1
|
Song Z, Xue C, Wang H, Gao L, Song H, Yang Y. Development of a centrosome amplification-associated signature in kidney renal clear cell carcinoma based on multiple machine learning models. Comput Biol Chem 2024; 115:108317. [PMID: 39675190 DOI: 10.1016/j.compbiolchem.2024.108317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2024] [Revised: 12/07/2024] [Accepted: 12/07/2024] [Indexed: 12/17/2024]
Abstract
BACKGROUND Centrosome amplification (CA) has been shown to be capable of initiating tumorigenesis with metastatic potential and enhancing cell invasion. We were interested in discovering how centrosome amplification-associated signature affects the prediction of prognosis and response to therapy in kidney renal clear cell carcinoma (KIRC). METHODS AND MATERIALS The TCGA-KIRC dataset was used to construct a centrosome amplification-associated signature using the random survival forest analysis and Cox regression analysis, and the ICGC and GEO datasets were employed for signature validation. Mutation and immune landscapes were outlined and the response to immunotherapy was evaluated. The expression of the screened hub gene was profiled by analyzing single-cell RNA sequencing from GSE159115. RESULTS In the TCGA-KIRC cohort, 22 centrosome amplification-associated prognostic genes were discovered. According to the optimal consistency index (0.91), the random survival forest algorithm was selected to determine 7 hub prognostic genes, which were used to construct a centrosome amplification-associated prognostic index (CAAPI). It was discovered that it is connected to high mortality rates, high mutation rates, immunosuppressive cell infiltration, and immune dysfunction. For patients in the high CAAPI group, immunotherapy was not as effective. Single-cell RNA sequencing revealed a high expression of CDK5RAP3 in the tumor cells. CONCLUSION Centrosome amplification played a significant role in regulating tumor microenvironment and responding to immunotherapy, emphasizing its crucial importance in the development and treatment of KIRC. Patients with KIRC may benefit from using CAAPI as a biomarker to predict individual prognosis and assess a response to immunotherapy.
Collapse
Affiliation(s)
- Zhen Song
- Department of Pathology, Qilu Hospital of Shandong University Dezhou Hospital, Dezhou 253000, China
| | - Chunlei Xue
- Department of Urology, Qilu Hospital of Shandong University Dezhou Hospital, Dezhou 253000, China
| | - Hui Wang
- Department of Urology, Qilu Hospital of Shandong University Dezhou Hospital, Dezhou 253000, China
| | - Lijian Gao
- Department of Urology, Qilu Hospital of Shandong University Dezhou Hospital, Dezhou 253000, China
| | - Haibin Song
- Department of Urology, Qilu Hospital of Shandong University Dezhou Hospital, Dezhou 253000, China
| | - Yuanyuan Yang
- Department of Urology, Qilu Hospital of Shandong University Dezhou Hospital, Dezhou 253000, China.
| |
Collapse
|
2
|
Caneparo C, Carignan L, Lonina E, Goulet SM, Pellerin FA, Chabaud S, Bordeleau F, Bolduc S, Pelletier M. Impact of Endocrine Disruptors on the Genitourinary Tract. J Xenobiot 2024; 14:1849-1888. [PMID: 39728407 DOI: 10.3390/jox14040099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Revised: 11/04/2024] [Accepted: 11/26/2024] [Indexed: 12/28/2024] Open
Abstract
Over the last decades, the human species has seen an increase in the incidence of pathologies linked to the genitourinary tract. Observations in animals have allowed us to link these increases, at least in part, to changes in the environment and, in particular, to an increasing presence of endocrine disruptors. These can be physical agents, such as light or heat; natural products, such as phytoestrogens; or chemicals produced by humans. Endocrine disruptors may interfere with the signaling pathways mediated by the endocrine system, particularly those linked to sex hormones. These factors and their general effects are presented before focusing on the male and female genitourinary tracts by describing their anatomy, development, and pathologies, including bladder and prostate cancer.
Collapse
Affiliation(s)
- Christophe Caneparo
- Department of Pediatrics, Gynecology and Obstetrics, Faculty of Medicine, Geneva University Hospitals, University of Geneva, CH-1205 Geneva, Switzerland
| | - Laurence Carignan
- Oncology Division, CHU de Québec-Université Laval Research Center and Université Laval Cancer Research Center, Quebec, QC G1R 3S3, Canada
- Regenerative Medicine Division, Centre de Recherche en Organogénèse Expérimentale/LOEX, CHU de Québec-Université Laval Research Center, Université Laval, Quebec, QC G1J 5B3, Canada
| | - Elena Lonina
- Infectious and Immune Diseases Division, CHU de Québec-Université Laval Research Center, Quebec, QC G1V 4G2, Canada
- Intersectorial Centre for Endocrine Disruptors Analysis, Institut National de La Recherche Scientifique (INRS), Montreal, QC H4V 1B7, Canada
- Department of Microbiology-Infectious Diseases and Immunology, Faculty of Medicine, Laval University; ARThrite Research Center, Université Laval, Quebec, QC G1V 0A6, Canada
| | - Sarah-Maude Goulet
- Infectious and Immune Diseases Division, CHU de Québec-Université Laval Research Center, Quebec, QC G1V 4G2, Canada
- Intersectorial Centre for Endocrine Disruptors Analysis, Institut National de La Recherche Scientifique (INRS), Montreal, QC H4V 1B7, Canada
- Department of Microbiology-Infectious Diseases and Immunology, Faculty of Medicine, Laval University; ARThrite Research Center, Université Laval, Quebec, QC G1V 0A6, Canada
| | - Felix-Antoine Pellerin
- Oncology Division, CHU de Québec-Université Laval Research Center and Université Laval Cancer Research Center, Quebec, QC G1R 3S3, Canada
- Regenerative Medicine Division, Centre de Recherche en Organogénèse Expérimentale/LOEX, CHU de Québec-Université Laval Research Center, Université Laval, Quebec, QC G1J 5B3, Canada
| | - Stéphane Chabaud
- Regenerative Medicine Division, Centre de Recherche en Organogénèse Expérimentale/LOEX, CHU de Québec-Université Laval Research Center, Université Laval, Quebec, QC G1J 5B3, Canada
| | - François Bordeleau
- Oncology Division, CHU de Québec-Université Laval Research Center and Université Laval Cancer Research Center, Quebec, QC G1R 3S3, Canada
- Regenerative Medicine Division, Centre de Recherche en Organogénèse Expérimentale/LOEX, CHU de Québec-Université Laval Research Center, Université Laval, Quebec, QC G1J 5B3, Canada
- Department of Molecular Biology, Medical Biochemistry and Pathology, Université Laval, Quebec, QC G1V 0A6, Canada
| | - Stéphane Bolduc
- Regenerative Medicine Division, Centre de Recherche en Organogénèse Expérimentale/LOEX, CHU de Québec-Université Laval Research Center, Université Laval, Quebec, QC G1J 5B3, Canada
- Department of Surgery, Université Laval, Quebec, QC G1V 0A6, Canada
| | - Martin Pelletier
- Infectious and Immune Diseases Division, CHU de Québec-Université Laval Research Center, Quebec, QC G1V 4G2, Canada
- Intersectorial Centre for Endocrine Disruptors Analysis, Institut National de La Recherche Scientifique (INRS), Montreal, QC H4V 1B7, Canada
- Department of Microbiology-Infectious Diseases and Immunology, Faculty of Medicine, Laval University; ARThrite Research Center, Université Laval, Quebec, QC G1V 0A6, Canada
| |
Collapse
|
3
|
Lu X, Que Y, Yang J, Le L, Cai Q, Xu B, Hong D, Liang Y, Zhang X. Targeting KIFC1 Promotes Senescence in Soft Tissue Sarcoma via FXR1-Dependent Regulation of MAD2L1 mRNA Stability. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2405611. [PMID: 39387242 PMCID: PMC11600285 DOI: 10.1002/advs.202405611] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 09/17/2024] [Indexed: 10/15/2024]
Abstract
Patients diagnosed with soft tissue sarcoma (STS) often present at intermediate to advanced stages, with inherently limited therapeutic options available. There is an urgent need to identify novel therapeutic targets. In this study, by screening STS data from the Cancer Genome Atlas (TCGA) and Genotype Tissue Expression (GTEx) databases, KIFC1 is identified as a potential biomarker and a promising therapeutic target for STS. Notably, a significant increase in KIFC1 levels, which exhibited a strong correlation with a poor prognosis in STS patients is observed. The findings revealed that knockout of KIFC1 suppressed STS growth both in vitro and in vivo. Furthermore, KIFC1 is found to regulate cellular senescence in STS, which has not been reported before. that targeting KIFC1 induced cellular senescence via interacting with FXR1, an RNA-binding protein is discovered, thereby further stabilizing MAD2L1 mRNA in an m6A-dependent manner. Additionally, the suppression of KIFC1 markedly diminished the growth of patient-derived xenografts (PDX) and triggered senescence. This study provides the first evidence that KIFC1 inhibition induces cellular senescence through MAD2L1, underscoring KIFC1 as a novel prognostic biomarker and a potential therapeutic target for STS.
