1
|
Xie Z, Han J, Ji N, Xu L, Ma J. RFImageNet framework for segmentation of ultrasound images with spectra-augmented radiofrequency signals. ULTRASONICS 2025; 146:107498. [PMID: 39486316 DOI: 10.1016/j.ultras.2024.107498] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 10/16/2024] [Accepted: 10/21/2024] [Indexed: 11/04/2024]
Abstract
Computer-aided segmentation of medical ultrasound images assists in medical diagnosis, promoting accuracy and reducing the burden of sonographers. However, the existing ultrasonic intelligent segmentation models are mainly based on B-mode grayscale images, which lack sufficient clarity and contrast compared to natural images. Previous research has indicated that ultrasound radiofrequency (RF) signals contain rich spectral information that could be beneficial for tissue recognition but is lost in grayscale images. In this paper, we introduce an image segmentation framework, RFImageNet, that leverages spectral and amplitude information from RF signals to segment ultrasound image. Firstly, the positive and negative values in the RF signal are separated into the red and green channels respectively in the proposed RF image, ensuring the preservation of frequency information. Secondly, we developed a deep learning model, RFNet, tailored to the specific input image size requirements. Thirdly, RFNet was trained using RF images with spectral data augmentation and tested against other models. The proposed method achieved a mean intersection over union (mIoU) of 54.99% and a dice score of 63.89% in the segmentation of rat abdominal tissues, as well as a mIoU of 63.28% and a dice score of 68.92% in distinguishing between benign and malignant breast tumors. These results highlight the potential of combining RF signals with deep learning algorithms for enhanced diagnostic capabilities.
Collapse
Affiliation(s)
- Zhun Xie
- School of Instrumentation and Optoelectronic Engineering, Beihang University, Beijing, 100191, China
| | - Jiaqi Han
- School of Instrumentation and Optoelectronic Engineering, Beihang University, Beijing, 100191, China
| | - Nan Ji
- Beijing Tiantan Hospital, Capital Medical University, Beijing, 100070, China
| | - Lijun Xu
- School of Instrumentation and Optoelectronic Engineering, Beihang University, Beijing, 100191, China
| | - Jianguo Ma
- School of Instrumentation and Optoelectronic Engineering, Beihang University, Beijing, 100191, China.
| |
Collapse
|
2
|
Arab M, Fallah A, Rashidi S, Dastjerdi MM, Ahmadinejad N. Computer-Aided Classification of Breast Lesions Based on US RF Time Series Using a Novel Machine Learning Approach. JOURNAL OF ULTRASOUND IN MEDICINE : OFFICIAL JOURNAL OF THE AMERICAN INSTITUTE OF ULTRASOUND IN MEDICINE 2024; 43:2129-2145. [PMID: 39140240 DOI: 10.1002/jum.16542] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Revised: 06/25/2024] [Accepted: 07/21/2024] [Indexed: 08/15/2024]
Abstract
OBJECTIVES One of the most promising adjuncts for screening breast cancer is ultrasound (US) radio-frequency (RF) time series. It has the superiority of not requiring any supplementary equipment over other methods. This research aimed to propound a machine learning (ML) approach for automatically classifying benign, probably benign, suspicious, and malignant breast lesions based on the features extracted from the accumulated US RF time series. METHODS In this article, 220 data of the aforementioned categories, recorded from 118 patients, were analyzed. The dataset, named RFTSBU, was registered by a SuperSonic Imagine Aixplorer medical/research system equipped with a linear transducer. The regions of interest (ROIs) of the B-mode images were manually selected by an expert radiologist before computing the suggested features. Regarding time, frequency, and time-frequency domains, 291 various features were extracted from each ROI. Finally, the features were classified by a pioneering technique named the reference classification method (RCM). Furthermore, the Lee filter was applied to evaluate the effectiveness of reducing speckle noise on the outcomes. RESULTS The accuracy of two-class, three-class, and four-class classifications were respectively calculated 98.59 ± 0.71%, 98.13 ± 0.69%, and 96.10 ± 0.66% (considering 10 repetitions) while support vector machine (SVM) and K-nearest neighbor (KNN) classifiers with 5-fold cross-validation were utilized. CONCLUSIONS This article represented the proposed approach, named CCRFML, to distinguish between breast lesions based on registered in vivo RF time series employing an ML framework. The proposed method's impressive level of classification accuracy attests to its capability of effectively assisting medical professionals in the noninvasive differentiation of breast lesions.
