1
|
Feng L, Sharma A, Wang Z, Muresanu DF, Tian ZR, Lafuente JV, Buzoianu AD, Nozari A, Li C, Zhang Z, Lin C, Huang H, Manzhulo I, Wiklund L, Sharma HS. Nanowired delivery of dl-3-n-butylphthalide with antibodies to alpha synuclein potentiated neuroprotection in Parkinson's disease with emotional stress. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2023; 171:47-82. [PMID: 37783563 DOI: 10.1016/bs.irn.2023.06.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/04/2023]
Abstract
Stress is one of the most serious consequences of life leading to several chronic diseases and neurodegeneration. Recent studies show that emotional stress and other kinds of anxiety and depression adversely affects Parkinson's disease symptoms. However, the details of how stress affects Parkinson's disease is still not well known. Traumatic brain injury, stroke, diabetes, post-traumatic stress disorders are well known to modify the disease precipitation, progression and persistence. However, show stress could influence Parkinson's disease is still not well known. The present investigation we examine the role of immobilization stress influencing Parkinson's disease brain pathology in model experiments. In ore previous report we found that mild traumatic brain injury exacerbate Parkinson's disease brain pathology and nanodelivery of dl-3-n-butylphthalide either alone or together with mesenchymal stem cells significantly attenuated Parkinson's disease brain pathology. In this chapter we discuss the role of stress in exacerbating Parkinson's disease pathology and nanowired delivery of dl-3-n-butylphthalide together with monoclonal antibodies to alpha synuclein (ASNC) is able to induce significant neuroprotection. The possible mechanisms of dl-3-n-butylphthalide and ASNC induced neuroprotection and suitable clinical therapeutic strategy is discussed.
Collapse
Affiliation(s)
- Lianyuan Feng
- Department of Neurology, Bethune International Peace Hospital, Zhongshan Road (West), Shijiazhuang, Hebei Province, P.R. China
| | - Aruna Sharma
- International Experimental Central Nervous System Injury & Repair (IECNSIR), Dept. of Surgical Sciences, Anesthesiology & Intensive Care Medicine, Uppsala University Hospital, Uppsala University, Uppsala, Sweden.
| | - Zhenguo Wang
- Shijiazhuang Pharma Group NBP Pharmaceutical Co. Ltd., Economic and Technological Development Zone, Shijiazhuang City, Hebei Province, P.R. China
| | - Dafin F Muresanu
- Dept. Clinical Neurosciences, University of Medicine & Pharmacy, Cluj-Napoca, Romania; "RoNeuro" Institute for Neurological Research and Diagnostic, Cluj-Napoca, Romania
| | - Z Ryan Tian
- Dept. Chemistry & Biochemistry, University of Arkansas, Fayetteville, AR, United States
| | - José Vicente Lafuente
- LaNCE, Dept. Neuroscience, University of the Basque Country (UPV/EHU), Leioa, Bizkaia, Spain
| | - Anca D Buzoianu
- Department of Clinical Pharmacology and Toxicology, "Iuliu Hatieganu" University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Ala Nozari
- Department of Anesthesiology, Boston University, Albany str, Boston, MA, United States
| | - Cong Li
- Department of Neurosurgery, the Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangdong Province Hospital of Chinese Medical, Guangzhou, Guangdong, P.R. China
| | - Ziquiang Zhang
- Department of Neurosurgery, the Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangdong Province Hospital of Chinese Medical, Guangzhou, Guangdong, P.R. China
| | - Chen Lin
- Department of Neurosurgery, Dongzhimen Hospital, Beijing University of Traditional Chinese Medicine, Beijing, P.R. China
| | - Hongyun Huang
- Beijing Hongtianji Neuroscience Academy, Beijing, P.R. China
| | - Igor Manzhulo
- Laboratory of Pharmacology, National Scientific Center of Marine Biology, Far East Branch of the Russian Academy of Sciences, Vladivostok, Russia
| | - Lars Wiklund
- International Experimental Central Nervous System Injury & Repair (IECNSIR), Dept. of Surgical Sciences, Anesthesiology & Intensive Care Medicine, Uppsala University Hospital, Uppsala University, Uppsala, Sweden
| | - Hari Shanker Sharma
- International Experimental Central Nervous System Injury & Repair (IECNSIR), Dept. of Surgical Sciences, Anesthesiology & Intensive Care Medicine, Uppsala University Hospital, Uppsala University, Uppsala, Sweden.
| |
Collapse
|
2
|
Truter N, Malan L, Essop MF. Glial cell activity in cardiovascular diseases and risk of acute myocardial infarction. Am J Physiol Heart Circ Physiol 2023; 324:H373-H390. [PMID: 36662577 DOI: 10.1152/ajpheart.00332.2022] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Growing evidence indicates that the pathophysiological link between the brain and heart underlies cardiovascular diseases, specifically acute myocardial infarction (AMI). Astrocytes are the most abundant glial cells in the central nervous system and provide support/protection for neurons. Astrocytes and peripheral glial cells are emerging as key modulators of the brain-heart axis in AMI, by affecting sympathetic nervous system activity (centrally and peripherally). This review, therefore, aimed to gain an improved understanding of glial cell activity and AMI risk. This includes discussions on the potential role of contributing factors in AMI risk, i.e., autonomic nervous system dysfunction, glial-neurotrophic and ischemic risk markers [glial cell line-derived neurotrophic factor (GDNF), astrocytic S100 calcium-binding protein B (S100B), silent myocardial ischemia, and cardiac troponin T (cTnT)]. Consideration of glial cell activity and related contributing factors in certain brain-heart disorders, namely, blood-brain barrier dysfunction, myocardial ischemia, and chronic psychological stress, may improve our understanding regarding the pathological role that glial dysfunction can play in the development/onset of AMI. Here, findings demonstrated perturbations in glial cell activity and contributing factors (especially sympathetic activity). Moreover, emerging AMI risk included sympathovagal imbalance, low GDNF levels reflecting prothrombic risk, hypertension, and increased ischemia due to perfusion deficits (indicated by S100B and cTnT levels). Such perturbations impacted blood-barrier function and perfusion that were exacerbated during psychological stress. Thus, greater insights and consideration regarding such biomarkers may help drive future studies investigating brain-heart axis pathologies to gain a deeper understanding of astrocytic glial cell contributions and unlock potential novel therapies for AMI.
