1
|
Tian F, Zhu L, Shi Q, Wang R, Zhang L, Dong Q, Qian K, Zhao Q, Hu B. The Three-Lead EEG Sensor: Introducing an EEG-Assisted Depression Diagnosis System Based on Ant Lion Optimization. IEEE TRANSACTIONS ON BIOMEDICAL CIRCUITS AND SYSTEMS 2023; 17:1305-1318. [PMID: 37402182 DOI: 10.1109/tbcas.2023.3292237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/06/2023]
Abstract
For depression diagnosis, traditional methods such as interviews and clinical scales have been widely leveraged in the past few decades, but they are subjective, time-consuming, and labor-consuming. With the development of affective computing and Artificial Intelligence (AI) technologies, Electroencephalogram (EEG)-based depression detection methods have emerged. However, previous research has virtually neglected practical application scenarios, as most studies have focused on analyzing and modeling EEG data. Furthermore, EEG data is typically obtained from specialized devices that are large, complex to operate, and poorly ubiquitous. To address these challenges, a wearable three-lead EEG sensor with flexible electrodes was developed to obtain prefrontal-lobe EEG data. Experimental measurements show that the EEG sensor achieves promising performance (background noise of no more than 0.91 μVpp, Signal-to-Noise Ratio (SNR) of 26--48 dB, and electrode-skin contact impedance of less than 1 K Ω). In addition, EEG data from 70 depressed patients and 108 healthy controls were collected using the EEG sensor, and the linear and nonlinear features were extracted. The features were then weighted and selected using the Ant Lion Optimization (ALO) algorithm to improve classification performance. The experimental results show that the k-NN classifier achieves a classification accuracy of 90.70%, specificity of 96.53%, and sensitivity of 81.79%, indicating the promising potential of the three-lead EEG sensor combined with the ALO algorithm and the k-NN classifier for EEG-assisted depression diagnosis.
Collapse
|
2
|
Rai HM, Yoo J. A comprehensive analysis of recent advancements in cancer detection using machine learning and deep learning models for improved diagnostics. J Cancer Res Clin Oncol 2023; 149:14365-14408. [PMID: 37540254 DOI: 10.1007/s00432-023-05216-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Accepted: 07/26/2023] [Indexed: 08/05/2023]
Abstract
PURPOSE There are millions of people who lose their life due to several types of fatal diseases. Cancer is one of the most fatal diseases which may be due to obesity, alcohol consumption, infections, ultraviolet radiation, smoking, and unhealthy lifestyles. Cancer is abnormal and uncontrolled tissue growth inside the body which may be spread to other body parts other than where it has originated. Hence it is very much required to diagnose the cancer at an early stage to provide correct and timely treatment. Also, manual diagnosis and diagnostic error may cause of the death of many patients hence much research are going on for the automatic and accurate detection of cancer at early stage. METHODS In this paper, we have done the comparative analysis of the diagnosis and recent advancement for the detection of various cancer types using traditional machine learning (ML) and deep learning (DL) models. In this study, we have included four types of cancers, brain, lung, skin, and breast and their detection using ML and DL techniques. In extensive review we have included a total of 130 pieces of literature among which 56 are of ML-based and 74 are from DL-based cancer detection techniques. Only the peer reviewed research papers published in the recent 5-year span (2018-2023) have been included for the analysis based on the parameters, year of publication, feature utilized, best model, dataset/images utilized, and best accuracy. We have reviewed ML and DL-based techniques for cancer detection separately and included accuracy as the performance evaluation metrics to maintain the homogeneity while verifying the classifier efficiency. RESULTS Among all the reviewed literatures, DL techniques achieved the highest accuracy of 100%, while ML techniques achieved 99.89%. The lowest accuracy achieved using DL and ML approaches were 70% and 75.48%, respectively. The difference in accuracy between the highest and lowest performing models is about 28.8% for skin cancer detection. In addition, the key findings, and challenges for each type of cancer detection using ML and DL techniques have been presented. The comparative analysis between the best performing and worst performing models, along with overall key findings and challenges, has been provided for future research purposes. Although the analysis is based on accuracy as the performance metric and various parameters, the results demonstrate a significant scope for improvement in classification efficiency. CONCLUSION The paper concludes that both ML and DL techniques hold promise in the early detection of various cancer types. However, the study identifies specific challenges that need to be addressed for the widespread implementation of these techniques in clinical settings. The presented results offer valuable guidance for future research in cancer detection, emphasizing the need for continued advancements in ML and DL-based approaches to improve diagnostic accuracy and ultimately save more lives.