Collapse
Affiliation(s)
- Mahsa Arab
- Faculty of Biomedical Engineering, Amirkabir University of Technology, Tehran, Iran
| | - Ali Fallah
- Faculty of Biomedical Engineering, Amirkabir University of Technology, Tehran, Iran
| | - Saeid Rashidi
- Faculty of Medical Sciences & Technologies, Science & Research Branch, Islamic Azad University, Tehran, Iran
| | | | - Nasrin Ahmadinejad
- Radiology-Medical Imaging Center, Cancer Research Institute, Imam Khomeini Hospital Advanced Diagnostic and Interventional Radiology Research Center (ADIR), Tehran University of Medical Sciences (TUMS), Tehran, Iran
| |
Collapse
|
3
|
Norouzi Ghehi E, Fallah A, Rashidi S, Mehdizadeh Dastjerdi M. Evaluating the effect of tissue stimulation at different frequencies on breast lesion classification based on nonlinear features using a novel radio frequency time series approach. Heliyon 2024; 10:e33133. [PMID: 39027586 PMCID: PMC11255572 DOI: 10.1016/j.heliyon.2024.e33133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 06/13/2024] [Accepted: 06/14/2024] [Indexed: 07/20/2024] Open
Abstract
Objective Radio Frequency Time Series (RF TS) is a cutting-edge ultrasound approach in tissue typing. The RF TS does not provide dynamic insights into the propagation medium; when the tissue and probe are fixed. We previously proposed the innovative RFTSDP method in which the RF data are recorded while stimulating the tissue. Applying stimulation can unveil the mechanical characteristics of the tissue in RF echo. Materials and methods In this study, an apparatus was developed to induce vibrations at different frequencies to the medium. Data were collected from four PVA phantoms simulating the nonlinear behaviors of healthy, fibroadenoma, cyst, and cancerous breast tissues. Raw focused, raw, and beamformed ultrafast data were collected under conditions of no stimulation, constant force, and various vibrational stimulations using the Supersonic Imagine Aixplorer clinical/research ultrasound imaging system. Time domain (TD), spectral, and nonlinear features were extracted from each RF TS. Support Vector Machine (SVM), Random Forest, and Decision Tree algorithms were employed for classification. Results The optimal outcome was achieved using the SVM classifier considering 19 features extracted from beamformed ultrafast data recorded while applying vibration at the frequency of 65 Hz. The classification accuracy, specificity, and precision were 98.44 ± 0.20 %, 99.49 ± 0.01 %, and 98.53 ± 0.04 %, respectively. Applying RFTSDP, a notable 24.45 % improvement in accuracy was observed compared to the case of fixed probe assessing the recorded raw focused data. Conclusions External vibration at an appropriate frequency, as applied in RFTSDP, incorporates beneficial information about the medium and its dynamic characteristics into the RF TS, which can improve tissue characterization.