Collapse
Affiliation(s)
- Nina Truter
- Centre for Cardio-metabolic Research in Africa, Department of Physiological Sciences, Stellenbosch University, Cape Town, South Africa
| | - Leoné Malan
- Technology Transfer and Innovation-Support Office, North-West University, Potchefstroom, South Africa
| | - M Faadiel Essop
- Centre for Cardio-metabolic Research in Africa, Division of Medical Physiology, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa
| |
Collapse
|
3
|
Bonaccorso Marinelli MP, Baiardi G, Valdez SR, Cabrera RJ. Automated quantification of dopaminergic immunostained neurons in substantia nigra using freely available software. Med Biol Eng Comput 2022; 60:2995-3007. [DOI: 10.1007/s11517-022-02643-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Accepted: 08/09/2022] [Indexed: 10/15/2022]
|
4
|
Highlighting Immune System and Stress in Major Depressive Disorder, Parkinson's, and Alzheimer's Diseases, with a Connection with Serotonin. Int J Mol Sci 2021; 22:ijms22168525. [PMID: 34445231 PMCID: PMC8395198 DOI: 10.3390/ijms22168525] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Revised: 08/01/2021] [Accepted: 08/03/2021] [Indexed: 01/10/2023] Open
Abstract
There is recognition that both stress and immune responses are important factors in a variety of neurological disorders. Moreover, there is an important role of several neurotransmitters that connect these factors to several neurological diseases, with a special focus in this paper on serotonin. Accordingly, it is known that imbalances in stressors can promote a variety of neuropsychiatric or neurodegenerative pathologies. Here, we discuss some facts that link major depressive disorder, Alzheimer’s, and Parkinson’s to the stress and immune responses, as well as the connection between these responses and serotonergic signaling. These are important topics of investigation which may lead to new or better treatments, improving the life quality of patients that suffer from these conditions.
Collapse
|
5
|
Corticosterone Administration Alters White Matter Tract Structure and Reduces Gliosis in the Sub-Acute Phase of Experimental Stroke. Int J Mol Sci 2021; 22:ijms22136693. [PMID: 34206635 PMCID: PMC8269094 DOI: 10.3390/ijms22136693] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Revised: 06/16/2021] [Accepted: 06/17/2021] [Indexed: 11/17/2022] Open
Abstract
White matter tract (WMT) degeneration has been reported to occur following a stroke, and it is associated with post-stroke functional disturbances. White matter pathology has been suggested to be an independent predictor of post-stroke recovery. However, the factors that influence WMT remodeling are poorly understood. Cortisol is a steroid hormone released in response to prolonged stress, and elevated levels of cortisol have been reported to interfere with brain recovery. The objective of this study was to investigate the influence of corticosterone (CORT; the rodent equivalent of cortisol) on WMT structure post-stroke. Photothrombotic stroke (or sham surgery) was induced in 8-week-old male C57BL/6 mice. At 72 h, mice were exposed to standard drinking water ± CORT (100 µg/mL). After two weeks of CORT administration, mice were euthanised and brain tissue collected for histological and biochemical analysis of WMT (particularly the corpus callosum and corticospinal tract). CORT administration was associated with increased tissue loss within the ipsilateral hemisphere, and modest and inconsistent WMT reorganization. Further, a structural and molecular analysis of the WMT components suggested that CORT exerted effects over axons and glial cells. Our findings highlight that CORT at stress-like levels can moderately influence the reorganization and microstructure of WMT post-stroke.
Collapse
|
6
|
Picard K, St-Pierre MK, Vecchiarelli HA, Bordeleau M, Tremblay MÈ. Neuroendocrine, neuroinflammatory and pathological outcomes of chronic stress: A story of microglial remodeling. Neurochem Int 2021; 145:104987. [PMID: 33587954 DOI: 10.1016/j.neuint.2021.104987] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 02/07/2021] [Accepted: 02/08/2021] [Indexed: 02/07/2023]
Abstract
Microglia, the resident macrophage cells of the central nervous system (CNS), are involved in a myriad of processes required to maintain CNS homeostasis. These cells are dynamic and can adapt their phenotype and functions to the physiological needs of the organism. Microglia rapidly respond to changes occurring in their microenvironment, such as the ones taking place during stress. While stress can be beneficial for the organism to adapt to a situation, it can become highly detrimental when it turns chronic. Microglial response to prolonged stress may lead to an alteration of their beneficial physiological functions, becoming either maladaptive or pro-inflammatory. In this review, we aim to summarize the effects of chronic stress exerted on microglia through the neuroendocrine system and inflammation at adulthood. We also discuss how these effects of chronic stress could contribute to microglial involvement in neuropsychiatric and sleep disorders, as well as neurodegenerative diseases.