Collapse
Affiliation(s)
- Xiu‐Xia Lu
- Melanoma and Sarcoma Medical Oncology UnitSun Yat‐sen University Cancer CenterGuangzhouGuangdong510060P. R. China
- State Key Laboratory of Oncology in South ChinaGuangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and TherapyGuangdong Provincial Clinical Research Center for CancerSun Yat‐sen University Cancer CenterGuangzhou510060P. R. China
| | - Yi Que
- State Key Laboratory of Oncology in South ChinaGuangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and TherapyGuangdong Provincial Clinical Research Center for CancerSun Yat‐sen University Cancer CenterGuangzhou510060P. R. China
- Department of Pediatric OncologySun Yat‐sen University Cancer CenterGuangzhouGuangdong510060P. R. China
| | - Jing Yang
- Melanoma and Sarcoma Medical Oncology UnitSun Yat‐sen University Cancer CenterGuangzhouGuangdong510060P. R. China
- State Key Laboratory of Oncology in South ChinaGuangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and TherapyGuangdong Provincial Clinical Research Center for CancerSun Yat‐sen University Cancer CenterGuangzhou510060P. R. China
| | - Li‐Yuan Le
- Melanoma and Sarcoma Medical Oncology UnitSun Yat‐sen University Cancer CenterGuangzhouGuangdong510060P. R. China
- State Key Laboratory of Oncology in South ChinaGuangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and TherapyGuangdong Provincial Clinical Research Center for CancerSun Yat‐sen University Cancer CenterGuangzhou510060P. R. China
| | - Qi‐Yan Cai
- Melanoma and Sarcoma Medical Oncology UnitSun Yat‐sen University Cancer CenterGuangzhouGuangdong510060P. R. China
- State Key Laboratory of Oncology in South ChinaGuangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and TherapyGuangdong Provincial Clinical Research Center for CancerSun Yat‐sen University Cancer CenterGuangzhou510060P. R. China
| | - Bu‐Shu Xu
- Melanoma and Sarcoma Medical Oncology UnitSun Yat‐sen University Cancer CenterGuangzhouGuangdong510060P. R. China
- State Key Laboratory of Oncology in South ChinaGuangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and TherapyGuangdong Provincial Clinical Research Center for CancerSun Yat‐sen University Cancer CenterGuangzhou510060P. R. China
| | - Dong‐Chun Hong
- State Key Laboratory of Oncology in South ChinaGuangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and TherapyGuangdong Provincial Clinical Research Center for CancerSun Yat‐sen University Cancer CenterGuangzhou510060P. R. China
| | - Yao Liang
- State Key Laboratory of Oncology in South ChinaGuangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and TherapyGuangdong Provincial Clinical Research Center for CancerSun Yat‐sen University Cancer CenterGuangzhou510060P. R. China
- Department of Gastric SurgerySun Yat‐sen University Cancer CenterGuangzhouGuangdong510060P. R. China
| | - Xing Zhang
- Melanoma and Sarcoma Medical Oncology UnitSun Yat‐sen University Cancer CenterGuangzhouGuangdong510060P. R. China
- State Key Laboratory of Oncology in South ChinaGuangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and TherapyGuangdong Provincial Clinical Research Center for CancerSun Yat‐sen University Cancer CenterGuangzhou510060P. R. China
| |
Collapse
|
4
|
Yoshino Y, Ogoh H, Iichi Y, Sasaki T, Yoshida T, Ichimura S, Nakayama M, Xi W, Fujita H, Kikuchi M, Fang Z, Li X, Abe T, Futakuchi M, Nakamura Y, Watanabe T, Chiba N. Knockout of Brca1-interacting factor Ola1 in female mice induces tumors with estrogen suppressible centrosome amplification. Biochim Biophys Acta Mol Basis Dis 2024; 1870:167138. [PMID: 38537683 DOI: 10.1016/j.bbadis.2024.167138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 03/06/2024] [Accepted: 03/18/2024] [Indexed: 04/08/2024]
Abstract
Obg-like ATPase 1 (OLA1) is a binding protein of Breast cancer gene 1 (BRCA1), germline pathogenic variants of which cause hereditary breast cancer. Cancer-associated variants of BRCA1 and OLA1 are deficient in the regulation of centrosome number. Although OLA1 might function as a tumor suppressor, the relevance of OLA1 deficiency to carcinogenesis is unclear. Here, we generated Ola1 knockout mice. Aged female Ola1+/- mice developed lymphoproliferative diseases, including malignant lymphoma. The lymphoma tissues had low expression of Ola1 and an increase in the number of cells with centrosome amplification. Interestingly, the proportion of cells with centrosome amplification in normal spleen from Ola1+/- mice was higher in male mice than in female mice. In human cells, estrogen stimulation attenuated centrosome amplification induced by OLA1 knockdown. Previous reports indicate that prominent centrosome amplification causes cell death but does not promote tumorigenesis. Thus, in the current study, the mild centrosome amplification observed under estrogen stimulation in Ola1+/- female mice is likely more tumorigenic than the prominent centrosome amplification observed in Ola1+/- male mice. Our findings provide a possible sex-dependent mechanism of the tumor suppressor function of OLA1.