Collapse
Affiliation(s)
- Elaheh Norouzi Ghehi
- Faculty of Biomedical Engineering, Amirkabir University of Technology, Tehran, Iran
| | - Ali Fallah
- Faculty of Biomedical Engineering, Amirkabir University of Technology, Tehran, Iran
| | - Saeid Rashidi
- Faculty of Medical Sciences and Technologies, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | | |
Collapse
|
4
|
Xie X, Shen C, Zhang X, Wu G, Yang B, Qi Z, Tang Q, Wang Y, Ding H, Shi Z, Yu J. Rapid intraoperative multi-molecular diagnosis of glioma with ultrasound radio frequency signals and deep learning. EBioMedicine 2023; 98:104899. [PMID: 38041959 PMCID: PMC10711390 DOI: 10.1016/j.ebiom.2023.104899] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 11/16/2023] [Accepted: 11/17/2023] [Indexed: 12/04/2023] Open
Abstract
BACKGROUND Molecular diagnosis is crucial for biomarker-assisted glioma resection and management. However, some limitations of current molecular diagnostic techniques prevent their widespread use intraoperatively. With the unique advantages of ultrasound, this study developed a rapid intraoperative molecular diagnostic method based on ultrasound radio-frequency signals. METHODS We built a brain tumor ultrasound bank with 169 cases enrolled since July 2020, of which 43483 RF signal patches from 67 cases with a pathological diagnosis of glioma were a retrospective cohort for model training and validation. IDH1 and TERT promoter (TERTp) mutations and 1p/19q co-deletion were detected by next-generation sequencing. We designed a spatial-temporal integration model (STIM) to diagnose the three molecular biomarkers, thus establishing a rapid intraoperative molecular diagnostic system for glioma, and further analysed its consistency with the fifth edition of the WHO Classification of Tumors of the Central Nervous System (WHO CNS5). We tested STIM in 16-case prospective cohorts, which contained a total of 10384 RF signal patches. Two other RF-based classical models were used for comparison. Further, we included 20 cases additional prospective data for robustness test (ClinicalTrials.govNCT05656053). FINDINGS In the retrospective cohort, STIM achieved a mean accuracy and AUC of 0.9190 and 0.9650 (95% CI, 0.94-0.99) respectively for the three molecular biomarkers, with a total time of 3 s and a 96% match to WHO CNS5. In the prospective cohort, the diagnostic accuracy of STIM is 0.85 ± 0.04 (mean ± SD) for IDH1, 0.84 ± 0.05 for TERTp, and 0.88 ± 0.04 for 1p/19q. The AUC is 0.89 ± 0.02 (95% CI, 0.84-0.94) for IDH1, 0.80 ± 0.04 (95% CI, 0.71-0.89) for TERTp, and 0.85 ± 0.06 (95% CI, 0.73-0.98) for 1p/19q. Compared to the second best available method based on RF signal, the diagnostic accuracy of STIM is improved by 16.70% and the AUC is improved by 19.23% on average. INTERPRETATION STIM is a rapid, cost-effective, and easy-to-manipulate AI method to perform real-time intraoperative molecular diagnosis. In the future, it may help neurosurgeons designate personalized surgical plans and predict survival outcomes. FUNDING A full list of funding bodies that contributed to this study can be found in the Acknowledgements section.
Collapse
Affiliation(s)
- Xuan Xie
- School of Information Science and Technology, Fudan University, Shanghai, China; Neurosurgical Institute of Fudan University, Shanghai, China
| | - Chao Shen
- Department of Neurosurgery, Huashan Hospital, Fudan University, Shanghai, China; National Center for Neurological Disorders, Shanghai, China; Shanghai Key Laboratory of Brain Function Restoration and Neural Regeneration, Shanghai, China; Neurosurgical Institute of Fudan University, Shanghai, China
| | - Xiandi Zhang
- Department of Ultrasound, Huashan Hospital, Fudan University, Shanghai, China
| | - Guoqing Wu
- School of Information Science and Technology, Fudan University, Shanghai, China; Neurosurgical Institute of Fudan University, Shanghai, China
| | - Bojie Yang
- Department of Neurosurgery, Huashan Hospital, Fudan University, Shanghai, China; National Center for Neurological Disorders, Shanghai, China; Shanghai Key Laboratory of Brain Function Restoration and Neural Regeneration, Shanghai, China; Neurosurgical Institute of Fudan University, Shanghai, China
| | - Zengxin Qi
- Department of Neurosurgery, Huashan Hospital, Fudan University, Shanghai, China; National Center for Neurological Disorders, Shanghai, China; Shanghai Key Laboratory of Brain Function Restoration and Neural Regeneration, Shanghai, China; Neurosurgical Institute of Fudan University, Shanghai, China
| | - Qisheng Tang
- Department of Neurosurgery, Huashan Hospital, Fudan University, Shanghai, China; National Center for Neurological Disorders, Shanghai, China; Shanghai Key Laboratory of Brain Function Restoration and Neural Regeneration, Shanghai, China; Neurosurgical Institute of Fudan University, Shanghai, China
| | - Yuanyuan Wang
- School of Information Science and Technology, Fudan University, Shanghai, China
| | - Hong Ding
- Department of Ultrasound, Huashan Hospital, Fudan University, Shanghai, China.