Collapse
Affiliation(s)
- Katherine Picard
- Axe Neurosciences, Centre de recherche du CHU de Québec-Université Laval, Québec, QC, Canada; Division of Medical Sciences, University of Victoria, Victoria, BC, Canada; Department of Molecular Medicine, Faculty of Medicine, Université Laval, Québec, QC, Canada
| | - Marie-Kim St-Pierre
- Axe Neurosciences, Centre de recherche du CHU de Québec-Université Laval, Québec, QC, Canada; Division of Medical Sciences, University of Victoria, Victoria, BC, Canada; Department of Molecular Medicine, Faculty of Medicine, Université Laval, Québec, QC, Canada
| | | | - Maude Bordeleau
- Axe Neurosciences, Centre de recherche du CHU de Québec-Université Laval, Québec, QC, Canada; Integrated Program in Neuroscience, McGill University, Montreal, QC, Canada
| | - Marie-Ève Tremblay
- Axe Neurosciences, Centre de recherche du CHU de Québec-Université Laval, Québec, QC, Canada; Division of Medical Sciences, University of Victoria, Victoria, BC, Canada; Department of Molecular Medicine, Faculty of Medicine, Université Laval, Québec, QC, Canada; Neurology and Neurosurgery Department, McGill University, Montréal, QC, Canada; Department of Biochemistry and Molecular Biology, The University of British Columbia, Vancouver, BC, Canada.
| |
Collapse
|
7
|
Metabolic effects induced by chronic stress in the amygdala of diabetic rats: A study based on ex vivo 1H NMR spectroscopy. Brain Res 2019; 1723:146377. [DOI: 10.1016/j.brainres.2019.146377] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2019] [Revised: 07/18/2019] [Accepted: 08/09/2019] [Indexed: 02/02/2023]
|
8
|
Sanchez-Bezanilla S, Nilsson M, Walker FR, Ong LK. Can We Use 2,3,5-Triphenyltetrazolium Chloride-Stained Brain Slices for Other Purposes? The Application of Western Blotting. Front Mol Neurosci 2019; 12:181. [PMID: 31417355 PMCID: PMC6682641 DOI: 10.3389/fnmol.2019.00181] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2019] [Accepted: 07/10/2019] [Indexed: 01/15/2023] Open
Abstract
2,3,5-Triphenyltetrazolium chloride (TTC) staining is a commonly used method to determine the volume of the cerebral infarction in experimental stroke models. The TTC staining protocol is considered to interfere with downstream analyses, and it is unclear whether TTC-stained brain samples can be used for biochemistry analyses. However, there is evidence indicating that, with proper optimization and handling, TTC-stained brains may remain viable for protein analyses. In the present study, we aimed to rigorously assess whether TTC can reliably be used for western blotting of various markers. In this study, brain samples obtained from C57BL/6 male mice were treated with TTC (TTC+) or left untreated (TTC−) at 1 week after photothrombotic occlusion or sham surgery. Brain regions were dissected into infarct, thalamus, and hippocampus, and proteins were extracted by using radioimmunoprecipitation assay buffer. Protein levels of apoptosis, autophagy, neuronal, glial, vascular, and neurodegenerative-related markers were analyzed by western blotting. Our results showed that TTC+ brains display similar relative changes in most of the markers compared with TTC− brains. In addition, we validated that these analyses can be performed in the infarct as well as other brain regions such as the thalamus and hippocampus. Our findings demonstrate that TTC+ brains are reliable for protein analyses using western blotting. Widespread adoption of this approach will be key to lowering the number of animals used while maximizing data.
Collapse
Affiliation(s)
- Sonia Sanchez-Bezanilla
- School of Biomedical Sciences and Pharmacy and Priority Research Centre for Stroke and Brain Injury, The University of Newcastle, Callaghan, NSW, Australia.,Hunter Medical Research Institute, New Lambton Heights, NSW, Australia
| | - Michael Nilsson
- School of Biomedical Sciences and Pharmacy and Priority Research Centre for Stroke and Brain Injury, The University of Newcastle, Callaghan, NSW, Australia.,Hunter Medical Research Institute, New Lambton Heights, NSW, Australia.,NHMRC Centre of Research Excellence in Stroke Rehabilitation and Brain Recovery, Heidelberg, VIC, Australia.,Centre for Rehab Innovations, The University of Newcastle, Callaghan, NSW, Australia.,Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, Singapore
| | - Frederick R Walker
- School of Biomedical Sciences and Pharmacy and Priority Research Centre for Stroke and Brain Injury, The University of Newcastle, Callaghan, NSW, Australia.,Hunter Medical Research Institute, New Lambton Heights, NSW, Australia.,NHMRC Centre of Research Excellence in Stroke Rehabilitation and Brain Recovery, Heidelberg, VIC, Australia.,Centre for Rehab Innovations, The University of Newcastle, Callaghan, NSW, Australia
| | - Lin Kooi Ong