Collapse
Affiliation(s)
- Yuki Yoshino
- Department of Cancer Biology, Institute of Aging, Development, and Cancer, Tohoku University, 4-1 Seiryomachi, Aoba-ku, Sendai 980-8575, Japan; Laboratory of Cancer Biology, Graduate School of Life Sciences, Tohoku University, 4-1 Seiryomachi Aoba-ku, Sendai 980-8575, Japan; Department of Cancer Biology, Tohoku University Graduate School of Medicine, 4-1 Seiryomachi Aoba-ku, Sendai 980-8575, Japan
| | - Honami Ogoh
- Department of Biological Science, Graduate School of Humanities and Sciences, Nara Women's University, Kitauoya-Nishimachi, Nara, 630-8506, Japan
| | - Yudai Iichi
- Department of Cancer Biology, Institute of Aging, Development, and Cancer, Tohoku University, 4-1 Seiryomachi, Aoba-ku, Sendai 980-8575, Japan; Laboratory of Cancer Biology, Graduate School of Life Sciences, Tohoku University, 4-1 Seiryomachi Aoba-ku, Sendai 980-8575, Japan
| | - Tomohiro Sasaki
- Department of Cancer Biology, Institute of Aging, Development, and Cancer, Tohoku University, 4-1 Seiryomachi, Aoba-ku, Sendai 980-8575, Japan; Laboratory of Cancer Biology, Graduate School of Life Sciences, Tohoku University, 4-1 Seiryomachi Aoba-ku, Sendai 980-8575, Japan
| | - Takahiro Yoshida
- Department of Cancer Biology, Institute of Aging, Development, and Cancer, Tohoku University, 4-1 Seiryomachi, Aoba-ku, Sendai 980-8575, Japan; Laboratory of Cancer Biology, Graduate School of Life Sciences, Tohoku University, 4-1 Seiryomachi Aoba-ku, Sendai 980-8575, Japan
| | - Shiori Ichimura
- Department of Cancer Biology, Institute of Aging, Development, and Cancer, Tohoku University, 4-1 Seiryomachi, Aoba-ku, Sendai 980-8575, Japan; Laboratory of Cancer Biology, Graduate School of Life Sciences, Tohoku University, 4-1 Seiryomachi Aoba-ku, Sendai 980-8575, Japan
| | - Masahiro Nakayama
- Department of Molecular Immunology, Institute of Development, Aging and Cancer, Tohoku University, 4-1 Seiryomachi Aoba-ku, Sendai 980-8575, Japan; Laboratory of Molecular Immunology, Graduate School of Life Sciences, Tohoku University, 4-1 Seiryomachi Aoba-ku, Sendai 980-8575, Japan
| | - Wu Xi
- Department of Cancer Biology, Institute of Aging, Development, and Cancer, Tohoku University, 4-1 Seiryomachi, Aoba-ku, Sendai 980-8575, Japan; Laboratory of Cancer Biology, Graduate School of Life Sciences, Tohoku University, 4-1 Seiryomachi Aoba-ku, Sendai 980-8575, Japan
| | - Hiroki Fujita
- Department of Cancer Biology, Institute of Aging, Development, and Cancer, Tohoku University, 4-1 Seiryomachi, Aoba-ku, Sendai 980-8575, Japan; Laboratory of Cancer Biology, Graduate School of Life Sciences, Tohoku University, 4-1 Seiryomachi Aoba-ku, Sendai 980-8575, Japan
| | - Megumi Kikuchi
- Department of Cancer Biology, Institute of Aging, Development, and Cancer, Tohoku University, 4-1 Seiryomachi, Aoba-ku, Sendai 980-8575, Japan; Laboratory of Cancer Biology, Graduate School of Life Sciences, Tohoku University, 4-1 Seiryomachi Aoba-ku, Sendai 980-8575, Japan
| | - Zhenzhou Fang
- Department of Cancer Biology, Institute of Aging, Development, and Cancer, Tohoku University, 4-1 Seiryomachi, Aoba-ku, Sendai 980-8575, Japan; Department of Cancer Biology, Tohoku University Graduate School of Medicine, 4-1 Seiryomachi Aoba-ku, Sendai 980-8575, Japan
| | - Xingming Li
- Department of Cancer Biology, Institute of Aging, Development, and Cancer, Tohoku University, 4-1 Seiryomachi, Aoba-ku, Sendai 980-8575, Japan; Laboratory of Cancer Biology, Graduate School of Life Sciences, Tohoku University, 4-1 Seiryomachi Aoba-ku, Sendai 980-8575, Japan
| | - Takaya Abe
- Laboratory for Animal Resources and Genetic Engineering, RIKEN Center for Biosystems Dynamics Research, 2-2-3 Minatojima-minamimachi, Chuo-ku, Kobe, Hyogo 650-0047, Japan
| | - Mitsuru Futakuchi
- Department of Pathology, Yamagata University Faculty of Medicine, 2-2-2 Iida-Nishi, Yamagata 990-9585, Japan
| | - Yasuhiro Nakamura
- Division of Pathology, Faculty of Medicine, Tohoku Medical and Pharmaceutical University, 1-15-1 Fukumuro, Miyagino-ku, Sendai 983-8536, Japan
| | - Toshio Watanabe
- Department of Biological Science, Graduate School of Humanities and Sciences, Nara Women's University, Kitauoya-Nishimachi, Nara, 630-8506, Japan
| | - Natsuko Chiba
- Department of Cancer Biology, Institute of Aging, Development, and Cancer, Tohoku University, 4-1 Seiryomachi, Aoba-ku, Sendai 980-8575, Japan; Laboratory of Cancer Biology, Graduate School of Life Sciences, Tohoku University, 4-1 Seiryomachi Aoba-ku, Sendai 980-8575, Japan; Department of Cancer Biology, Tohoku University Graduate School of Medicine, 4-1 Seiryomachi Aoba-ku, Sendai 980-8575, Japan.
| |
Collapse
|
5
|
Wang HY, Diao Y, Tan PZ, Liang H. Four centrosome-related genes to predict the prognosis and drug sensitivity of patients with colon cancer. World J Gastrointest Oncol 2024; 16:1908-1924. [PMID: 38764831 PMCID: PMC11099447 DOI: 10.4251/wjgo.v16.i5.1908] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 01/08/2024] [Accepted: 02/22/2024] [Indexed: 05/09/2024] Open
Abstract
BACKGROUND As the primary microtubule organizing center in animal cells, centrosome abnormalities are involved in human colon cancer. AIM To explore the role of centrosome-related genes (CRGs) in colon cancer. METHODS CRGs were collected from public databases. Consensus clustering analysis was performed to separate the Cancer Genome Atlas cohort. Univariate Cox and least absolute shrinkage selection operator regression analyses were performed to identify candidate prognostic CRGs and construct a centrosome-related signature (CRS) to score colon cancer patients. A nomogram was developed to evaluate the CRS risk in colon cancer patients. An integrated bioinformatics analysis was conducted to explore the correlation between the CRS and tumor immune microenvironment and response to immunotherapy, chemotherapy, and targeted therapy. Single-cell transcriptome analysis was conducted to examine the immune cell landscape of core prognostic genes. RESULTS A total of 726 CRGs were collected from public databases. A CRS was constructed, which consisted of the following four genes: TSC1, AXIN2, COPS7A, and MTUS1. Colon cancer patients with a high-risk signature had poor survival. Patients with a high-risk signature exhibited decreased levels of plasma cells and activated memory CD4+ T cells. Regarding treatment response, patients with a high-risk signature were resistant to immunotherapy, chemotherapy, and targeted therapy. COPS7A expression was relatively high in endothelial cells and fibroblasts. MTUS1 expression was high in endothelial cells, fibroblasts, and malignant cells. CONCLUSION We constructed a centrosome-related prognostic signature that can accurately predict the prognosis of colon cancer patients, contributing to the development of individualized treatment for colon cancer.