Collapse
Affiliation(s)
- Hari Mohan Rai
- School of Computing, Gachon University, 1342 Seongnam-daero, Sujeong-gu, Seongnam-si, 13120, Gyeonggi-do, Republic of Korea.
| | - Joon Yoo
- School of Computing, Gachon University, 1342 Seongnam-daero, Sujeong-gu, Seongnam-si, 13120, Gyeonggi-do, Republic of Korea
| |
Collapse
|
3
|
Alhudhaif A. A non-linear optimization based robust attribute weighting model for the two-class classification problems. PeerJ Comput Sci 2023; 9:e1598. [PMID: 37810341 PMCID: PMC10557515 DOI: 10.7717/peerj-cs.1598] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Accepted: 08/28/2023] [Indexed: 10/10/2023]
Abstract
Background This article aims to determine the coefficients that will reduce the in-class distance and increase the distance between the classes, collecting the data around the cluster centers with meta-heuristic optimization algorithms, thus increasing the classification performance. Methods The proposed mathematical model is based on simple mathematical calculations, and this model is the fitness function of optimization algorithms. Compared to the methods in the literature, optimizing algorithms to obtain fast results is more accessible. Determining the weights by optimization provides more sensitive results than the dataset structure. In the study, the proposed model was used as the fitness function of the metaheuristic optimization algorithms to determine the weighting coefficients. In this context, four different structures were used to test the independence of the results obtained from the algorithm: the particle swarm algorithm (PSO), the bat algorithm (BAT), the gravitational search algorithm (GSA), and the flower pollination algorithm (FPA). Results As a result of these processes, a control group from unweighted attributes and four experimental groups from weighted attributes were obtained for each dataset. The classification performance of all datasets to which the weights obtained by the proposed method were applied increased. 100% accuracy rates were obtained in the Iris and Liver Disorders datasets used in the study. From synthetic datasets, from 66.9% (SVM classifier) to 96.4% (GSA Weighting + SVM) in the Full Chain dataset, from 64.6% (LDA classifier) to 80.2% in the Two Spiral datasets (weighted by BA + LDA). As a result of the study, it was seen that the proposed method successfully fulfills the task of moving the attributes to a linear plane in the datasets, especially in classifiers such as SVM and LDA, which have difficulties in non-linear problems, an accuracy rate of 100% was achieved.
Collapse
Affiliation(s)
- Adi Alhudhaif
- Department of Computer Science, College of Computer Engineering and Sciences in Al-kharj, Prince Sattam bin Abdulaziz University, Al-kharj, Saudi Arabia
| |
Collapse
|
4
|
Alsalatie M, Alquran H, Mustafa WA, Zyout A, Alqudah AM, Kaifi R, Qudsieh S. A New Weighted Deep Learning Feature Using Particle Swarm and Ant Lion Optimization for Cervical Cancer Diagnosis on Pap Smear Images. Diagnostics (Basel) 2023; 13:2762. [PMID: 37685299 PMCID: PMC10487265 DOI: 10.3390/diagnostics13172762] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 08/17/2023] [Accepted: 08/22/2023] [Indexed: 09/10/2023] Open
Abstract
One of the most widespread health issues affecting women is cervical cancer. Early detection of cervical cancer through improved screening strategies will reduce cervical cancer-related morbidity and mortality rates worldwide. Using a Pap smear image is a novel method for detecting cervical cancer. Previous studies have focused on whole Pap smear images or extracted nuclei to detect cervical cancer. In this paper, we compared three scenarios of the entire cell, cytoplasm region, or nucleus region only into seven classes of cervical cancer. After applying image augmentation to solve imbalanced data problems, automated features are extracted using three pre-trained convolutional neural networks: AlexNet, DarkNet 19, and NasNet. There are twenty-one features as a result of these scenario combinations. The most important features are split into ten features by the principal component analysis, which reduces the dimensionality. This study employs feature weighting to create an efficient computer-aided cervical cancer diagnosis system. The optimization procedure uses the new evolutionary algorithms known as Ant lion optimization (ALO) and particle swarm optimization (PSO). Finally, two types of machine learning algorithms, support vector machine classifier, and random forest classifier, have been used in this paper to perform classification jobs. With a 99.5% accuracy rate for seven classes using the PSO algorithm, the SVM classifier outperformed the RF, which had a 98.9% accuracy rate in the same region. Our outcome is superior to other studies that used seven classes because of this focus on the tissues rather than just the nucleus. This method will aid physicians in diagnosing precancerous and early-stage cervical cancer by depending on the tissues, rather than on the nucleus. The result can be enhanced using a significant amount of data.