- School of Biomedical Sciences and Pharmacy and Priority Research Centre for Stroke and Brain Injury, The University of Newcastle, Callaghan, NSW, Australia.,Hunter Medical Research Institute, New Lambton Heights, NSW, Australia.,NHMRC Centre of Research Excellence in Stroke Rehabilitation and Brain Recovery, Heidelberg, VIC, Australia.,School of Pharmacy, Monash University Malaysia, Bandar Sunway, Malaysia
| |
Collapse
|
9
|
Bhatia TN, Pant DB, Eckhoff EA, Gongaware RN, Do T, Hutchison DF, Gleixner AM, Leak RK. Astrocytes Do Not Forfeit Their Neuroprotective Roles After Surviving Intense Oxidative Stress. Front Mol Neurosci 2019; 12:87. [PMID: 31024254 PMCID: PMC6460290 DOI: 10.3389/fnmol.2019.00087] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2018] [Accepted: 03/21/2019] [Indexed: 12/16/2022] Open
Abstract
In order to fulfill their evolutionary role as support cells, astrocytes have to tolerate intense oxidative stress under conditions of brain injury and disease. It is well known that astrocytes exposed to mild oxidative stress are preconditioned against subsequent stress exposure in dual hit models. However, it is unclear whether severe oxidative stress leads to stress tolerance, stress exacerbation, or no change in stress resistance in astrocytes. Furthermore, it is not known whether reactive astrocytes surviving intense oxidative stress can still support nearby neurons. The data in this Brief Report suggest that primary cortical astrocytes surviving high concentrations of the oxidative toxicant paraquat are completely resistant against subsequent oxidative challenges of the same intensity. Inhibitors of multiple endogenous defenses (e.g., glutathione, heme oxygenase 1, ERK1/2, Akt) failed to abolish or even reduce their stress resistance. Stress-reactive cortical astrocytes surviving intense oxidative stress still managed to protect primary cortical neurons against subsequent oxidative injuries in neuron/astrocyte co-cultures, even at concentrations of paraquat that otherwise led to more than 80% neuron loss. Although our previous work demonstrated a lack of stress tolerance in primary neurons exposed to dual paraquat hits, here we show that intensely stressed primary neurons can resist a second hit of hydrogen peroxide. These collective findings suggest that stress-reactive astroglia are not necessarily neurotoxic, and that severe oxidative stress does not invariably lead to stress exacerbation in either glia or neurons. Therefore, interference with the natural functions of stress-reactive astrocytes might have the unintended consequence of accelerating neurodegeneration.
Collapse
Affiliation(s)
- Tarun N Bhatia
- Graduate School of Pharmaceutical Sciences, Duquesne University, Pittsburgh, PA, United States
| | - Deepti B Pant
- Graduate School of Pharmaceutical Sciences, Duquesne University, Pittsburgh, PA, United States
| | - Elizabeth A Eckhoff
- Graduate School of Pharmaceutical Sciences, Duquesne University, Pittsburgh, PA, United States
| | - Rachel N Gongaware
- Graduate School of Pharmaceutical Sciences, Duquesne University, Pittsburgh, PA, United States
| | - Timothy Do
- Graduate School of Pharmaceutical Sciences, Duquesne University, Pittsburgh, PA, United States
| | - Daniel F Hutchison
- Graduate School of Pharmaceutical Sciences, Duquesne University, Pittsburgh, PA, United States
| | - Amanda M Gleixner
- Graduate School of Pharmaceutical Sciences, Duquesne University, Pittsburgh, PA, United States
| | - Rehana K Leak
- Graduate School of Pharmaceutical Sciences, Duquesne University, Pittsburgh, PA, United States
| |
Collapse
|
10
|
Lecours C, Bordeleau M, Cantin L, Parent M, Paolo TD, Tremblay MÈ. Microglial Implication in Parkinson's Disease: Loss of Beneficial Physiological Roles or Gain of Inflammatory Functions? Front Cell Neurosci 2018; 12:282. [PMID: 30214398 PMCID: PMC6125334 DOI: 10.3389/fncel.2018.00282] [Citation(s) in RCA: 109] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2018] [Accepted: 08/09/2018] [Indexed: 01/12/2023] Open
Abstract
Microglia, often described as the brain-resident macrophages, play crucial roles in central nervous system development, maintenance, plasticity, and adaptation to the environment. Both aging and chronic stress promote microglial morphological and functional changes, which can lead to the development of brain pathologies including Parkinson's disease (PD). Indeed, aging, and chronic stress represent main environmental risk factors for PD. In these conditions, microglia are known to undergo different morphological and functional changes. Inflammation is an important component of PD and disequilibrium between pro- and anti-inflammatory microglial functions might constitute a crucial component of PD onset and progression. Cumulated data also suggest that, during PD, microglia might lose beneficial functions and gain detrimental ones, in addition to mediating inflammation. In this mini-review, we aim to summarize the literature discussing the functional and morphological changes that microglia undergo in PD pathophysiology and upon exposure to its two main environmental risk factors, aging, and chronic stress.