Collapse
Affiliation(s)
- Hui-Yan Wang
- Department of Clinical Laboratory, Harbin Medical University Cancer Hospital, Harbin 150086, Heilongjiang Province, China
| | - Yan Diao
- Department of Clinical Laboratory, Heilongjiang Province Hospital, Harbin 150000, Heilongjiang Province, China
| | - Pei-Zhu Tan
- Translational Medicine Center of Northern China, Harbin Medical University, Harbin 150081, Heilongjiang Province, China
| | - Huan Liang
- Department of Clinical Laboratory, Harbin Medical University Cancer Hospital, Harbin 150086, Heilongjiang Province, China
| |
Collapse
|
6
|
Li KQ, Bai X, Ke AT, Ding SQ, Zhang CD, Dai DQ. Ubiquitin-specific proteases: From biological functions to potential therapeutic applications in gastric cancer. Biomed Pharmacother 2024; 173:116323. [PMID: 38401523 DOI: 10.1016/j.biopha.2024.116323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 02/17/2024] [Accepted: 02/19/2024] [Indexed: 02/26/2024] Open
Abstract
Deubiquitination, a post-translational modification regulated by deubiquitinases, is essential for cancer initiation and progression. Ubiquitin-specific proteases (USPs) are essential elements of the deubiquitinase family, and are overexpressed in gastric cancer (GC). Through the regulation of several signaling pathways, such as Wnt/β-Catenin and nuclear factor-κB signaling, and the promotion of the expression of deubiquitination- and stabilization-associated proteins, USPs promote the proliferation, metastasis, invasion, and epithelial-mesenchymal transition of GC. In addition, the expression of USPs is closely related to clinicopathological features, patient prognosis, and chemotherapy resistance. USPs therefore could be used as prognostic biomarkers. USP targeting small molecule inhibitors have demonstrated strong anticancer activity. However, they have not yet been tested in the clinic. This article provides an overview of the latest fundamental research on USPs in GC, aiming to enhance the understanding of how USPs contribute to GC progression, and identifying possible targets for GC treatment to improve patient survival.
Collapse
Affiliation(s)
- Kai-Qiang Li
- Department of Surgical Oncology, the Fourth Affiliated Hospital of China Medical University, Shenyang, Liaoning Province 110032, China
| | - Xiao Bai
- Department of Surgical Oncology, the Fourth Affiliated Hospital of China Medical University, Shenyang, Liaoning Province 110032, China
| | - Ang-Ting Ke
- Department of Surgical Oncology, the Fourth Affiliated Hospital of China Medical University, Shenyang, Liaoning Province 110032, China
| | - Si-Qi Ding
- Department of Surgical Oncology, the Fourth Affiliated Hospital of China Medical University, Shenyang, Liaoning Province 110032, China
| | - Chun-Dong Zhang
- Department of Surgical Oncology, the Fourth Affiliated Hospital of China Medical University, Shenyang, Liaoning Province 110032, China
| | - Dong-Qiu Dai
- Department of Surgical Oncology, the Fourth Affiliated Hospital of China Medical University, Shenyang, Liaoning Province 110032, China; Cancer Center, the Fourth Affiliated Hospital of China Medical University, Shenyang, Liaoning Province 110032, China.
| |
Collapse
|
7
|
Han YW, Xu SX, Zhang J, Li YF, Xu P, Lee SC, Zhao JZ. Cadmium promotes the binding and centrosomal translocation of CCDC85C and PLK4 via ROS-GCLM pathway to trigger centrosome amplification in colon cancer cells. Toxicol Lett 2024; 392:84-93. [PMID: 38185225 DOI: 10.1016/j.toxlet.2024.01.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 11/27/2023] [Accepted: 01/03/2024] [Indexed: 01/09/2024]
Abstract
Cadmium (Cd) is a prevalent heavy metal contaminant that can cause centrosome amplification (CA) and cancer. Since CA can initiate tumorigenesis, it is plausible that cadmium initiates tumorigenesis via CA. The present study investigated the signaling pathways underlying CA by Cd. Our findings confirmed that sub-toxic concentrations of Cd could induce CA in the HCT116 colon cancer cells, and revealed that reactive oxygen species (ROS), GCLM, CCDC85C and PLK4 were the signaling molecules that formed a pathway of ROS-GCLM-CCDC85C-PLK4. Cd not only increased the protein levels of CCDC85C and PLK4, but also promoted their distribution to the centrosomes. Molecular docking analysis revealed that CCDC85C and PLK4 had the binding potential. Indeed, antibodies against CCDC85C and PLK4 were able to pull down PLK4 and CCDC85C, respectively. Knockdown of CCDC85C decreased the Cd-promoted centrosomal distribution of PLK4. Similarly, knockdown of PLK4 reduced the centrosomal distribution of CCDC85C. Our results suggest that Cd activates ROS-GCLM pathway that triggers the expression of and binding between CCDC85C and PLK4, and promotes the translocation of CCDC85C-PLK4 complex to the centrosomes, which eventually leads to CA.
Collapse
Affiliation(s)
- Ya Wen Han
- Institute of Biomedical Sciences, Jiangsu Normal University, Xuzhou, Jiangsu, PR China; School of Life Sciences, Jiangsu Normal University, Xuzhou, Jiangsu, PR China
| | - Si Xian Xu
- Institute of Biomedical Sciences, Jiangsu Normal University, Xuzhou, Jiangsu, PR China; School of Life Sciences, Jiangsu Normal University, Xuzhou, Jiangsu, PR China
| | - Jun Zhang
- Institute of Biomedical Sciences, Jiangsu Normal University, Xuzhou, Jiangsu, PR China; School of Life Sciences, Jiangsu Normal University, Xuzhou, Jiangsu, PR China
| | - Yuan Fei Li
- Department of Oncology, the First Hospital, Shanxi Medical University, Taiyuan, Shanxi, PR China
| | - Peng Xu
- School of Life Science, Shanxi University, Taiyuan, Shanxi 030006, PR China
| | - Shao Chin Lee
- Institute of Biomedical Sciences, Jiangsu Normal University, Xuzhou, Jiangsu, PR China; School of Life Sciences, Jiangsu Normal University, Xuzhou, Jiangsu, PR China.
| | - Ji Zhong Zhao
- Institute of Biomedical Sciences, Jiangsu Normal University, Xuzhou, Jiangsu, PR China; School of Life Sciences, Jiangsu Normal University, Xuzhou, Jiangsu, PR China.