Collapse
Affiliation(s)
- Mohammed Alsalatie
- King Hussein Medical Center, Royal Jordanian Medical Service, The Institute of Biomedical Technology, Amman 11855, Jordan;
| | - Hiam Alquran
- Department of Biomedical Systems and Informatics Engineering, Yarmouk University, Irbid 21163, Jordan; (A.Z.); (A.M.A.)
| | - Wan Azani Mustafa
- Faculty of Electrical Engineering & Technology, Campus Pauh Putra, Universiti Malaysia Perlis, Arau 02600, Malaysia
- Advanced Computing (AdvCOMP), Centre of Excellence (CoE), Universiti Malaysia Perlis, Arau 02600, Malaysia
| | - Ala’a Zyout
- Department of Biomedical Systems and Informatics Engineering, Yarmouk University, Irbid 21163, Jordan; (A.Z.); (A.M.A.)
| | - Ali Mohammad Alqudah
- Department of Biomedical Systems and Informatics Engineering, Yarmouk University, Irbid 21163, Jordan; (A.Z.); (A.M.A.)
| | - Reham Kaifi
- College of Applied Medical Sciences, King Saud Bin Abdulaziz University for Health Sciences, Jeddah 21423, Saudi Arabia
- King Abdullah International Medical Research Center, Jeddah 22384, Saudi Arabia
| | - Suhair Qudsieh
- Department of Obstetrics and Gynecology, Faculty of Medicine, Yarmouk University, Irbid 21163, Jordan;
| |
Collapse
|
5
|
Rai HM. Cancer detection and segmentation using machine learning and deep learning techniques: a review. MULTIMEDIA TOOLS AND APPLICATIONS 2023. [DOI: 10.1007/s11042-023-16520-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2022] [Revised: 05/12/2023] [Accepted: 08/13/2023] [Indexed: 09/16/2023]
|
6
|
An ensemble algorithm using quantum evolutionary optimization of weighted type-II fuzzy system and staged Pegasos Quantum Support Vector Classifier with multi-criteria decision making system for diagnosis and grading of breast cancer. Soft comput 2023. [DOI: 10.1007/s00500-023-07939-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/20/2023]
|
7
|
Hybrid Multilevel Thresholding Image Segmentation Approach for Brain MRI. Diagnostics (Basel) 2023; 13:diagnostics13050925. [PMID: 36900074 PMCID: PMC10000536 DOI: 10.3390/diagnostics13050925] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 02/17/2023] [Accepted: 02/21/2023] [Indexed: 03/06/2023] Open
Abstract
A brain tumor is an abnormal growth of tissues inside the skull that can interfere with the normal functioning of the neurological system and the body, and it is responsible for the deaths of many individuals every year. Magnetic Resonance Imaging (MRI) techniques are widely used for detection of brain cancers. Segmentation of brain MRI is a foundational process with numerous clinical applications in neurology, including quantitative analysis, operational planning, and functional imaging. The segmentation process classifies the pixel values of the image into different groups based on the intensity levels of the pixels and a selected threshold value. The quality of the medical image segmentation extensively depends on the method which selects the threshold values of the image for the segmentation process. The traditional multilevel thresholding methods are computationally expensive since these methods thoroughly search for the best threshold values to maximize the accuracy of the segmentation process. Metaheuristic optimization algorithms are widely used for solving such problems. However, these algorithms suffer from the problem of local optima stagnation and slow convergence speed. In this work, the original Bald Eagle Search (BES) algorithm problems are resolved in the proposed Dynamic Opposite Bald Eagle Search (DOBES) algorithm by employing Dynamic Opposition Learning (DOL) at the initial, as well as exploitation, phases. Using the DOBES algorithm, a hybrid multilevel thresholding image segmentation approach has been developed for MRI image segmentation. The hybrid approach is divided into two phases. In the first phase, the proposed DOBES optimization algorithm is used for the multilevel thresholding. After the selection of the thresholds for the image segmentation, the morphological operations have been utilized in the second phase to remove the unwanted area present in the segmented image. The performance efficiency of the proposed DOBES based multilevel thresholding algorithm with respect to BES has been verified using the five benchmark images. The proposed DOBES based multilevel thresholding algorithm attains higher Peak Signal-to-Noise ratio (PSNR) and Structured Similarity Index Measure (SSIM) value in comparison to the BES algorithm for the benchmark images. Additionally, the proposed hybrid multilevel thresholding segmentation approach has been compared with the existing segmentation algorithms to validate its significance. The results show that the proposed algorithm performs better for tumor segmentation in MRI images as the SSIM value attained using the proposed hybrid segmentation approach is nearer to 1 when compared with ground truth images.