Collapse
Affiliation(s)
- Cynthia Lecours
- Axe Neurosciences, Centre de Recherche du CHU de Québec, Université Laval, Quebec, QC, Canada
- Faculté de Pharmacie, Université Laval, Quebec, QC, Canada
| | - Maude Bordeleau
- Axe Neurosciences, Centre de Recherche du CHU de Québec, Université Laval, Quebec, QC, Canada
- Integrated Program of Neuroscience, Faculty of Medicine, McGill University, Montréal, QC, Canada
| | - Léo Cantin
- Axe Neurosciences, Centre de Recherche du CHU de Québec, Université Laval, Quebec, QC, Canada
- Département de Chirurgie, Faculté de Médecine, Université Laval, Quebec, QC, Canada
| | - Martin Parent
- CERVO Brain Research Centre, Quebec, QC, Canada
- Département de Psychiatrie et Neurosciences, Faculté de Médecine, Université Laval, Quebec, QC, Canada
| | - Thérèse Di Paolo
- Axe Neurosciences, Centre de Recherche du CHU de Québec, Université Laval, Quebec, QC, Canada
- Faculté de Pharmacie, Université Laval, Quebec, QC, Canada
| | - Marie-Ève Tremblay
- Axe Neurosciences, Centre de Recherche du CHU de Québec, Université Laval, Quebec, QC, Canada
- Département de Médecine Moléculaire, Faculté de Médecine, Université Laval, Quebec, QC, Canada
| |
Collapse
|
11
|
Ong LK, Chow WZ, TeBay C, Kluge M, Pietrogrande G, Zalewska K, Crock P, Åberg ND, Bivard A, Johnson SJ, Walker FR, Nilsson M, Isgaard J. Growth Hormone Improves Cognitive Function After Experimental Stroke. Stroke 2018; 49:1257-1266. [PMID: 29636425 DOI: 10.1161/strokeaha.117.020557] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2017] [Revised: 03/07/2018] [Accepted: 03/14/2018] [Indexed: 11/16/2022]
Abstract
BACKGROUND AND PURPOSE Cognitive impairment is a common outcome for stroke survivors. Growth hormone (GH) could represent a potential therapeutic option as this peptide hormone has been shown to improve cognition in various clinical conditions. In this study, we evaluated the effects of peripheral administration of GH at 48 hours poststroke for 28 days on cognitive function and the underlying mechanisms. METHODS Experimental stroke was induced by photothrombotic occlusion in young adult mice. We assessed the associative memory cognitive domain using mouse touchscreen platform for paired-associate learning task. We also evaluated neural tissue loss, neurotrophic factors, and markers of neuroplasticity and cerebrovascular remodeling using biochemical and histology analyses. RESULTS Our results show that GH-treated stroked mice made a significant improvement on the paired-associate learning task relative to non-GH-treated mice at the end of the study. Furthermore, we observed reduction of neural tissue loss in GH-treated stroked mice. We identified that GH treatment resulted in significantly higher levels of neurotrophic factors (IGF-1 [insulin-like growth factor-1] and VEGF [vascular endothelial growth factor]) in both the circulatory and peri-infarct regions. GH treatment in stroked mice not only promoted protein levels and density of presynaptic marker (SYN-1 [synapsin-1]) and marker of myelination (MBP [myelin basic protein]) but also increased the density and area coverage of 2 major vasculature markers (CD31 and collagen-IV), within the peri-infarct region. CONCLUSIONS These findings provide compelling preclinical evidence for the usage of GH as a potential therapeutic tool in the recovery phase of patients after stroke.
Collapse
Affiliation(s)
- Lin Kooi Ong
- From the Priority Research Centre for Stroke and Brain Injury (L.K.O., F.R.W., M.N., J.I.) .,Hunter Medical Research Institute, Australia (L.K.O., A.B., F.R.W., M.N., W.Z.C., C.T., M.K., G.P., K.Z., S.J.J.).,National Health and Medical Research Council Centre of Research Excellence Stroke Rehabilitation and Brain Recovery, Australia (F.R.W., M.N., L.K.O.)
| | - Wei Zhen Chow
- School of Biomedical Sciences and Pharmacy (W.Z.C., C.T., M.K., G.P., K.Z.).,Hunter Medical Research Institute, Australia (L.K.O., A.B., F.R.W., M.N., W.Z.C., C.T., M.K., G.P., K.Z., S.J.J.)
| | - Clifford TeBay
- School of Biomedical Sciences and Pharmacy (W.Z.C., C.T., M.K., G.P., K.Z.).,Hunter Medical Research Institute, Australia (L.K.O., A.B., F.R.W., M.N., W.Z.C., C.T., M.K., G.P., K.Z., S.J.J.)
| | - Murielle Kluge
- School of Biomedical Sciences and Pharmacy (W.Z.C., C.T., M.K., G.P., K.Z.).,Hunter Medical Research Institute, Australia (L.K.O., A.B., F.R.W., M.N., W.Z.C., C.T., M.K., G.P., K.Z., S.J.J.)
| | - Giovanni Pietrogrande
- School of Biomedical Sciences and Pharmacy (W.Z.C., C.T., M.K., G.P., K.Z.).,Hunter Medical Research Institute, Australia (L.K.O., A.B., F.R.W., M.N., W.Z.C., C.T., M.K., G.P., K.Z., S.J.J.)
| | - Katarzyna Zalewska
- School of Biomedical Sciences and Pharmacy (W.Z.C., C.T., M.K., G.P., K.Z.).,Hunter Medical Research Institute, Australia (L.K.O., A.B., F.R.W., M.N., W.Z.C., C.T., M.K., G.P., K.Z., S.J.J.)
| | - Patricia Crock
- Department of Paediatric Endocrinology and Diabetes, Priority Research Centre Grow Up Well, John Hunter Children's Hospital (P.C.)
| | - N David Åberg
- Sahlgrenska University Hospital, University of Gothenburg, Sweden (N.D.A.)
| | - Andrew Bivard
- Department of Neurology, John Hunter Hospital (A.B.), University of Newcastle, Australia.,Hunter Medical Research Institute, Australia (L.K.O., A.B., F.R.W., M.N., W.Z.C., C.T., M.K., G.P., K.Z., S.J.J.)
| | - Sarah J Johnson
- School of Electrical Engineering and Computing (S.J.J.).,Hunter Medical Research Institute, Australia (L.K.O., A.B., F.R.W., M.N., W.Z.C., C.T., M.K., G.P., K.Z., S.J.J.)
| | - Frederick R Walker
- From the Priority Research Centre for Stroke and Brain Injury (L.K.O., F.R.W., M.N., J.I.).,Hunter Medical Research Institute, Australia (L.K.O., A.B., F.R.W., M.N., W.Z.C., C.T., M.K., G.P., K.Z., S.J.J.).,National Health and Medical Research Council Centre of Research Excellence Stroke Rehabilitation and Brain Recovery, Australia (F.R.W., M.N., L.K.O.)