| |
Collapse
|
8
|
Çakırca G, Öztürk MT, Telkoparan-Akillilar P, Güllülü Ö, Çetinkaya A, Tazebay UH. Proteomics analysis identifies the ribosome associated coiled-coil domain-containing protein-124 as a novel interaction partner of nucleophosmin-1. Biol Cell 2024; 116:e202300049. [PMID: 38029384 DOI: 10.1111/boc.202300049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 10/18/2023] [Accepted: 11/23/2023] [Indexed: 12/01/2023]
Abstract
BACKGROUND INFORMATION Coiled-coil domain-containing protein-124 (Ccdc124) is a conserved eukaryotic ribosome-associated RNA-binding protein which is involved in resuming ribosome activity after stress-related translational shutdown. Ccdc124 protein is also detected at cellular localizations devoid of ribosomes, such as the centrosome, or the cytokinetic midbody, but its translation-independent cellular function is currently unknown. RESULTS By using an unbiased LC-MS/MS-based proteomics approach in human embryonic kidney (HEK293) cells, we identified novel Ccdc124 partners and mapped the cellular organization of interacting proteins, a subset of which are known to be involved in nucleoli biogenesis and function. We then identified a novel interaction between the cancer-associated multifunctional nucleolar marker nucleophosmin (Npm1) and Ccdc124, and we characterized this interaction both in HEK293 (human embryonic kidney) and U2OS (osteosarcoma) cells. As expected, in both types of cells, Npm1 and Ccdc124 proteins colocalized within the nucleolus when assayed by immunocytochemical methods, or by monitoring the localization of green fluorescent protein-tagged Ccdc124. CONCLUSIONS The nucleolar localization of Ccdc124 was impaired when Npm1 translocates from the nucleolus to the nucleoplasm in response to treatment with the DNA-intercalator and Topo2 inhibitor chemotherapeutic drug doxorubicin. Npm1 is critically involved in maintaining genomic stability by mediating various DNA-repair pathways, and over-expression of Npm1 or specific NPM1 mutations have been previously associated with proliferative diseases, such as acute myelogenous leukemia, anaplastic large-cell lymphoma, and solid cancers originating from different tissues. SIGNIFICANCE Identification of Ccdc124 as a novel interaction partner of Nmp1 within the frame of molecular mechanisms involving nucleolar stress-sensing and DNA-damage response is expected to provide novel insights into the biology of cancers associated with aberrations in NPM1.
Collapse
Affiliation(s)
- Gamze Çakırca
- Gebze Technical University, Department of Molecular Biology and Genetics, Gebze, Kocaeli, Turkey
- Gebze Technical University, Central Research Laboratory (GTU-MAR), Gebze, Kocaeli, Turkey
| | - Merve Tuzlakoğlu Öztürk
- Gebze Technical University, Department of Molecular Biology and Genetics, Gebze, Kocaeli, Turkey
- Gebze Technical University, Central Research Laboratory (GTU-MAR), Gebze, Kocaeli, Turkey
| | | | - Ömer Güllülü
- Gebze Technical University, Department of Molecular Biology and Genetics, Gebze, Kocaeli, Turkey
| | - Agit Çetinkaya
- Gebze Technical University, Department of Molecular Biology and Genetics, Gebze, Kocaeli, Turkey
- Gebze Technical University, Central Research Laboratory (GTU-MAR), Gebze, Kocaeli, Turkey
| | - Uygar Halis Tazebay
- Gebze Technical University, Department of Molecular Biology and Genetics, Gebze, Kocaeli, Turkey
- Gebze Technical University, Central Research Laboratory (GTU-MAR), Gebze, Kocaeli, Turkey
| |
Collapse
|
9
|
Ma B, Wang X, Ren H, Li Y, Zhang H, Yang M, Li J. High glucose promotes the progression of colorectal cancer by activating the BMP4 signaling and inhibited by glucagon-like peptide-1 receptor agonist. BMC Cancer 2023; 23:594. [PMID: 37370018 PMCID: PMC10304216 DOI: 10.1186/s12885-023-11077-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Accepted: 06/15/2023] [Indexed: 06/29/2023] Open
Abstract
BACKGROUND The detailed molecular mechanism between type 2 diabetes mellitus (T2DM) and colorectal cancer (CRC) is still uncertain. Bone morphogenetic protein 4 (BMP4) dysregulation is implicated in T2DM and CRC, respectively. This study aims to investigate whether BMP4 can mediate the interaction of CRC with T2DM. METHODS We firstly explored the expression of BMP4 in The Cancer Genome Altas (TCGA) databases and CRC patients with or without DM from the Shanghai Tenth People's Hospital. The diabetic model of CRC cell lines in vitro and the mice model in vivo were developed to explore the BMP4 expression during CRC with or without diabetes. Further inhibition of BMP4 to observe its effects on CRC. Also, glucagon-like peptide-1 receptor agonist (GLP-1RA) was used to verify the underlying mechanism of hypoglycemic drugs on CRC via BMP4. RESULTS BMP4 expression was upregulated in CRC patients, and significantly higher in CRC patients with diabetes (P < 0.05). High glucose-induced insulin resistance (IR)-CRC cells and diabetic mice with metastasis model of CRC had increased BMP4 expression, activated BMP4-Smad1/5/8 pathway, and improved proliferative and metastatic ability mediated by epithelial-mesenchymal transition (EMT). And, treated CRC cells with exogenously BMP inhibitor-Noggin or transfected with lentivirus (sh-BMP4) could block the upregulated metastatic ability of CRC cells induced by IR. Meanwhile, GLP-1R was downregulated by high glucose-induced IR while unregulated by BMP4 inhibitor noggin, and treated GLP-1RA could suppress the proliferation of CRC cells induced by IR through downregulated BMP4. CONCLUSIONS BMP4 increased by high glucose promoted the EMT of CRC. The mechanism of the BMP4/Smad pathway was related to the susceptible metastasis of high glucose-induced IR-CRC. The commonly used hypoglycemic drug, GLP-1RA, inhibited the growth and promoted the apoptosis of CRC through the downregulation of BMP4. The result of our study suggested that BMP4 might serve as a therapeutic target in CRC patients with diabetes.
Collapse
Affiliation(s)
- Bingwei Ma
- Colorectal Cancer Central, Shanghai Tenth People's Hospital, Tongji University School of Medicine, 301 Middle Yanchang Road, Shanghai, 200072, China
| | - Xingchun Wang
- Department of Endocrinology and Metabolism, Shanghai Tenth People's Hospital, Tongji University, 301 Middle Yanchang Road, Shanghai, 200072, China
- Thyroid Research Center of Shanghai, Shanghai Tenth People's Hospital, 301 Middle Yanchang Road, Shanghai, 200072, China
| | - Hui Ren
- School of Pharmacy, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, China
| | - Yingying Li
- School of Pharmacy, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, China
| | - Haijiao Zhang
- Department of Gastrointestinal Surgery, Huadong Hospital affiliated with Fudan University, 221 West Yanan Road, Shanghai, 200040, China
| | - Muqing Yang
- Department of General Surgery, Tenth People's Hospital of Tongji University, 301 Middle Yanchang Road, Shanghai, 200072, China
| | - Jiyu Li
- Geriatric Cancer Center, Huadong Hospital Affiliated to Fudan University, 221 West Yanan Road, Shanghai, 200040, China.
| |
Collapse
|
10
|
Steiert B, Icardi CM, Faris R, McCaslin PN, Smith P, Klingelhutz AJ, Yau PM, Weber MM. The Chlamydia trachomatis type III-secreted effector protein CteG induces centrosome amplification through interactions with centrin-2. Proc Natl Acad Sci U S A 2023; 120:e2303487120. [PMID: 37155906 PMCID: PMC10193975 DOI: 10.1073/pnas.2303487120] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Accepted: 04/11/2023] [Indexed: 05/10/2023] Open
Abstract
The centrosome is the main microtubule organizing center of the cell and is crucial for mitotic spindle assembly, chromosome segregation, and cell division. Centrosome duplication is tightly controlled, yet several pathogens, most notably oncogenic viruses, perturb this process leading to increased centrosome numbers. Infection by the obligate intracellular bacterium Chlamydia trachomatis (C.t.) correlates with blocked cytokinesis, supernumerary centrosomes, and multipolar spindles; however, the mechanisms behind how C.t. induces these cellular abnormalities remain largely unknown. Here we show that the secreted effector protein, CteG, binds to centrin-2 (CETN2), a key structural component of centrosomes and regulator of centriole duplication. Our data indicate that both CteG and CETN2 are necessary for infection-induced centrosome amplification, in a manner that requires the C-terminus of CteG. Strikingly, CteG is important for in vivo infection and growth in primary cervical cells but is dispensable for growth in immortalized cells, highlighting the importance of this effector protein to chlamydial infection. These findings begin to provide mechanistic insight into how C.t. induces cellular abnormalities during infection, but also indicate that obligate intracellular bacteria may contribute to cellular transformation events. Centrosome amplification mediated by CteG-CETN2 interactions may explain why chlamydial infection leads to an increased risk of cervical or ovarian cancer.