Collapse
|
8
|
Dehdar S, Salimifard K, Mohammadi R, Marzban M, Saadatmand S, Fararouei M, Dianati-Nasab M. Applications of different machine learning approaches in prediction of breast cancer diagnosis delay. Front Oncol 2023; 13:1103369. [PMID: 36874113 PMCID: PMC9978377 DOI: 10.3389/fonc.2023.1103369] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2022] [Accepted: 01/30/2023] [Indexed: 02/18/2023] Open
Abstract
Background The increasing rate of breast cancer (BC) incidence and mortality in Iran has turned this disease into a challenge. A delay in diagnosis leads to more advanced stages of BC and a lower chance of survival, which makes this cancer even more fatal. Objectives The present study was aimed at identifying the predicting factors for delayed BC diagnosis in women in Iran. Methods In this study, four machine learning methods, including extreme gradient boosting (XGBoost), random forest (RF), neural networks (NNs), and logistic regression (LR), were applied to analyze the data of 630 women with confirmed BC. Also, different statistical methods, including chi-square, p-value, sensitivity, specificity, accuracy, and area under the receiver operating characteristic curve (AUC), were utilized in different steps of the survey. Results Thirty percent of patients had a delayed BC diagnosis. Of all the patients with delayed diagnoses, 88.5% were married, 72.1% had an urban residency, and 84.8% had health insurance. The top three important factors in the RF model were urban residency (12.04), breast disease history (11.58), and other comorbidities (10.72). In the XGBoost, urban residency (17.54), having other comorbidities (17.14), and age at first childbirth (>30) (13.13) were the top factors; in the LR model, having other comorbidities (49.41), older age at first childbirth (82.57), and being nulliparous (44.19) were the top factors. Finally, in the NN, it was found that being married (50.05), having a marriage age above 30 (18.03), and having other breast disease history (15.83) were the main predicting factors for a delayed BC diagnosis. Conclusion Machine learning techniques suggest that women with an urban residency who got married or had their first child at an age older than 30 and those without children are at a higher risk of diagnosis delay. It is necessary to educate them about BC risk factors, symptoms, and self-breast examination to shorten the delay in diagnosis.
Collapse
Affiliation(s)
- Samira Dehdar
- Computational Intelligence & Intelligent Optimization Research Group, Business and Economic School, Persian Gulf University, Bushehr, Iran
| | - Khodakaram Salimifard
- Computational Intelligence & Intelligent Optimization Research Group, Business and Economic School, Persian Gulf University, Bushehr, Iran
| | - Reza Mohammadi
- Business Analytics Section, Amsterdam Business School, University of Amsterdam, Amsterdam, Netherlands
| | - Maryam Marzban
- Department of Public Health, School of Public Health, Bushehr University of Medical Science, Bushehr, Iran
| | - Sara Saadatmand
- Computational Intelligence & Intelligent Optimization Research Group, Business and Economic School, Persian Gulf University, Bushehr, Iran
| | - Mohammad Fararouei
- Department of Epidemiology, School of Public Health, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mostafa Dianati-Nasab
- Department of Complex Genetics and Epidemiology, School of Nutrition and Translational Research in Metabolism, Maastricht University, Maastricht, Netherlands
| |
Collapse
|
9
|
Kaur S, Kumar Y, Koul A, Kumar Kamboj S. A Systematic Review on Metaheuristic Optimization Techniques for Feature Selections in Disease Diagnosis: Open Issues and Challenges. ARCHIVES OF COMPUTATIONAL METHODS IN ENGINEERING : STATE OF THE ART REVIEWS 2022; 30:1863-1895. [PMID: 36465712 PMCID: PMC9702927 DOI: 10.1007/s11831-022-09853-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/28/2022] [Accepted: 11/15/2022] [Indexed: 06/17/2023]
Abstract