| | - Michael Nilsson
- From the Priority Research Centre for Stroke and Brain Injury (L.K.O., F.R.W., M.N., J.I.).,Hunter Medical Research Institute, Australia (L.K.O., A.B., F.R.W., M.N., W.Z.C., C.T., M.K., G.P., K.Z., S.J.J.).,National Health and Medical Research Council Centre of Research Excellence Stroke Rehabilitation and Brain Recovery, Australia (F.R.W., M.N., L.K.O.)
| | - Jörgen Isgaard
- From the Priority Research Centre for Stroke and Brain Injury (L.K.O., F.R.W., M.N., J.I.) .,Centre for Brain Repair and Rehabilitation, Institute of Neuroscience and Physiology and Department of Internal Medicine (J.I.)
| |
Collapse
|
12
|
Macht VA, Reagan LP. Chronic stress from adolescence to aging in the prefrontal cortex: A neuroimmune perspective. Front Neuroendocrinol 2018; 49:31-42. [PMID: 29258741 DOI: 10.1016/j.yfrne.2017.12.001] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/14/2017] [Revised: 11/22/2017] [Accepted: 12/15/2017] [Indexed: 12/21/2022]
Abstract
The development of the organism is a critical variable which influences the magnitude, duration, and reversibility of the effects of chronic stress. Such factors are relevant to the prefrontal cortex (PFC), as this brain region is the last to mature, the first to decline, and is highly stress-sensitive. Therefore, this review will examine the intersection between the nervous system and immune system at glutamatergic synapses in the PFC across three developmental periods: adolescence, adulthood, and aging. Glutamatergic synapses are tightly juxtaposed with microglia and astrocytes, and each of these cell types exhibits their own developmental trajectory. Not only does chronic stress differentially impact each of these cell types across development, but chronic stress also alters intercellular communication within this quad-partite synapse. These observations suggest that developmental shifts in both neural and immune function across neurons, microglia, and astrocytes mediate shifting effects of chronic stress on glutamatergic transmission.
Collapse
Affiliation(s)
- Victoria A Macht
- University of South Carolina School of Medicine, Department of Pharmacology, Physiology, and Neuroscience, Columbia, SC, United States; University of South Carolina, Department of Psychology, Columbia, SC, United States.
| | - Lawrence P Reagan
- University of South Carolina School of Medicine, Department of Pharmacology, Physiology, and Neuroscience, Columbia, SC, United States; Wm. Jennings Bryan Dorn VA Medical Center, Columbia, SC, United States
| |
Collapse
|
13
|
Zalewska K, Pietrogrande G, Ong LK, Abdolhoseini M, Kluge M, Johnson SJ, Walker FR, Nilsson M. Sustained administration of corticosterone at stress-like levels after stroke suppressed glial reactivity at sites of thalamic secondary neurodegeneration. Brain Behav Immun 2018; 69:210-222. [PMID: 29162554 DOI: 10.1016/j.bbi.2017.11.014] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/05/2017] [Revised: 11/07/2017] [Accepted: 11/17/2017] [Indexed: 01/05/2023] Open
Abstract
Secondary neurodegeneration (SND) is an insidious and progressive condition involving the death of neurons in regions of the brain that were connected to but undamaged by the initial stroke. Our group have published compelling evidence that exposure to psychological stress can significantly exacerbate the severity SND, a finding that has considerable clinical implications given that stroke-survivors often report experiencing high and unremitting levels of psychological stress. It may be possible to use one or more targeted pharmacological approaches to limit the negative effects of stress on the recovery process but in order to move forward with this approach the most critical stress signals have to be identified. Accordingly, in the current study we have directed our attention to examining the potential effects of corticosterone, delivered orally at stress-like levels. Our interest is to determine how similar the effects of corticosterone are to stress on repair and remodelling that is known to occur after stroke. The study involved 4 groups, sham and stroke, either administered corticosterone or normal drinking water. The functional impact was assessed using the cylinder task for paw asymmetry, grid walk for sensorimotor function, inverted grid for muscle strength and coordination and open field for anxiety-like behaviour. Biochemically and histologically, we considered disturbances in main cellular elements of the neurovascular unit, including microglia, astrocytes, neurons and blood vessels using both immunohistochemistry and western blotting. In short, we identified that corticosterone delivery after stroke results in significant suppression of key microglial and astroglial markers. No changes were observed on the vasculature and in neuronal specific markers. No changes were identified for sensorimotor function or anxiety-like behaviour. We did, however, observe a significant change in motor function as assessed using the inverted grid walk test. Collectively, these results suggest that pharmacologically targeting corticosterone levels in the future may be warranted but that such an approach is unlikely to limit all the negative effects associated with exposure to chronic stress.