Collapse
Affiliation(s)
- Brianna Steiert
- Department of Microbiology and Immunology, University of Iowa Carver College of Medicine, Iowa City, IA52242
| | - Carolina M. Icardi
- Department of Microbiology and Immunology, University of Iowa Carver College of Medicine, Iowa City, IA52242
| | - Robert Faris
- Department of Microbiology and Immunology, University of Iowa Carver College of Medicine, Iowa City, IA52242
| | - Paige N. McCaslin
- Department of Microbiology and Immunology, University of Iowa Carver College of Medicine, Iowa City, IA52242
| | - Parker Smith
- Department of Microbiology and Immunology, University of Iowa Carver College of Medicine, Iowa City, IA52242
| | - Aloysius J. Klingelhutz
- Department of Microbiology and Immunology, University of Iowa Carver College of Medicine, Iowa City, IA52242
| | - Peter M. Yau
- Carver Biotechnology Center–Protein Sciences Facility, University of Illinois at Urbana–Champaign, Urbana, IL61801
| | - Mary M. Weber
- Department of Microbiology and Immunology, University of Iowa Carver College of Medicine, Iowa City, IA52242
| |
Collapse
|
11
|
Shi XJ, Yao CG, Li HL, Wei YH, Hu KH. Chromosome hyperploidy induced by chronic hepatitis B virus infection and its targeted therapeutic strategy. Shijie Huaren Xiaohua Zazhi 2023; 31:299-306. [DOI: 10.11569/wcjd.v31.i8.299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 04/28/2023] Open
Abstract
Chronic hepatitis B virus (HBV) infection induces chromosomal hyperploidy (including aneuploidy and polyploidy) and chromosomal instability in hepatocytes, which is one of the main causes of primary hepatocellular carcinoma (HCC). Although hepatocytes can regulate polyploidization of chromosomes under normal conditions, it is difficult to regulate hyperploidization caused by HBV infection and thus carcinogenesis. Studies have shown that HBV can cause dysregulation of many signal pathways such as PLK1/PRC1, and induce chromosome hyperploidy and malignant transformation of hepatocytes. Herein we review the mechanism of HBV infection-induced chromosomal hyperploidy of hepatocytes to cuase hepatocarcinogenesis and the advances in research of drugs targeting chromosomal hyperploidy.
Collapse
|
12
|
Zhao ML, Wang JX, Bian XK, Zhang J, Han YW, Xu SX, Lee SC, Zhao JZ. Hexavalent chromium causes centrosome amplification by inhibiting the binding between TMOD2 and NPM2. Toxicol Lett 2023; 380:12-22. [PMID: 36963620 DOI: 10.1016/j.toxlet.2023.03.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 02/15/2023] [Accepted: 03/21/2023] [Indexed: 03/26/2023]
Abstract
BACKGROUND Hexavalent chromium can promote centrosome amplification (CA) as well as tumorigenesis. Since CA can lead to tumorigenesis, it is plausible that the chromium promotes the development of cancer via CA. In the present study, we investigated the signaling pathways of the chromium-induced CA. RESULTS Our results showed that sub-toxic concentration of chromium was able to cause CA in HCT116 cells, and decrease the expression of TMOD2 and NPM2. Furthermore, TMOD2 and NPM2 interacted to each other via their C-terminal and the N-terminal, respectively, which was inhibited by the chromium. Overexpression of TMOD2 and NPM2 increased their binding and significantly attenuated the CA. Moreover, TMOD2 and NPM2 were co-localized with the centrosomes. The chromium inhibited the centrosomeal localization of NPM2, which was reversed by the overexpression of TMOD2, C-terminal of TMOD2, but not the N-terminal of NPM2. CONCLUSION Our results suggest that the chromium induces CA via inhibiting the binding between TMOD2 and NPM2 as well as the dissociation of NPM2 from centrosomes. AVAILABILITY OF DATA AND MATERIALS The data and materials are available from the corresponding authors.
Collapse
Affiliation(s)
- Meng Lu Zhao
- Institute of Biomedical Sciences and School of Life Sciences, Jiangsu Normal University, Jiangsu 221112, PR China
| | - Jia Xin Wang
- Institute of Biomedical Sciences and School of Life Sciences, Jiangsu Normal University, Jiangsu 221112, PR China
| | - Xue Kai Bian
- Institute of Biomedical Sciences and School of Life Sciences, Jiangsu Normal University, Jiangsu 221112, PR China
| | - Jun Zhang
- Institute of Biomedical Sciences and School of Life Sciences, Jiangsu Normal University, Jiangsu 221112, PR China
| | - Ya Wen Han
- Institute of Biomedical Sciences and School of Life Sciences, Jiangsu Normal University, Jiangsu 221112, PR China
| | - Si Xian Xu
- Institute of Biomedical Sciences and School of Life Sciences, Jiangsu Normal University, Jiangsu 221112, PR China
| | - Shao Chin Lee
- Institute of Biomedical Sciences and School of Life Sciences, Jiangsu Normal University, Jiangsu 221112, PR China.
| | - Ji Zhong Zhao
- Institute of Biomedical Sciences and School of Life Sciences, Jiangsu Normal University, Jiangsu 221112, PR China.
| |
Collapse
|
13
|
Steiert B, Faris R, Weber MM. In Search of a Mechanistic Link between Chlamydia trachomatis-Induced Cellular Pathophysiology and Oncogenesis. Infect Immun 2023; 91:e0044322. [PMID: 36695575 PMCID: PMC9933725 DOI: 10.1128/iai.00443-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Centrosome duplication and cell cycle progression are essential cellular processes that must be tightly controlled to ensure cellular integrity. Despite their complex regulatory mechanisms, microbial pathogens have evolved sophisticated strategies to co-opt these processes to promote infection. While misregulation of these processes can greatly benefit the pathogen, the consequences to the host cell can be devastating. During infection, the obligate intracellular pathogen Chlamydia trachomatis induces gross cellular abnormalities, including supernumerary centrosomes, multipolar spindles, and defects in cytokinesis. While these observations were made over 15 years ago, identification of the bacterial factors responsible has been elusive due to the genetic intractability of Chlamydia. Recent advances in techniques of genetic manipulation now allows for the direct linking of bacterial virulence factors to manipulation of centrosome duplication and cell cycle progression. In this review, we discuss the impact, both immediate and downstream, of C. trachomatis infection on the host cell cycle regulatory apparatus and centrosome replication. We highlight links between C. trachomatis infection and cervical and ovarian cancers and speculate whether perturbations of the cell cycle and centrosome are sufficient to initiate cellular transformation. We also explore the biological mechanisms employed by Inc proteins and other secreted effector proteins implicated in the perturbation of these host cell pathways. Future work is needed to better understand the nuances of each effector's mechanism and their collective impact on Chlamydia's ability to induce host cellular abnormalities.