| | - Zhifeng Shi
- Department of Neurosurgery, Huashan Hospital, Fudan University, Shanghai, China; National Center for Neurological Disorders, Shanghai, China; Shanghai Key Laboratory of Brain Function Restoration and Neural Regeneration, Shanghai, China; Neurosurgical Institute of Fudan University, Shanghai, China.
| | - Jinhua Yu
- School of Information Science and Technology, Fudan University, Shanghai, China; Neurosurgical Institute of Fudan University, Shanghai, China.
| |
Collapse
|
5
|
Liu Y, He B, Zhang Y, Lang X, Yao R, Pan L. A Study on a Parameter Estimator for the Homodyned K Distribution Based on Table Search for Ultrasound Tissue Characterization. ULTRASOUND IN MEDICINE & BIOLOGY 2023; 49:970-981. [PMID: 36631331 DOI: 10.1016/j.ultrasmedbio.2022.11.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Revised: 11/27/2022] [Accepted: 11/30/2022] [Indexed: 06/17/2023]
Abstract
OBJECTIVE The homodyned K (HK) distribution is considered to be the most suitable distribution in the context of tissue characterization; therefore, the search for a rapid and reliable parameter estimator for HK distribution is important. METHODS We propose a novel parameter estimator based on a table search (TS) for HK parameter estimates. The TS estimator can inherit the strength of conventional estimators by integrating various features and taking advantage of the TS method in a rapid and easy operation. Performance of the proposed TS estimator was evaluated and compared with that of XU (the estimation method based on X and U statistics) and artificial neural network (ANN) estimators. DISCUSSION The simulation results revealed that the TS estimator is superior to the XU and ANN estimators in terms of normalized standard deviations and relative root mean squared errors of parameter estimation, and is faster. Clinical experiments found that the area under the receiver operating curve for breast lesion classification using the parameters estimated by the TS estimator could reach 0.871. CONCLUSION The proposed TS estimator is more accurate, reliable and faster than the state-of-the-art XU and ANN estimators and has great potential for ultrasound tissue characterization based on the HK distribution.
Collapse
Affiliation(s)
- Yang Liu
- Department of Electronic Engineering, Information School, Yunnan University, Kunming, Yunnan, China
| | - Bingbing He
- Department of Electronic Engineering, Information School, Yunnan University, Kunming, Yunnan, China.
| | - Yufeng Zhang
- Department of Electronic Engineering, Information School, Yunnan University, Kunming, Yunnan, China
| | - Xun Lang
- Department of Electronic Engineering, Information School, Yunnan University, Kunming, Yunnan, China
| | - Ruihan Yao
- Department of Electronic Engineering, Information School, Yunnan University, Kunming, Yunnan, China
| | - Lingrui Pan
- Department of Electronic Engineering, Information School, Yunnan University, Kunming, Yunnan, China
| |
Collapse
|
6
|
Baek J, O’Connell AM, Parker KJ. Improving breast cancer diagnosis by incorporating raw ultrasound parameters into machine learning. MACHINE LEARNING: SCIENCE AND TECHNOLOGY 2022; 3:045013. [PMID: 36698865 PMCID: PMC9855672 DOI: 10.1088/2632-2153/ac9bcc] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 10/15/2022] [Accepted: 10/19/2022] [Indexed: 01/28/2023] Open
Abstract
The improved diagnostic accuracy of ultrasound breast examinations remains an important goal. In this study, we propose a biophysical feature-based machine learning method for breast cancer detection to improve the performance beyond a benchmark deep learning algorithm and to furthermore provide a color overlay visual map of the probability of malignancy within a lesion. This overall framework is termed disease-specific imaging. Previously, 150 breast lesions were segmented and classified utilizing a modified fully convolutional network and a modified GoogLeNet, respectively. In this study multiparametric analysis was performed within the contoured lesions. Features were extracted from ultrasound radiofrequency, envelope, and log-compressed data based on biophysical and morphological models. The support vector machine with a Gaussian kernel constructed a nonlinear hyperplane, and we calculated the distance between the hyperplane and each feature's data point in multiparametric space. The distance can quantitatively assess a lesion and suggest the probability of malignancy that is color-coded and overlaid onto B-mode images. Training and evaluation were performed on in vivo patient data. The overall accuracy for the most common types and sizes of breast lesions in our study exceeded 98.0% for classification and 0.98 for an area under the receiver operating characteristic curve, which is more precise than the performance of radiologists and a deep learning system. Further, the correlation between the probability and Breast Imaging Reporting and Data System enables a quantitative guideline to predict breast cancer. Therefore, we anticipate that the proposed framework can help radiologists achieve more accurate and convenient breast cancer classification and detection.