There is a need for some techniques to solve various problems in today's computing world. Metaheuristic algorithms are one of the techniques which are capable of providing practical solutions to such issues. Due to their efficiency, metaheuristic algorithms are now used in healthcare data to diagnose diseases practically and with better results than traditional methods. In this study, an efficient search has been performed where 173 papers from different research databases such as Scopus, Web of Science, PubMed, PsycINFO, and others have been considered impactful in diagnosing the diseases using metaheuristic techniques. Ten metaheuristic techniques have been studied, which include spider monkey, shuffled frog leaping algorithm, cuckoo search algorithm, ant lion technique of optimization, lion optimization technique, moth flame technique, bat-inspired algorithm, grey wolf algorithm, whale optimization, and dragonfly technique of optimization for selecting and optimizing the features to predict heart disease, Alzheimer's disease, brain disorder, diabetes, chronic disease features, liver disease, covid-19, etc. Besides, the framework has also been shown to provide information on various phases behind the execution of metaheuristic techniques to predict diseases. The study's primary goal is to present the contribution of the researchers by demonstrating their methodology to predict diseases using the metaheuristic techniques mentioned above. Later, their work has also been compared and evaluated using accuracy, precision, F1 score, error rate, sensitivity, specificity, an area under a curve, etc., to help the researchers to choose the right field and methods for predicting the diseases in the future.
Collapse
Affiliation(s)
- Sukhpreet Kaur
- Department of Computer Science and Engineering, CGC Landran, Mohali, India
| | - Yogesh Kumar
- Department of Computer Science and Engineering, School of Technology, Pandit Deendayal Energy University, Gandhinagar, Gujarat India
| | - Apeksha Koul
- Department of Computer Science and Engineering, Punjabi University, Patiala, India
| | | |
Collapse
|
10
|
An ensemble algorithm integrating consensus-clustering with feature weighting based ranking and probabilistic fuzzy logic-multilayer perceptron classifier for diagnosis and staging of breast cancer using heterogeneous datasets. APPL INTELL 2022. [DOI: 10.1007/s10489-022-04157-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
|
11
|
Predicting Breast Cancer from Risk Factors Using SVM and Extra-Trees-Based Feature Selection Method. COMPUTERS 2022. [DOI: 10.3390/computers11090136] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Developing a prediction model from risk factors can provide an efficient method to recognize breast cancer. Machine learning (ML) algorithms have been applied to increase the efficiency of diagnosis at the early stage. This paper studies a support vector machine (SVM) combined with an extremely randomized trees classifier (extra-trees) to provide a diagnosis of breast cancer at the early stage based on risk factors. The extra-trees classifier was used to remove irrelevant features, while SVM was utilized to diagnose the breast cancer status. A breast cancer dataset consisting of 116 subjects was utilized by machine learning models to predict breast cancer, while the stratified 10-fold cross-validation was employed for the model evaluation. Our proposed combined SVM and extra-trees model reached the highest accuracy up to 80.23%, which was significantly better than the other ML model. The experimental results demonstrated that by applying extra-trees-based feature selection, the average ML prediction accuracy was improved by up to 7.29% as contrasted to ML without the feature selection method. Our proposed model is expected to increase the efficiency of breast cancer diagnosis based on risk factors. In addition, we presented the proposed prediction model that could be employed for web-based breast cancer prediction. The proposed model is expected to improve diagnostic decision-support systems by predicting breast cancer disease accurately.