Collapse
Affiliation(s)
- Brianna Steiert
- Department of Microbiology and Immunology, University of Iowa Carver College of Medicine, Iowa City, Iowa, USA
| | - Robert Faris
- Department of Microbiology and Immunology, University of Iowa Carver College of Medicine, Iowa City, Iowa, USA
| | - Mary M. Weber
- Department of Microbiology and Immunology, University of Iowa Carver College of Medicine, Iowa City, Iowa, USA
| |
Collapse
|
14
|
Fang Z, Gao ZJ, Yu X, Sun SR, Yao F. Identification of a centrosome-related prognostic signature for breast cancer. Front Oncol 2023; 13:1138049. [PMID: 37035151 PMCID: PMC10073657 DOI: 10.3389/fonc.2023.1138049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Accepted: 03/09/2023] [Indexed: 04/11/2023] Open
Abstract
Background As the major microtubule organizing center in animal cells, the centrosome is implicated with human breast tumor in multiple ways, such as promotion of tumor cell immune evasion. Here, we aimed to detect the expression of centrosome-related genes (CRGs) in normal and malignant breast tissues, and construct a novel centrosome-related prognostic model to discover new biomarkers and screen drugs for breast cancer. Methods We collected CRGs from the public databases and literature. The differentially expressed CRGs between normal and malignant breast tissues were identified by the DESeq2. Univariate Cox and LASSO regression analyses were conducted to screen candidate prognostic CRGs and develop a centrosome-related signature (CRS) to score breast cancer patients. We further manipulated and visualized data from TCGA, GEO, IMvigor210, TCIA and TIMER to explore the correlation between CRS and patient outcomes, clinical manifestations, mutational landscapes, tumor immune microenvironments, and responses to diverse therapies. Single cell analyses were performed to investigate the difference of immune cell landscape between high- and low-risk group patients. In addition, we constructed a nomogram to guide clinicians in precise treatment. Results A total of 726 CRGs were collected from the public databases and literature. PSME2, MAPK10, EIF4EBP1 were screened as the prognostic genes in breast cancer. Next, we constructed a centrosome-related prognostic signature and validated its efficacy based on the genes for predicting the survival of breast cancer patients. The high-risk group patients had poor prognoses, the area under the ROC curve for 1-, 3-, and 5-year overall survival (OS) was 0.77, 0.67, and 0.65, respectively. The predictive capacity of CRS was validated by other datasets from GEO dataset. In addition, high-risk group patients exhibited elevated level of mutational landscapes and decreased level of immune infiltration, especially T and B lymphocytes. In terms of treatment responses, patients in the high-risk group were found to be resistant to immunotherapy but sensitive to chemotherapy. Moreover, we screened a series of candidate anticancer drugs with high sensitivity in the high-risk group. Conclusion Our work exploited a centrosome-related prognostic signature and developed a predictive nomogram capable of accurately predicting breast cancer OS. The above discoveries provide deeper insights into the vital roles of the centrosome and contribute to the development of personalized treatment for breast cancer.
Collapse
Affiliation(s)
| | | | | | | | - Feng Yao
- *Correspondence: Feng Yao, ; Sheng-Rong Sun,
| |
Collapse
|
15
|
Racial Disparity in Quadruple Negative Breast Cancer: Aggressive Biology and Potential Therapeutic Targeting and Prevention. Cancers (Basel) 2022; 14:cancers14184484. [PMID: 36139643 PMCID: PMC9497140 DOI: 10.3390/cancers14184484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 09/08/2022] [Accepted: 09/13/2022] [Indexed: 12/02/2022] Open
Abstract
Simple Summary Quadruple negative breast cancer (QNBC), a subgroup of triple negative BC, has emerged as a highly aggressive BC subtype that disproportionately afflicts and impacts Black/African-American (AA) women. In this article, we review molecular distinctions in Black/AA and White/European-American (EA) QNBC biology as well as address potential non-genetic risk factors that could be underlying this racially disparate burden. We aim to provide deeper insight and provide a framework for novel discovery of actionable therapeutic targets and identify lifestyle changes to improve outcomes for Black/AA QNBC patients. Abstract Black/African-American (AA) women, relative to their White/European-American (EA) counterparts, experience disproportionately high breast cancer mortality. Central to this survival disparity, Black/AA women have an unequal burden of aggressive breast cancer subtypes, such as triple-negative breast cancer (ER/PR-, HER2-wild type; TNBC). While TNBC has been well characterized, recent studies have identified a highly aggressive androgen receptor (AR)-negative subtype of TNBC, quadruple-negative breast cancer (ER/PR-, HER2-wildtype, AR-; QNBC). Similar to TNBC, QNBC disproportionately impacts Black/AA women and likely plays an important role in the breast cancer survival disparities experienced by Black/AA women. Here, we discuss the racial disparities of QNBC and molecular signaling pathways that may contribute to the aggressive biology of QNBC in Black/AA women. Our immediate goal is to spotlight potential prevention and therapeutic targets for Black/AA QNBC; ultimately our goal is to provide greater insight into reducing the breast cancer survival burden experienced by Black/AA women.
Collapse
|
16
|
Xu SX, Han YW, Guo JL, Bian XK, Hu HM, Lee SC. The binding between NPM and H2B proteins signals for the diabetes-associated centrosome amplification. Cell Biochem Funct 2022; 40:516-525. [PMID: 35678289 DOI: 10.1002/cbf.3721] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 03/28/2022] [Accepted: 05/25/2022] [Indexed: 11/10/2022]
Abstract
Diabetes not only increases the risk for cancer but also promotes cancer metastasis. Centrosome amplification (CA) is sufficient to initiate tumorigenesis and can enhance the invasion potential of cancer cells. We have reported that diabetes can induce CA, with diabetic pathophysiological factors as the triggers, which involves the signaling of nucleophosmin (NPM). Thus, CA can serve as a candidate biological link between diabetes and cancer. In the present study, we attempted to identify the NPM binding partners and investigated whether the binding between NPM and its partner mediated the CA. We confirmed that high glucose, insulin, and palmitic acid cancer could elicit CA in the HCT16 colon cancer cells and found that the experimental treatment increased the binding between NPM and H2B, but not between p-NPM and H2B. The molecular docking analysis supported the fact that NPM and H2B could bind to each other through various amino acid residues. The treatment also increased the colocalization of NPM and H2B in the cytosol. Importantly, disruption of the NPM1-H2B complex by individual knockdown of the protein level of NPM or H2B led to the inhibition of the treatment-evoked CA. In conclusion, our results suggest that the binding between NPM and H2B proteins signals for the CA by high glucose, insulin, and palmitic acid.