Collapse
Affiliation(s)
- Jihye Baek
- Department of Electrical and Computer Engineering, University of Rochester, Rochester, NY, United States of America
| | - Avice M O’Connell
- Department of Imaging Sciences, University of Rochester Medical Center, Rochester, NY, United States of America
| | - Kevin J Parker
- Department of Electrical and Computer Engineering, University of Rochester, Rochester, NY, United States of America
| |
Collapse
|
7
|
Yao R, Zhang Y, Wu K, Li Z, He M, Fengyue B. Quantitative assessment for characterization of breast lesion tissues using adaptively decomposed ultrasound RF images. Biomed Signal Process Control 2022. [DOI: 10.1016/j.bspc.2022.103559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
|
8
|
Byra M, Jarosik P, Dobruch-Sobczak K, Klimonda Z, Piotrzkowska-Wroblewska H, Litniewski J, Nowicki A. Joint segmentation and classification of breast masses based on ultrasound radio-frequency data and convolutional neural networks. ULTRASONICS 2022; 121:106682. [PMID: 35065458 DOI: 10.1016/j.ultras.2021.106682] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Revised: 12/08/2021] [Accepted: 12/30/2021] [Indexed: 06/14/2023]
Abstract
In this paper, we propose a novel deep learning method for joint classification and segmentation of breast masses based on radio-frequency (RF) ultrasound (US) data. In comparison to commonly used classification and segmentation techniques, utilizing B-mode US images, we train the network with RF data (data before envelope detection and dynamic compression), which are considered to include more information on tissue's physical properties than standard B-mode US images. Our multi-task network, based on the Y-Net architecture, can effectively process large matrices of RF data by mixing 1D and 2D convolutional filters. We use data collected from 273 breast masses to compare the performance of networks trained with RF data and US images. The multi-task model developed based on the RF data achieved good classification performance, with area under the receiver operating characteristic curve (AUC) of 0.90. The network based on the US images achieved AUC of 0.87. In the case of the segmentation, we obtained mean Dice scores of 0.64 and 0.60 for the approaches utilizing US images and RF data, respectively. Moreover, the interpretability of the networks was studied using class activation mapping technique and by filter weights visualizations.
Collapse
Affiliation(s)
- Michal Byra
- Institute of Fundamental Technological Research, Polish Academy of Sciences, Warsaw, Poland.