Collapse
Affiliation(s)
- Katarzyna Zalewska
- School of Biomedical Sciences and Pharmacy and the Priority Research Centre for Stroke and Brain Injury, University of Newcastle, Callaghan, NSW, Australia; Hunter Medical Research Institute, Newcastle, NSW, Australia
| | - Giovanni Pietrogrande
- School of Biomedical Sciences and Pharmacy and the Priority Research Centre for Stroke and Brain Injury, University of Newcastle, Callaghan, NSW, Australia; Hunter Medical Research Institute, Newcastle, NSW, Australia
| | - Lin Kooi Ong
- School of Biomedical Sciences and Pharmacy and the Priority Research Centre for Stroke and Brain Injury, University of Newcastle, Callaghan, NSW, Australia; Hunter Medical Research Institute, Newcastle, NSW, Australia; NHMRC Centre of Research Excellence Stroke Rehabilitation and Brain Recovery, Australia
| | - Mahmoud Abdolhoseini
- School of Electrical Engineering and Computer Science, University of Newcastle, Callaghan, NSW, Australia
| | - Murielle Kluge
- School of Biomedical Sciences and Pharmacy and the Priority Research Centre for Stroke and Brain Injury, University of Newcastle, Callaghan, NSW, Australia; Hunter Medical Research Institute, Newcastle, NSW, Australia
| | - Sarah J Johnson
- School of Electrical Engineering and Computer Science, University of Newcastle, Callaghan, NSW, Australia
| | - Frederick R Walker
- School of Biomedical Sciences and Pharmacy and the Priority Research Centre for Stroke and Brain Injury, University of Newcastle, Callaghan, NSW, Australia; Hunter Medical Research Institute, Newcastle, NSW, Australia; NHMRC Centre of Research Excellence Stroke Rehabilitation and Brain Recovery, Australia.
| | - Michael Nilsson
- School of Biomedical Sciences and Pharmacy and the Priority Research Centre for Stroke and Brain Injury, University of Newcastle, Callaghan, NSW, Australia; Hunter Medical Research Institute, Newcastle, NSW, Australia; NHMRC Centre of Research Excellence Stroke Rehabilitation and Brain Recovery, Australia
| |
Collapse
|
14
|
Pietrogrande G, Mabotuwana N, Zhao Z, Abdolhoseini M, Johnson SJ, Nilsson M, Walker FR. Chronic stress induced disturbances in Laminin: A significant contributor to modulating microglial pro-inflammatory tone? Brain Behav Immun 2018; 68:23-33. [PMID: 28943293 DOI: 10.1016/j.bbi.2017.09.012] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/07/2017] [Revised: 09/10/2017] [Accepted: 09/21/2017] [Indexed: 12/22/2022] Open
Abstract
Over the last decade, evidence supporting a link between microglia enhanced neuro-inflammatory signalling and mood disturbance has continued to build. One issue that has not been well addressed yet are the factors that drive microglia to enter into a higher pro-inflammatory state. The current study addressed the potential role of the extracellular matrix protein Laminin. C57BL6 adult mice were either exposed to chronic stress or handled for 6 consecutive weeks. Changes in Laminin, microglial morphology and pro-inflammatory cytokine expression were examined in tissue obtained from mice exposed to a chronic restraint stress procedure. These in vivo investigations were complemented by an extensive set of in vitro experiments utilising both a primary microglia and BV2 cell line to examine how Laminin influenced microglial pro-inflammatory tone. Chronic stress enhanced the expression of Laminin, microglial de-ramification and pro-inflammatory cytokine signalling. We further identified that microglia when cultured in the presence of Laminin produced and released significantly greater levels of pro-inflammatory cytokines; took longer to return to baseline following stimulation and exhibited enhanced phagocytic activity. These results suggest that chronic restraint stress is capable of modulating Laminin within the CNS, an effect that has implications for understanding environmental mediated disturbances of microglial function.
Collapse
Affiliation(s)
- Giovanni Pietrogrande
- School of Biomedical Sciences and Pharmacy and the Priority Research Centre for Stroke and Brain Injury, University of Newcastle, Callaghan 2308, NSW, Australia; Hunter Medical Research Institute, Newcastle 2305, NSW, Australia
| | | | - Zidan Zhao
- School of Biomedical Sciences and Pharmacy and the Priority Research Centre for Stroke and Brain Injury, University of Newcastle, Callaghan 2308, NSW, Australia; Hunter Medical Research Institute, Newcastle 2305, NSW, Australia
| | - Mahmoud Abdolhoseini
- School of Electrical Engineering and Computer Science, University of Newcastle Callaghan 2308, NSW, Australia
| | - Sarah J Johnson
- School of Electrical Engineering and Computer Science, University of Newcastle Callaghan 2308, NSW, Australia
| | - Michael Nilsson
- School of Biomedical Sciences and Pharmacy and the Priority Research Centre for Stroke and Brain Injury, University of Newcastle, Callaghan 2308, NSW, Australia; Hunter Medical Research Institute, Newcastle 2305, NSW, Australia
| | - Frederick R Walker
- School of Biomedical Sciences and Pharmacy and the Priority Research Centre for Stroke and Brain Injury, University of Newcastle, Callaghan 2308, NSW, Australia; Hunter Medical Research Institute, Newcastle 2305, NSW, Australia.
| |
Collapse
|
15
|
Tay TL, Béchade C, D'Andrea I, St-Pierre MK, Henry MS, Roumier A, Tremblay ME. Microglia Gone Rogue: Impacts on Psychiatric Disorders across the Lifespan. Front Mol Neurosci 2018; 10:421. [PMID: 29354029 PMCID: PMC5758507 DOI: 10.3389/fnmol.2017.00421] [Citation(s) in RCA: 138] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2017] [Accepted: 12/04/2017] [Indexed: 12/21/2022] Open
Abstract
Microglia are the predominant immune response cells and professional phagocytes of the central nervous system (CNS) that have been shown to be important for brain development and homeostasis. These cells present a broad spectrum of phenotypes across stages of the lifespan and especially in CNS diseases. Their prevalence in all neurological pathologies makes it pertinent to reexamine their distinct roles during steady-state and disease conditions. A major question in the field is determining whether the clustering and phenotypical transformation of microglial cells are leading causes of pathogenesis, or potentially neuroprotective responses to the onset of disease. The recent explosive growth in our understanding of the origin and homeostasis of microglia, uncovering their roles in shaping of the neural circuitry and synaptic plasticity, allows us to discuss their emerging functions in the contexts of cognitive control and psychiatric disorders. The distinct mesodermal origin and genetic signature of microglia in contrast to other neuroglial cells also make them an interesting target for the development of therapeutics. Here, we review the physiological roles of microglia, their contribution to the effects of environmental risk factors (e.g., maternal infection, early-life stress, dietary imbalance), and their impact on psychiatric disorders initiated during development (e.g., Nasu-Hakola disease (NHD), hereditary diffuse leukoencephaly with spheroids, Rett syndrome, autism spectrum disorders (ASDs), and obsessive-compulsive disorder (OCD)) or adulthood (e.g., alcohol and drug abuse, major depressive disorder (MDD), bipolar disorder (BD), schizophrenia, eating disorders and sleep disorders). Furthermore, we discuss the changes in microglial functions in the context of cognitive aging, and review their implication in neurodegenerative diseases of the aged adult (e.g., Alzheimer’s and Parkinson’s). Taking into account the recent identification of microglia-specific markers, and the availability of compounds that target these cells selectively in vivo, we consider the prospect of disease intervention via the microglial route.
Collapse
Affiliation(s)
- Tuan Leng Tay
- Institute of Neuropathology, University of Freiburg, Freiburg, Germany.,Faculty of Biology, University of Freiburg, Freiburg, Germany
| | - Catherine Béchade
- INSERM UMR-S 839, Paris, France.,Sorbonne Universités, Université Pierre et Marie Curie (UPMC), Paris, France.,Institut du Fer à Moulin, Paris, France
| | - Ivana D'Andrea
- INSERM UMR-S 839, Paris, France.,Sorbonne Universités, Université Pierre et Marie Curie (UPMC), Paris, France.,Institut du Fer à Moulin, Paris, France
| | | | - Mathilde S Henry
- Axe Neurosciences, CRCHU de Québec-Université Laval, Québec, QC, Canada
| | - Anne Roumier
- INSERM UMR-S 839, Paris, France.,Sorbonne Universités, Université Pierre et Marie Curie (UPMC), Paris, France.,Institut du Fer à Moulin, Paris, France
| | - Marie-Eve Tremblay
- Axe Neurosciences, CRCHU de Québec-Université Laval, Québec, QC, Canada.,Département de Médecine Moléculaire, Université Laval, Québec, QC, Canada
| |
Collapse
|
16
|
Zhao Z, Ong LK, Johnson S, Nilsson M, Walker FR. Chronic stress induced disruption of the peri-infarct neurovascular unit following experimentally induced photothrombotic stroke. J Cereb Blood Flow Metab 2017; 37:3709-3724. [PMID: 28304184 PMCID: PMC5718325 DOI: 10.1177/0271678x17696100] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
How stress influences brain repair is an issue of considerable importance, as patients recovering from stroke are known to experience high and often unremitting levels of stress post-event. In the current study, we investigated how chronic stress modified the key cellular components of the neurovascular unit. Using an experimental model of focal cortical ischemia in male C57BL/6 mice, we examined how exposure to a persistently aversive environment, induced by the application of chronic restraint stress, altered the cortical remodeling post-stroke. We focused on systematically investigating changes in the key components of the neurovascular unit (i.e. neurons, microglia, astrocytes, and blood vessels) within the peri-infarct territories using both immunohistochemistry and Western blotting. The results from our study indicated that exposure to chronic stress exerted a significant suppressive effect on each of the key cellular components involved in neurovascular remodeling. Co-incident with these cellular changes, we observed that chronic stress was associated with an exacerbation of motor impairment 42 days post-event. Collectively, these results highlight the vulnerability of the peri-infarct neurovascular unit to the negative effects of chronic stress.
Collapse
Affiliation(s)
- Zidan Zhao
- 1 School of Biomedical Sciences and Pharmacy and the Priority Research Centre for Stroke and Brain Injury, University of Newcastle, Callaghan, NSW, Australia.,2 Hunter Medical Research Institute, Newcastle, NSW, Australia.,3 NHMRC Centre of Research Excellence Stroke Rehabilitation and Brain Recovery, Australia
| | - Lin Kooi Ong
- 1 School of Biomedical Sciences and Pharmacy and the Priority Research Centre for Stroke and Brain Injury, University of Newcastle, Callaghan, NSW, Australia.,2 Hunter Medical Research Institute, Newcastle, NSW, Australia.,3 NHMRC Centre of Research Excellence Stroke Rehabilitation and Brain Recovery, Australia
| | - Sarah Johnson
- 4 School of Electrical Engineering and Computer Science, University of Newcastle, Callaghan, NSW, Australia
| | - Michael Nilsson
- 1 School of Biomedical Sciences and Pharmacy and the Priority Research Centre for Stroke and Brain Injury, University of Newcastle, Callaghan, NSW, Australia.,2 Hunter Medical Research Institute, Newcastle, NSW, Australia.,3 NHMRC Centre of Research Excellence Stroke Rehabilitation and Brain Recovery, Australia
| | - Frederick R Walker
- 1 School of Biomedical Sciences and Pharmacy and the Priority Research Centre for Stroke and Brain Injury, University of Newcastle, Callaghan, NSW, Australia.,2 Hunter Medical Research Institute, Newcastle, NSW, Australia.,3 NHMRC Centre of Research Excellence Stroke Rehabilitation and Brain Recovery, Australia
| |
Collapse
|
17
|
Mori S, Sugama S, Nguyen W, Michel T, Sanna MG, Sanchez-Alavez M, Cintron-Colon R, Moroncini G, Kakinuma Y, Maher P, