1
|
Urquhart AJ, Glass CH, Humphries TLR, Kassianos AJ, Vesey DA, Wood ST, Gobe GC, Ellis RJ. Head-to-head comparison of tyrosine kinase inhibitors in renal cell carcinoma using patient-derived cell culture. Per Med 2025; 22:83-91. [PMID: 40029183 DOI: 10.1080/17410541.2025.2473303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2024] [Accepted: 02/25/2025] [Indexed: 03/05/2025]
Abstract
BACKGROUND Metastatic renal cell carcinoma (RCC) is often treated with a combination of immunotherapy and tyrosine kinase inhibitors (TKIs). Patient-derived RCC cells were cultured and inter-individual differences to treatment with a panel of TKIs were evaluated. METHODS Tumor tissue was collected during nephrectomy. Cells were cultured and treated with a panel of clinically relevant TKIs (sunitinib, cabozantinib, pazopanib, axitinib) at concentrations of 5 µM for 48-72 hours. Cell viability was evaluated using MTT assays. One-sided T-tests were used to evaluate results. RESULTS Patient-derived cancer cells were able to be grown beyond 10 passages from 12/38 samples collected (27%). Four patient-derived samples were tested against the TKI panel. No substantial difference between drugs was seen for two samples. In one sample, there was a clear superior response to sunitinib (48% mean viability, vs >75% for the other drugs). For the final sample, sunitinib, cabozantinib, and axitinib demonstrated a superior response compared with pazopanib (71%, 77%, 70%, and 85% mean viability, respectively). CONCLUSIONS Inter-individual variability in the responses of patient-derived RCC cultures to TKIs was seen, which may have biological and clinical significance. Future directions could build on this work to develop personalized cancer susceptibility profiles, with potential for translation into a clinical trial.
Collapse
Affiliation(s)
- Aaron J Urquhart
- Princess Alexandra Hospital, Metro South Hospital and Health Service, Brisbane, QLD, Australia
- Faculty of Medicine, The University of Queensland, Brisbane, QLD, Australia
- Kidney Disease Research Collaborative, Translational Research Institute, Brisbane, QLD, Australia
| | - Christian H Glass
- Faculty of Medicine, The University of Queensland, Brisbane, QLD, Australia
- Kidney Disease Research Collaborative, Translational Research Institute, Brisbane, QLD, Australia
| | - Tyrone L R Humphries
- Princess Alexandra Hospital, Metro South Hospital and Health Service, Brisbane, QLD, Australia
- Faculty of Medicine, The University of Queensland, Brisbane, QLD, Australia
- Kidney Disease Research Collaborative, Translational Research Institute, Brisbane, QLD, Australia
| | - Andrew J Kassianos
- Faculty of Medicine, The University of Queensland, Brisbane, QLD, Australia
- Kidney Health Service, Royal Brisbane and Women's Hospital, Brisbane, QLD, Australia
- Conjoint Internal Medicine Laboratory, Chemical Pathology, Pathology Queensland, Health Support Queensland, Brisbane, QLD, Australia
| | - David A Vesey
- Princess Alexandra Hospital, Metro South Hospital and Health Service, Brisbane, QLD, Australia
- Faculty of Medicine, The University of Queensland, Brisbane, QLD, Australia
- Kidney Disease Research Collaborative, Translational Research Institute, Brisbane, QLD, Australia
| | - Simon T Wood
- Princess Alexandra Hospital, Metro South Hospital and Health Service, Brisbane, QLD, Australia
- Kidney Disease Research Collaborative, Translational Research Institute, Brisbane, QLD, Australia
| | - Glenda C Gobe
- Princess Alexandra Hospital, Metro South Hospital and Health Service, Brisbane, QLD, Australia
- Faculty of Medicine, The University of Queensland, Brisbane, QLD, Australia
- Kidney Disease Research Collaborative, Translational Research Institute, Brisbane, QLD, Australia
| | - Robert J Ellis
- Princess Alexandra Hospital, Metro South Hospital and Health Service, Brisbane, QLD, Australia
- Faculty of Medicine, The University of Queensland, Brisbane, QLD, Australia
- Kidney Disease Research Collaborative, Translational Research Institute, Brisbane, QLD, Australia
- Kidney Health Service, Royal Brisbane and Women's Hospital, Brisbane, QLD, Australia
| |
Collapse
|
2
|
Gubala J, Mieville V, Benamran D, Tille JC, Valerio M, Nowak-Sliwinska P. Generation and maintenance of kidney and kidney cancer organoids from patient-derived material for drug development and precision oncology. Mol Ther Methods Clin Dev 2024; 32:101368. [PMID: 39659758 PMCID: PMC11629258 DOI: 10.1016/j.omtm.2024.101368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Accepted: 10/30/2024] [Indexed: 12/12/2024]
Abstract
Despite significant advancements in targeted- and immunotherapies, millions of patients with cancer still succumb to the disease each year. In renal cell carcinoma, up to 25% of metastatic patients do not respond to first-line therapies. This reality underscores the urgent need for innovative or repurposed therapies to effectively treat these patients. Patient-derived organoids represent a promising model for evaluating treatment efficacy and toxicity, offering a potential breakthrough in personalized medicine. However, utilizing organoid models for drug screening presents several challenges. Our protocol aims to address these obstacles by outlining a practical approach to successfully isolate and cultivate patient-derived renal cell carcinoma and kidney organoids for treatment screening purposes.
Collapse
Affiliation(s)
- Jakub Gubala
- Molecular Pharmacology Group, School of Pharmaceutical Sciences, University of Geneva, 1211 Geneva, Switzerland
- Institute of Pharmaceutical Sciences of Western Switzerland, University of Geneva, 1211 Geneva, Switzerland
- Translational Research Center in Oncohaematology, 1211 Geneva, Switzerland
| | - Valentin Mieville
- Molecular Pharmacology Group, School of Pharmaceutical Sciences, University of Geneva, 1211 Geneva, Switzerland
- Institute of Pharmaceutical Sciences of Western Switzerland, University of Geneva, 1211 Geneva, Switzerland
- Translational Research Center in Oncohaematology, 1211 Geneva, Switzerland
| | - Daniel Benamran
- Division of Urology, Geneva University Hospitals, Geneva, Switzerland
| | | | - Massimo Valerio
- Division of Urology, Geneva University Hospitals, Geneva, Switzerland
| | - Patrycja Nowak-Sliwinska
- Molecular Pharmacology Group, School of Pharmaceutical Sciences, University of Geneva, 1211 Geneva, Switzerland
- Institute of Pharmaceutical Sciences of Western Switzerland, University of Geneva, 1211 Geneva, Switzerland
- Translational Research Center in Oncohaematology, 1211 Geneva, Switzerland
| |
Collapse
|
3
|
Chen Q, Sun X, Li Y, Yang X, Yang X, Xu H, Cai H, Hu J. The potential of organoids in renal cell carcinoma research. BMC Urol 2024; 24:120. [PMID: 38858665 PMCID: PMC11165752 DOI: 10.1186/s12894-024-01511-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Accepted: 06/06/2024] [Indexed: 06/12/2024] Open
Abstract
Renal cell carcinoma, a leading cause of death in urological malignancies, arises from the nephron. Its characteristics include diversity in disease biology, varied clinical behaviors, different prognoses, and diverse responses to systemic therapies. The term 'organoids' is used to describe structures resembling tissues created through the three-dimensional cultivation of stem cells in vitro. These organoids, when derived from tumor tissues, can retain the diversity of the primary tumor, mirror its spatial tissue structure, and replicate similar organ-like functions. In contrast to conventional two-dimensional cell cultures and the transplantation of tumor tissues into other organisms, organoids derived from tumors maintain the complexity and microenvironment of the original tumor tissue. This fidelity makes them a more reliable model for the development of cancer drugs, potentially accelerating the translation of these drugs to clinical use and facilitating personalized treatment options for patients. This review aims to summarize the recent advancements in the use of organoids for studying renal cell carcinoma, focusing on their cultivation, potential applications, and inherent limitations.
Collapse
Affiliation(s)
- Qiuyang Chen
- Department of Urology, Jiangsu Cancer Hospital & The Affiliated Cancer Hospital of Nanjing Medical University & Jiangsu Institute of Cancer Research, Nanjing, China
- Department of Radiology, The Fourth School of Clinical Medicine, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Xuan Sun
- Department of Urology, Jiangsu Cancer Hospital & The Affiliated Cancer Hospital of Nanjing Medical University & Jiangsu Institute of Cancer Research, Nanjing, China
- Department of Radiology, The Fourth School of Clinical Medicine, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Yubei Li
- Department of Urology, Jiangsu Cancer Hospital & The Affiliated Cancer Hospital of Nanjing Medical University & Jiangsu Institute of Cancer Research, Nanjing, China
- Department of Radiology, The Fourth School of Clinical Medicine, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Xinyue Yang
- Department of Urology, Jiangsu Cancer Hospital & The Affiliated Cancer Hospital of Nanjing Medical University & Jiangsu Institute of Cancer Research, Nanjing, China
- Department of Radiology, The Fourth School of Clinical Medicine, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Xuejian Yang
- Department of Urology, Suqian First Hospital, Suqian, China
| | - Haifei Xu
- Department of Urology, Nantong Tumor Hospital, Nantong, China
| | - Hongzhou Cai
- Department of Urology, Jiangsu Cancer Hospital & The Affiliated Cancer Hospital of Nanjing Medical University & Jiangsu Institute of Cancer Research, Nanjing, China.
| | - Jun Hu
- Department of Nursing, Jiangsu Cancer Hospital & The Affiliated Cancer Hospital of Nanjing Medical University & Jiangsu Institute of Cancer Research, Nanjing, China.
| |
Collapse
|
4
|
Iacobas DA, Obiomon EA, Iacobas S. Genomic Fabrics of the Excretory System's Functional Pathways Remodeled in Clear Cell Renal Cell Carcinoma. Curr Issues Mol Biol 2023; 45:9471-9499. [PMID: 38132440 PMCID: PMC10742519 DOI: 10.3390/cimb45120594] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 11/18/2023] [Accepted: 11/21/2023] [Indexed: 12/23/2023] Open
Abstract
Clear cell renal cell carcinoma (ccRCC) is the most frequent form of kidney cancer. Metastatic stages of ccRCC reduce the five-year survival rate to 15%. In this report, we analyze the ccRCC-induced remodeling of the five KEGG-constructed excretory functional pathways in a surgically removed right kidney and its metastasis in the chest wall from the perspective of the Genomic Fabric Paradigm (GFP). The GFP characterizes every single gene in each region by these independent variables: the average expression level (AVE), relative expression variability (REV), and expression correlation (COR) with each other gene. While the traditional approach is limited to only AVE analysis, the novel REV analysis identifies the genes whose correct expression level is critical for cell survival and proliferation. The COR analysis determines the real gene networks responsible for functional pathways. The analyses covered the pathways for aldosterone-regulated sodium reabsorption, collecting duct acid secretion, endocrine and other factor-regulated sodium reabsorption, proximal tubule bicarbonate reclamation, and vasopressin-regulated water reabsorption. The present study confirms the conclusion of our previously published articles on prostate and kidney cancers that even equally graded cancer nodules from the same tumor have different transcriptomic topologies. Therefore, the personalization of anti-cancer therapy should go beyond the individual, to his/her major cancer nodules.
Collapse
Affiliation(s)
- Dumitru Andrei Iacobas
- Personalized Genomics Laboratory, Undergraduate Medical Academy, Prairie View A&M University, Prairie View, TX 77446, USA;
| | - Ehiguese Alade Obiomon
- Personalized Genomics Laboratory, Undergraduate Medical Academy, Prairie View A&M University, Prairie View, TX 77446, USA;
| | - Sanda Iacobas
- Department of Pathology, New York Medical College, Valhalla, NY 10595, USA;
| |
Collapse
|