International Research Center of Medical Sciences (IRCMS), Kumamoto University, Kumamoto, Japan
| | - Noriko Yasuda-Yoshihara
- Department of Gastroenterological Surgery, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan.,Gastrointestinal Cancer Biology, International Research Center of Medical Sciences (IRCMS), Kumamoto University, Kumamoto, Japan
| | - Benjy J Y Tan
- Division of Genomics and Transcriptomics, Joint Research Center for Human Retrovirus Infection, Kumamoto University, Kumamoto, Japan
| | - Atsuko Yonemura
- Department of Gastroenterological Surgery, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan.,Gastrointestinal Cancer Biology, International Research Center of Medical Sciences (IRCMS), Kumamoto University, Kumamoto, Japan
| | - Takashi Semba
- Department of Gastroenterological Surgery, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan.,Gastrointestinal Cancer Biology, International Research Center of Medical Sciences (IRCMS), Kumamoto University, Kumamoto, Japan
| | - Juntaro Yamasaki
- Division of Gene Regulation, Institute for Advanced Medical Research, School of Medicine, Keio University, Tokyo, Japan
| | | | - Koji Ohnishi
- Department of Pathology, Aichi Medical University School of Medicine, Nagakute, Japan
| | - Feng Wei
- Department of Gastroenterological Surgery, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan.,Gastrointestinal Cancer Biology, International Research Center of Medical Sciences (IRCMS), Kumamoto University, Kumamoto, Japan
| | - Lingfeng Fu
- Department of Gastroenterological Surgery, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan.,Gastrointestinal Cancer Biology, International Research Center of Medical Sciences (IRCMS), Kumamoto University, Kumamoto, Japan
| | - Jun Zhang
- Department of Gastroenterological Surgery, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan.,Gastrointestinal Cancer Biology, International Research Center of Medical Sciences (IRCMS), Kumamoto University, Kumamoto, Japan
| | - Fumimasa Kitamura
- Department of Gastroenterological Surgery, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan.,Gastrointestinal Cancer Biology, International Research Center of Medical Sciences (IRCMS), Kumamoto University, Kumamoto, Japan
| | - Kohei Yamashita
- Department of Gastroenterological Surgery, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan
| | - Kojiro Eto
- Department of Gastroenterological Surgery, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan
| | - Shiro Iwagami
- Department of Gastroenterological Surgery, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan
| | - Hirotake Tsukamoto
- Division of Clinical Immunology and Cancer Immunotherapy, Center for Cancer Immunotherapy and Immunobiology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Terumasa Umemoto
- Laboratory of Hematopoietic Stem Cell Engineering, International Research Center for Medical Sciences (IRCMS), Kumamoto University, Kumamoto, Japan
| | - Mari Masuda
- Department of Proteomics, National Cancer Center Research Institute, Tokyo, Japan
| | - Osamu Nagano
- Division of Gene Regulation, Institute for Advanced Medical Research, School of Medicine, Keio University, Tokyo, Japan
| | - Yorifumi Satou
- Division of Genomics and Transcriptomics, Joint Research Center for Human Retrovirus Infection, Kumamoto University, Kumamoto, Japan
| | - Hideyuki Saya
- Division of Gene Regulation, Institute for Advanced Medical Research, School of Medicine, Keio University, Tokyo, Japan.,Division of Gene Regulation, Cancer Center, Fujita Health University, Toyoake, Japan
| | - Patrick Tan
- Program in Cancer and Stem Cell Biology, Duke-NUS Medical School, Singapore
| | - Hideo Baba
- Department of Gastroenterological Surgery, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan.,Center for Metabolic Regulation of Healthy Aging, Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan
| | - Takatsugu Ishimoto
- Department of Gastroenterological Surgery, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan.,Gastrointestinal Cancer Biology, International Research Center of Medical Sciences (IRCMS), Kumamoto University, Kumamoto, Japan
| |
Collapse
|
6
|
Shi Q, Luo J, Chen W, He Q, Long J, Zhang B. Circ_0060531 knockdown ameliorates IL-22-induced keratinocyte damage by binding to miR-330-5p to decrease GAB1 expression. Autoimmunity 2022; 55:243-253. [PMID: 35293807 DOI: 10.1080/08916934.2022.2037127] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Revised: 01/14/2022] [Accepted: 01/30/2022] [Indexed: 11/02/2022]
Abstract
BACKGROUND Psoriasis is a chronic immune-mediated skin disease. Recent studies showed its pathogenesis involved circular RNA (circRNA). However, the role of circ_0060531 in psoriasis development and the behind mechanism remain to be explored. METHODS Psoriasis cell model was constructed by treating keratinocytes (HaCaT cells) using interleukin 22 (IL-22). Expression of circ_0060531, microRNA-330-5p (miR-330-5p) and GRB2 associated binder 1 (GAB1) was determined by quantitative real-time polymerase chain reaction. The functional effects of circ_0060531 on IL-22-caused cell injury were investigated by 3-(4,5-Dimethylthazol-2-yl)-2,5-diphenyltetrazolium bromide, 5-Ethynyl-29-deoxyuridine, wound-healing and enzyme-linked immunosorbent assays. Protein expression was analysed by Western blot. The interactions among circ_0060531, miR-330-5p and GAB1 were identified by dual-luciferase reporter or RNA immunoprecipitation assay. RESULTS Circ_0060531 and GAB1 expression were significantly increased, while miR-330-5p was decreased in psoriatic skin biopsies and IL-22-stimulated HaCaT cells in comparison with controls. In function, circ_0060531 knockdown assuaged IL-22-induced cell proliferation, cell migration and inflammation. Besides, circ_0060531 acted as a miR-330-5p sponge, and regulated the processes of IL-22-treated HaCaT cells by binding to the miRNA. Under the treatment of IL-22, miR-330-5p mediated HaCaT cell damage by targeting GAB1. Importantly, circ_0060531 modulated GAB1 production by interacting with miR-330-5p. CONCLUSION Circ_0060531 knockdown assuaged IL-22-induced keratinocyte dysfunction through miR-330-5p/GAB1 pathway, proving a novel target for the therapy of psoriasis.
Collapse
Affiliation(s)
- Quan Shi
- Department of Dermatology, Hubei Provincial Hospital of Traditional Chinese Medicine, Wuhan City, China
| | - Jing Luo
- Department of Dermatology, Hubei Provincial Hospital of Traditional Chinese Medicine, Wuhan City, China
| | - Weiming Chen
- Department of Dermatology, Hubei Provincial Hospital of Traditional Chinese Medicine, Wuhan City, China
| | - Qi He
- Department of Dermatology, Hubei Provincial Hospital of Traditional Chinese Medicine, Wuhan City, China
| | - Jianwen Long
- Department of Dermatology, Hubei Provincial Hospital of Traditional Chinese Medicine, Wuhan City, China
| | - Bo Zhang
- Department of Dermatology, Hubei Provincial Hospital of Traditional Chinese Medicine, Wuhan City, China
| |
Collapse
|
7
|
Jiang ZY, Liu JB, Wang XF, Ma YS, Fu D. Current Status and Prospects of Clinical Treatment of Osteosarcoma. Technol Cancer Res Treat 2022; 21:15330338221124696. [PMID: 36128851 PMCID: PMC9500272 DOI: 10.1177/15330338221124696] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
Osteosarcoma, one of the common malignant tumors in the skeletal system, originates in mesenchymal tissue, and the most susceptible area of occurrence is the metaphysis with its abundant blood supply. Tumors are characterized by highly malignant spindle stromal cells that can produce bone-like tissue. Most of the osteosarcoma are primary, and a few are secondary. Osteosarcoma occurs primarily in children and adolescents undergoing vigorous bone growth and development. Most cases involve rapid tumor development and early blood metastasis. In recent years, research has grown in the areas of molecular biology, imaging medicine, biological materials, applied anatomy, surgical techniques, biomechanics, and comprehensive treatment of tumors. With developments in molecular biology and tissue bioengineering, treatment methods have also made great progress, especially in comprehensive limb salvage treatment, which significantly enhances the quality of life after surgery and improves the 5-year survival rate of patients with malignant tumors. This article provides a review of limb salvage, immunotherapy, gene therapy, and targeted therapy from traditional amputation to neoadjuvant chemotherapy, providing a reference for current clinical treatments for osteosarcoma.
Collapse
Affiliation(s)
- Zong-Yuan Jiang
- Department of Hand Surgery, 380381Shenzhen Longhua District People's Hospital, Shenzhen, China
| | - Ji-Bin Liu
- Institute of Oncology, Nantong UniversityAffiliated Tumor Hospital of Nantong University, Nantong, China
| | - Xiao-Feng Wang
- Department of Orthopedics, Zhongshan Hospital, 12478Fudan University, Shanghai, China
| | - Yu-Shui Ma
- Cancer Institute, 74754Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Da Fu
- Department of General Surgery, Ruijin Hospital, 12474Shanghai Jiaotong University School of Medicine, Shanghai, China
| |
Collapse
|
8
|
Effects of Cynaroside on Cell Proliferation, Apoptosis, Migration and Invasion though the MET/AKT/mTOR Axis in Gastric Cancer. Int J Mol Sci 2021; 22:ijms222212125. [PMID: 34830011 PMCID: PMC8618935 DOI: 10.3390/ijms222212125] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Revised: 10/24/2021] [Accepted: 10/27/2021] [Indexed: 12/19/2022] Open
Abstract
The Chinese medicine monomer cynaroside (Cy) is a flavonoid glycoside compound that widely exists in plants and has a variety of pharmacological effects, such as its important role in the respiratory system, cardiovascular system and central nervous system. Studies have reported that Cy has varying degrees of anticancer activity in non-small cell lung cancer, cervical cancer, liver cancer, esophageal cancer and other cancers. However, there are no relevant reports about its role in gastric cancer. The MET/AKT/mTOR signaling pathway plays important roles in regulating various biological processes, including cell proliferation, apoptosis, autophagy, invasion and tumorigenesis. In this study, we confirmed that Cy can inhibit the cell growth, migration and invasion and tumorigenesis in gastric cancer. Our finding shows that Cy can block the MET/AKT/mTOR axis by decreasing the phosphorylation level of AKT, mTOR and P70S6K. Therefore, the MET/AKT/mTOR axis may be an important target for Cy. In summary, Cy has anti-cancer properties and is expected to be a potential drug for the treatment of gastric cancer.
Collapse
|