Collapse
Affiliation(s)
- Si X Xu
- Department of Cell Biology, Institute of Biomedical Science, School of Life Science, Jiangsu Normal University, Xuzhou, Jiangsu, China
| | - Ya W Han
- Department of Cell Biology, Institute of Biomedical Science, School of Life Science, Jiangsu Normal University, Xuzhou, Jiangsu, China
| | - Jia Li Guo
- Department of Cell Biology, Institute of Biomedical Science, School of Life Science, Jiangsu Normal University, Xuzhou, Jiangsu, China
| | - Xue K Bian
- Department of Cell Biology, Institute of Biomedical Science, School of Life Science, Jiangsu Normal University, Xuzhou, Jiangsu, China
| | - Hong M Hu
- Department of Cell Biology, Institute of Biomedical Science, School of Life Science, Jiangsu Normal University, Xuzhou, Jiangsu, China
| | - Shao C Lee
- Department of Cell Biology, Institute of Biomedical Science, School of Life Science, Jiangsu Normal University, Xuzhou, Jiangsu, China
| |
Collapse
|
17
|
Huang RL, Liu C, Fu R, Yan Y, Yang J, Wang X, Li Q. Downregulation of PLK4 expression induces apoptosis and G0/G1-phase cell cycle arrest in keloid fibroblasts. Cell Prolif 2022; 55:e13271. [PMID: 35670224 PMCID: PMC9251049 DOI: 10.1111/cpr.13271] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Revised: 05/04/2022] [Accepted: 05/06/2022] [Indexed: 02/05/2023] Open
Abstract
Objectives Keloids are benign fibroproliferative tumors that display many cancer‐like characteristics, such as progressive uncontrolled growth, lack of spontaneous regression, and extremely high rates of recurrence. Polo‐like kinase 4 (PLK4) was recently identified as a master regulator of centriole replication, and its aberrant expression is closely associated with tumorigenesis. This study aimed to investigate the expression and biological role of PLK4 in the pathogenesis of keloids. Materials and Methods We evaluated the expression of PLK4 in keloids and adjacent normal skin tissue samples. Then, we established PLK4 knockdown and overexpression cell lines in keloid fibroblasts (KFs) and normal skin fibroblasts (NFs), respectively, to investigate the roles of PLK4 in the regulation of proliferation, migration, invasion, apoptosis, and cell cycle in KFs. Centrinone B (Cen‐B), a highly selective PLK4 inhibitor, was used to inhibit PLK4 activity in KFs to evaluate the therapeutic effect on KFs. Results We discovered that PLK4 was overexpressed in keloid dermal samples and KFs compared with adjacent normal skin samples and NFs derived from the same patients. High PLK4 expression was positively associated with the proliferation, migration, and invasion of KFs. Furthermore, knockdown of PLK4 expression or inhibition of PLK4 activity by Cen‐B suppressed KF growth, induced KF apoptosis via the caspase‐9/3 pathway, and induced cell cycle arrest at the G0/G1 phase in vitro. Conclusions These findings demonstrate that PLK4 is a critical regulator of KF proliferation, migration, and invasion, and thus, Cen‐B is a promising candidate drug for keloid treatment.
Collapse
Affiliation(s)
- Ru-Lin Huang
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Chuanqi Liu
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Department of Plastic and Burn Surgery, West China Hospital, Sichuan University, Chengdu, China
| | - Rao Fu
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yuxin Yan
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jing Yang
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xinggang Wang
- Department of Assisted Reproduction, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Qingfeng Li
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
18
|
Bian XK, Guo JL, Xu SX, Han YW, Lee SC, Zhao JZ. Hexavalent chromium induces centrosome amplification through ROS-ATF6-PLK4 pathway in colon cancer cells. Cell Biol Int 2022; 46:1128-1136. [PMID: 35293662 DOI: 10.1002/cbin.11791] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 02/25/2022] [Accepted: 03/13/2022] [Indexed: 11/11/2022]
Abstract
Centrosome amplification (CA) refers to a numerical increase in centrosomes resulting in cells with more than two centrosomes. CA has been shown to initiate tumorigenesis and increase the invasive potential of cancer cells in genetically modified experimental models. Hexavalent chromium is a recognized carcinogen that causes CA and tumorigenesis as well as promotes cancer metastasis. Thus, CA appears to be a biological link between chromium and cancer. In the present study we investigated how chromium triggers CA. Our results showed that a sub-toxic concentration of chromium induced CA in HCT116 colon cancer cells, resulted in the production of reactive oxygen species (ROS), activated ATF6 without causing endoplasmic reticulum stress, and upregulated the protein level of PLK4. Inhibition of ROS production, ATF6 activation, or PLK4 upregulation attenuated CA. Inhibition of ROS using N-acetyl-L-cysteine (NAC) inhibited chromium-induced activation of ATF6 and upregulation of PLK4. ATF6-specific siRNA knocked down the protein level and activation of ATF6, and upregulated PLK4, with no effect on ROS production. Knockdown of PLK4 protein had no effect on chromium-induced ROS production or activation of ATF6. In conclusion, our results suggest that hexavalent chromium induces CA via the ROS-ATF6-PLK4 pathway and provides molecular targets for inhibiting chromium-mediated CA, which may be useful for the assessment of CA in chromium-promoted tumorigenesis and cancer cell metastasis. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Xue Kai Bian
- Institute of Biomedical Sciences and School of Life Sciences, Jiangsu Normal University, Jiangsu, 221112, PR China
| | - Jia Li Guo
- Institute of Biomedical Sciences and School of Life Sciences, Jiangsu Normal University, Jiangsu, 221112, PR China
| | - Si Xian Xu
- Institute of Biomedical Sciences and School of Life Sciences, Jiangsu Normal University, Jiangsu, 221112, PR China
| | - Ya Wen Han
- Institute of Biomedical Sciences and School of Life Sciences, Jiangsu Normal University, Jiangsu, 221112, PR China
| | - Shao Chin Lee
- Institute of Biomedical Sciences and School of Life Sciences, Jiangsu Normal University, Jiangsu, 221112, PR China
| | - Ji Zhong Zhao
- Institute of Biomedical Sciences and School of Life Sciences, Jiangsu Normal University, Jiangsu, 221112, PR China
| |
Collapse
|
19
|
Yan X, Liu SM, Liu C. Clinical Applications of Aneuploidies in Evolution of NSCLC Patients: Current Status and Application Prospect. Onco Targets Ther 2022; 15:1355-1368. [PMID: 36388157 PMCID: PMC9662021 DOI: 10.2147/ott.s380016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2022] [Accepted: 10/22/2022] [Indexed: 11/11/2022] Open
Abstract
As one of the first characteristics of cancer cells, chromosomal aberrations during cell division have been well documented. Aneuploidy is a feature of most cancer cells accompanied by an elevated rate of mis-segregation of chromosomes, called chromosome instability (CIN). Aneuploidy causes ongoing karyotypic changes that contribute to tumor heterogeneity, drug resistance, and treatment failure, which are considered predictors of poor prognosis. Lung cancer (LC) is the leading cause of cancer-related deaths worldwide, and its genome map shows extensive aneuploid changes. Elucidating the role of aneuploidy in the pathogenesis of LC will reveal information about the key factors of tumor occurrence and development, help to predict the prognosis of cancer, clarify tumor evolution, metastasis, and drug response, and may promote the development of precision oncology. In this review, we describe many possible causes of aneuploidy and provide evidence of the role of aneuploidy in the evolution of LC, providing a basis for future biological and clinical research.
Collapse
Affiliation(s)
- Xing Yan
- The Second Affiliated Hospital of Dalian Medical University, Dalian, 116000, People's Republic of China
| | - Shan Mei Liu
- Inner Mongolia Medical University, Hohhot, 150110, People's Republic of China
| | - Changhong Liu
- The Second Affiliated Hospital of Dalian Medical University, Dalian, 116000, People's Republic of China
| |
Collapse
|