Collapse
|
12
|
Thawkar S. Feature selection and classification in mammography using hybrid crow search algorithm with Harris hawks optimization. Biocybern Biomed Eng 2022. [DOI: 10.1016/j.bbe.2022.09.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
|
13
|
Morteza Ghazali S, Alizadeh M, Mazloum J, Baleghi Y. Modified binary salp swarm algorithm in EEG signal classification for epilepsy seizure detection. Biomed Signal Process Control 2022. [DOI: 10.1016/j.bspc.2022.103858] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
|
14
|
Pathak VK, Gangwar S, Singh R, Srivastava AK, Dikshit M. A comprehensive survey on the ant lion optimiser, variants and applications. J EXP THEOR ARTIF IN 2022. [DOI: 10.1080/0952813x.2022.2093409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Affiliation(s)
- Vimal Kumar Pathak
- Department of Mechanical Engineering, Manipal University Jaipur, Jaipur, India
| | - Swati Gangwar
- Department of Mechanical Engineering, Netaji Subhash University of Technology, Dwarka, India
| | - Ramanpreet Singh
- Department of Mechanical Engineering, Manipal University Jaipur, Jaipur, India
| | | | - Mithilesh Dikshit
- Department of Mechanical Engineering, Institute of Infrastructure, Technology, Research and Management (IITRAM) Ahmedabad, Ahmedabad, India
| |
Collapse
|
15
|
Classification of breast cancer from histopathology images using an ensemble of deep multiscale networks. Biocybern Biomed Eng 2022. [DOI: 10.1016/j.bbe.2022.07.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
16
|
Singh D, Singh B. Sensitivity analysis of feature weighting for classification. Pattern Anal Appl 2022. [DOI: 10.1007/s10044-022-01077-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
17
|
Punitha S, Stephan T, Gandomi AH. A Novel Breast Cancer Diagnosis Scheme With Intelligent Feature and Parameter Selections. COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE 2022; 214:106432. [PMID: 34844767 DOI: 10.1016/j.cmpb.2021.106432] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Accepted: 09/15/2021] [Indexed: 06/13/2023]
Abstract
BACKGROUND AND OBJECTIVE Breast cancer is the most commonly occurring cancer among women, which contributes to the global death rate. The key to increasing the survival rate of affected patients is early diagnosis along with appropriate treatments. Manual methods for breast cancer diagnosis fail due to human errors, inaccurate diagnoses, and are time-consuming when demands are high. Intelligent systems based on Artificial Neural Network (ANN) for automated breast cancer diagnosis are powerful due to their strong decision-making capabilities in complicated cases. Artificial Bee Colony, Artificial Immune System, and Bacterial Foraging Optimization are swarm intelligence algorithms that solve combinatorial optimization problems. This paper proposes two novel hybrid Artificial Bee Colony (ABC) optimization algorithms that overcome the demerits of standard ABC algorithms. First, this paper proposes a hybrid ABC approach called HABC, in which the standard ABC optimization is hybridized with a modified clonal selection algorithm of the Artificial Immune System that eliminates the poor exploration capabilities of standard ABC optimization. Further, this paper proposes a novel hybrid Artificial Bee Colony (Hybrid ABC) optimization where the strong explorative capabilities of the chemotaxis phase of the bacterial foraging optimization are integrated with a spiral model-based exploitative phase of the ABC by which the proposed Hybrid ABC overcomes the demerits of poor exploration and exploitation of the standard ABC algorithm. METHODS In this work, the two proposed hybrid approaches were used in concurrent feature selection and parameter optimization of an ANN model. The proposed algorithm is implemented using various back-propagation algorithms, including resilient back-propagation (HABC-RP and Hybrid ABC-RP), Levenberg Marquart (HABC-LM and Hybrid ABC-LM), and momentum-based gradient descent (HABC-MGD and Hybrid ABC-GD) for parameter tuning of ANN. The Wisconsin breast cancer dataset was used to evaluate the performance of the proposed algorithms in terms of accuracy, complexity, and computational time. RESULTS The mean accuracy of the proposed HABC-RP was 99.14% and 99.54% for Hybrid ABC which is better than the results found in the existing literature. HABC-RP attained a sensitivity of 98.32%, a specificity of 99.63%, and a precision of 99.38% whereas Hybrid ABC attained sensitivity of 99.08% and Specificity of 99.81%. CONCLUSIONS HABC-RP and Hybrid ABC-RP yielded high accuracy with a low complexity ANN structure compared to other variants. After evaluation, interestingly it is found that the Hybrid ABC-RP has achieved the highest mean accuracy of 99.54% with low complexity of 10.25 mean connections when compared to other variants proposed in this paper. It can be concluded that the concurrent selection of input features and tuning of parameters of ANN plays a vital role in increasing the accuracy of a breast cancer diagnosis. The proposed HABC-RP and Hybrid ABC-RP showed better results when compared to the existing breast cancer diagnosis systems taken for comparison. In the future, the proposed two-hybrid approaches can be used to generate optimal thresholds for the segmentation of tumors in abnormal images. HABC and Hybrid ABC can be used for tuning the parameters of various classifiers.
Collapse
Affiliation(s)
- S Punitha
- Department of Computer Science Engineering, Karunya Insitute of Technology and Sciences, Tamilnadu, India
| | - Thompson Stephan
- Department of Computer Science Engineering, Faculty of Engineering and Technology, M. S. Ramaiah University of Applied Sciences, Bengaluru, India
| | - Amir H Gandomi
- Faculty of Engineering and Information Technology, University of Technology Sydney, Australia.
| |
Collapse
|
18
|
Jiang F, Zhu Q, Tian T. Breast Cancer Detection Based on Modified Harris Hawks Optimization and Extreme Learning Machine Embedded with Feature Weighting. Neural Process Lett 2022. [DOI: 10.1007/s11063-021-10700-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
19
|
Alshayeji MH, Ellethy H, Abed S, Gupta R. Computer-aided detection of breast cancer on the Wisconsin dataset: An artificial neural networks approach. Biomed Signal Process Control 2022. [DOI: 10.1016/j.bspc.2021.103141] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
20
|
Diaz PM, Jiju JE. Feature Selection and Feature Weighting Using Tunicate Swarm Genetic Optimization Algorithm With Deep Residual Networks. INTERNATIONAL JOURNAL OF SWARM INTELLIGENCE RESEARCH 2022. [DOI: 10.4018/ijsir.309939] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Feature selection (FS) method is applied for extracting only the relevant information from the dataset. FS seemed to be an optimization concept because appropriate feature selection is the significant role of any classification problem. Similarly, feature weighting is employed to enhance the classification performance along with FS process. In this paper, feature selection and feature weighting has been performed by integrated an optimization algorithm called tunicate swarm genetic algorithm (TSGA) with deep residual network (DRN). TSGA is the combination of tunicate swarm algorithm (TSA) and genetic algorithm (GA) incorporated to increase the performance of the classifier. This wrapper method-based feature selection and feature weighting techniques are performed to reduce the computation time as well as complexity. The effectiveness of the proposed method is estimated and compared with different methods such as TSA, CS-GA, and PSO-GA. The performance of DRN classifier is also validated and compared to existing classifiers like KNN, C4.5, and RF.
Collapse
Affiliation(s)
- P. M. Diaz
- Dedicated Juncture Researcher's Association, India
| | | |
Collapse
|
21
|
Thawkar S, Sharma S, Khanna M, Singh LK. Breast cancer prediction using a hybrid method based on Butterfly Optimization Algorithm and Ant Lion Optimizer. Comput Biol Med 2021; 139:104968. [PMID: 34735947 DOI: 10.1016/j.compbiomed.2021.104968] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2021] [Revised: 10/20/2021] [Accepted: 10/20/2021] [Indexed: 10/20/2022]
Abstract
The design and development of a computer-based system for breast cancer detection are largely reliant on feature selection techniques. These techniques are used to reduce the dimensionality of the feature space by removing irrelevant or redundant features from the original set. This article presents a hybrid feature selection method that is based on the Butterfly optimization algorithm (BOA) and the Ant Lion optimizer (ALO) to form a hybrid BOAALO method. The optimal subset of features chosen by BOAALO is utilized to predict the benign or malignant status of breast tissue using three classifiers: artificial neural network, adaptive neuro-fuzzy inference system, and support vector machine. The goodness of the proposed method is tested using 651 mammogram images. The results show that BOAALO outperforms the original BOA and ALO in terms of accuracy, sensitivity, specificity, kappa value, type-I, and type-II error as well as the receiver operating characteristics curve. Additionally, the suggested method's robustness is assessed and compared to five well-known methods using a benchmark dataset. The experimental findings demonstrate that BOAALO achieves a high degree of accuracy with a minimum number of features. These results support the suggested method's applicability for breast cancer diagnosis.
Collapse
Affiliation(s)
- Shankar Thawkar
- Department of Information Technology, Hindustan College of Science and Technology, Mathura, Uttar Pradesh, India.