| | - Piotr Jarosik
- Institute of Fundamental Technological Research, Polish Academy of Sciences, Warsaw, Poland
| | - Katarzyna Dobruch-Sobczak
- Institute of Fundamental Technological Research, Polish Academy of Sciences, Warsaw, Poland; Maria Sklodowska-Curie Memorial Cancer Centre and Institute of Oncology, Warsaw, Poland
| | - Ziemowit Klimonda
- Institute of Fundamental Technological Research, Polish Academy of Sciences, Warsaw, Poland
| | | | - Jerzy Litniewski
- Institute of Fundamental Technological Research, Polish Academy of Sciences, Warsaw, Poland
| | - Andrzej Nowicki
- Institute of Fundamental Technological Research, Polish Academy of Sciences, Warsaw, Poland
| |
Collapse
|
9
|
Meraj T, Alosaimi W, Alouffi B, Rauf HT, Kumar SA, Damaševičius R, Alyami H. A quantization assisted U-Net study with ICA and deep features fusion for breast cancer identification using ultrasonic data. PeerJ Comput Sci 2021; 7:e805. [PMID: 35036531 PMCID: PMC8725669 DOI: 10.7717/peerj-cs.805] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Accepted: 11/12/2021] [Indexed: 06/14/2023]
Abstract
Breast cancer is one of the leading causes of death in women worldwide-the rapid increase in breast cancer has brought about more accessible diagnosis resources. The ultrasonic breast cancer modality for diagnosis is relatively cost-effective and valuable. Lesion isolation in ultrasonic images is a challenging task due to its robustness and intensity similarity. Accurate detection of breast lesions using ultrasonic breast cancer images can reduce death rates. In this research, a quantization-assisted U-Net approach for segmentation of breast lesions is proposed. It contains two step for segmentation: (1) U-Net and (2) quantization. The quantization assists to U-Net-based segmentation in order to isolate exact lesion areas from sonography images. The Independent Component Analysis (ICA) method then uses the isolated lesions to extract features and are then fused with deep automatic features. Public ultrasonic-modality-based datasets such as the Breast Ultrasound Images Dataset (BUSI) and the Open Access Database of Raw Ultrasonic Signals (OASBUD) are used for evaluation comparison. The OASBUD data extracted the same features. However, classification was done after feature regularization using the lasso method. The obtained results allow us to propose a computer-aided design (CAD) system for breast cancer identification using ultrasonic modalities.
Collapse
Affiliation(s)
- Talha Meraj
- Department of Computer Science, COMSATS University Islamabad-Wah Campus, Wah Cantt, Pakistan
| | - Wael Alosaimi
- Department of Information Technology, College of Computers and Information Technology, Taif University, Taif, Saudi Arabia
| | - Bader Alouffi
- Department of Computer Science, College of Computers and Information Technology, Taif University, Taif, Saudi Arabia
| | - Hafiz Tayyab Rauf
- Department of Computer Science, Faculty of Engineering & Informatics, University of Bradford, Bradford, United Kingdom
| | - Swarn Avinash Kumar
- Department of Information Technology, Indian Institute of Information Technology, Uttar Pradesh, Jhalwa, Prayagraj, India
| | | | - Hashem Alyami
- Department of Computer Science, College of Computers and Information Technology, Taif University, Taif, Saudi Arabia
| |
Collapse
|
10
|
Ilesanmi AE, Chaumrattanakul U, Makhanov SS. Methods for the segmentation and classification of breast ultrasound images: a review. J Ultrasound 2021; 24:367-382. [PMID: 33428123 PMCID: PMC8572242 DOI: 10.1007/s40477-020-00557-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Accepted: 12/21/2020] [Indexed: 02/07/2023] Open
Abstract
PURPOSE Breast ultrasound (BUS) is one of the imaging modalities for the diagnosis and treatment of breast cancer. However, the segmentation and classification of BUS images is a challenging task. In recent years, several methods for segmenting and classifying BUS images have been studied. These methods use BUS datasets for evaluation. In addition, semantic segmentation algorithms have gained prominence for segmenting medical images. METHODS In this paper, we examined different methods for segmenting and classifying BUS images. Popular datasets used to evaluate BUS images and semantic segmentation algorithms were examined. Several segmentation and classification papers were selected for analysis and review. Both conventional and semantic methods for BUS segmentation were reviewed. RESULTS Commonly used methods for BUS segmentation were depicted in a graphical representation, while other conventional methods for segmentation were equally elucidated. CONCLUSIONS We presented a review of the segmentation and classification methods for tumours detected in BUS images. This review paper selected old and recent studies on segmenting and classifying tumours in BUS images.