| | - Satish Sharma
- Department of Electronics and Computer Science, R. T. M. Nagpur University, Nagpur, Maharashtra, India
| | - Munish Khanna
- Department of Computer Science and Engineering, Hindustan College of Science and Technology, Mathura, Uttar Pradesh, India
| | - Law Kumar Singh
- Department of Computer Science and Engineering, Hindustan College of Science and Technology, Mathura, Uttar Pradesh, India
| |
Collapse
|
22
|
Fundamentals of artificial metaplasticity in radial basis function networks for breast cancer classification. Neural Comput Appl 2021. [DOI: 10.1007/s00521-021-05938-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
23
|
P PK, V MAB, Nair GG. An efficient classification framework for breast cancer using hyper parameter tuned Random Decision Forest Classifier and Bayesian Optimization. Biomed Signal Process Control 2021. [DOI: 10.1016/j.bspc.2021.102682] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
24
|
Stephan P, Stephan T, Kannan R, Abraham A. A hybrid artificial bee colony with whale optimization algorithm for improved breast cancer diagnosis. Neural Comput Appl 2021. [DOI: 10.1007/s00521-021-05997-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
25
|
Abstract
Ovarian cancer (OC) is a common reason for mortality among women. Deep learning has recently proven better performance in predicting OC stages and subtypes. However, most of the state-of-the-art deep learning models employ single modality data, which may afford low-level performance due to insufficient representation of important OC characteristics. Furthermore, these deep learning models still lack to the optimization of the model construction, which requires high computational cost to train and deploy them. In this work, a hybrid evolutionary deep learning model, using multi-modal data, is proposed. The established multi-modal fusion framework amalgamates gene modality alongside with histopathological image modality. Based on the different states and forms of each modality, we set up deep feature extraction network, respectively. This includes a predictive antlion-optimized long-short-term-memory model to process gene longitudinal data. Another predictive antlion-optimized convolutional neural network model is included to process histopathology images. The topology of each customized feature network is automatically set by the antlion optimization algorithm to make it realize better performance. After that the output from the two improved networks is fused based upon weighted linear aggregation. The deep fused features are finally used to predict OC stage. A number of assessment indicators was used to compare the proposed model to other nine multi-modal fusion models constructed using distinct evolutionary algorithms. This was conducted using a benchmark for OC and two benchmarks for breast and lung cancers. The results reveal that the proposed model is more precise and accurate in diagnosing OC and the other cancers.
Collapse
|
26
|
Two-stage multi-scale breast mass segmentation for full mammogram analysis without user intervention. Biocybern Biomed Eng 2021. [DOI: 10.1016/j.bbe.2021.03.005] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
27
|
Mathew T, Kini JR, Rajan J. Computational methods for automated mitosis detection in histopathology images: A review. Biocybern Biomed Eng 2021. [DOI: 10.1016/j.bbe.2020.11.005] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
28
|
Training Feed-Forward Multi-Layer Perceptron Artificial Neural Networks with a Tree-Seed Algorithm. ARABIAN JOURNAL FOR SCIENCE AND ENGINEERING 2020. [DOI: 10.1007/s13369-020-04872-1] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
29
|
Yavuz E, Eyupoglu C. An effective approach for breast cancer diagnosis based on routine blood analysis features. Med Biol Eng Comput 2020; 58:1583-1601. [PMID: 32436139 DOI: 10.1007/s11517-020-02187-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2019] [Accepted: 05/01/2020] [Indexed: 12/24/2022]
Abstract
Breast cancer is a widespread disease and one of the primary causes of cancer mortality among women all over the world. Computer-aided methods are used to assist medical doctors to make early diagnosis of the disease. The aim of this study is to build an effective prediction model for breast cancer diagnosis based on anthropometric data and parameters collected through routine blood analysis. The proposed approach innovatively exploits principal component analysis (PCA) technique cascaded by median filtering so as to transform original features into a form of containing less distractive noise not to cause overfitting. Since a generalized regression neural network (GRNN) model is adopted to classify patterns of the transformed features, the computational load imposed in the training of artificial neural network model is kept minimized thanks to the non-iterative nature of GRNN training. The proposed method has been devised and tested on the recent Breast Cancer Coimbra Dataset (BCCD) that contains 9 clinical features measured for each of 116 subjects. Outperforming all of the existing studies on BCCD, our method achieved a mean accuracy rate of 0.9773. Experimental results evidence that this study achieves the best prediction performance ever reported on this dataset. The fact that our proposed approach has accomplished such a boosted performance of breast cancer diagnosis based on routine blood analysis features offers a great potential to be used in a widespread manner to detect the disease in its inception phase. Graphical abstract.
Collapse
Affiliation(s)
- Erdem Yavuz
- Department of Computer Engineering, Faculty of Engineering and Natural Sciences, Bursa Technical University, Yildirim, Bursa, Turkey.
| | - Can Eyupoglu
- Department of Computer Engineering, Air Force Academy, National Defence University, Yesilyurt, Istanbul, Turkey
| |
Collapse
|