Collapse
Affiliation(s)
- Ademola E. Ilesanmi
- School of ICT, Sirindhorn International Institute of Technology, Thammasat University, Pathum Thani, 12000 Thailand
| | | | - Stanislav S. Makhanov
- School of ICT, Sirindhorn International Institute of Technology, Thammasat University, Pathum Thani, 12000 Thailand
| |
Collapse
|
11
|
Malignant and nonmalignant classification of breast lesions in mammograms using convolutional neural networks. Biomed Signal Process Control 2021. [DOI: 10.1016/j.bspc.2021.102954] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
12
|
Irfan R, Almazroi AA, Rauf HT, Damaševičius R, Nasr EA, Abdelgawad AE. Dilated Semantic Segmentation for Breast Ultrasonic Lesion Detection Using Parallel Feature Fusion. Diagnostics (Basel) 2021; 11:1212. [PMID: 34359295 PMCID: PMC8304124 DOI: 10.3390/diagnostics11071212] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Revised: 04/16/2021] [Accepted: 04/27/2021] [Indexed: 12/15/2022] Open
Abstract
Breast cancer is becoming more dangerous by the day. The death rate in developing countries is rapidly increasing. As a result, early detection of breast cancer is critical, leading to a lower death rate. Several researchers have worked on breast cancer segmentation and classification using various imaging modalities. The ultrasonic imaging modality is one of the most cost-effective imaging techniques, with a higher sensitivity for diagnosis. The proposed study segments ultrasonic breast lesion images using a Dilated Semantic Segmentation Network (Di-CNN) combined with a morphological erosion operation. For feature extraction, we used the deep neural network DenseNet201 with transfer learning. We propose a 24-layer CNN that uses transfer learning-based feature extraction to further validate and ensure the enriched features with target intensity. To classify the nodules, the feature vectors obtained from DenseNet201 and the 24-layer CNN were fused using parallel fusion. The proposed methods were evaluated using a 10-fold cross-validation on various vector combinations. The accuracy of CNN-activated feature vectors and DenseNet201-activated feature vectors combined with the Support Vector Machine (SVM) classifier was 90.11 percent and 98.45 percent, respectively. With 98.9 percent accuracy, the fused version of the feature vector with SVM outperformed other algorithms. When compared to recent algorithms, the proposed algorithm achieves a better breast cancer diagnosis rate.
Collapse
Affiliation(s)
- Rizwana Irfan
- Department of Information Technology, College of Computing and Information Technology at Khulais, University of Jeddah, Jeddah 21959, Saudi Arabia; (R.I.); (A.A.A.)
| | - Abdulwahab Ali Almazroi
- Department of Information Technology, College of Computing and Information Technology at Khulais, University of Jeddah, Jeddah 21959, Saudi Arabia; (R.I.); (A.A.A.)
| | - Hafiz Tayyab Rauf
- Centre for Smart Systems, AI and Cybersecurity, Staffordshire University, Stoke-on-Trent ST4 2DE, UK
| | - Robertas Damaševičius
- Faculty of Applied Mathematics, Silesian University of Technology, 44-100 Gliwice, Poland;
| | - Emad Abouel Nasr
- Industrial Engineering Department, College of Engineering, King Saud University, Riyadh 11421, Saudi Arabia; (E.A.N.); (A.E.A.)
| | - Abdelatty E. Abdelgawad
- Industrial Engineering Department, College of Engineering, King Saud University, Riyadh 11421, Saudi Arabia; (E.A.N.); (A.E.A.)
| |
Collapse
|
13
|
A State-of-the-Art Review for Gastric Histopathology Image Analysis Approaches and Future Development. BIOMED RESEARCH INTERNATIONAL 2021; 2021:6671417. [PMID: 34258279 PMCID: PMC8257332 DOI: 10.1155/2021/6671417] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 05/09/2021] [Accepted: 05/25/2021] [Indexed: 02/08/2023]
Abstract
Gastric cancer is a common and deadly cancer in the world. The gold standard for the detection of gastric cancer is the histological examination by pathologists, where Gastric Histopathological Image Analysis (GHIA) contributes significant diagnostic information. The histopathological images of gastric cancer contain sufficient characterization information, which plays a crucial role in the diagnosis and treatment of gastric cancer. In order to improve the accuracy and objectivity of GHIA, Computer-Aided Diagnosis (CAD) has been widely used in histological image analysis of gastric cancer. In this review, the CAD technique on pathological images of gastric cancer is summarized. Firstly, the paper summarizes the image preprocessing methods, then introduces the methods of feature extraction, and then generalizes the existing segmentation and classification techniques. Finally, these techniques are systematically introduced and analyzed for the convenience of future researchers.
Collapse
|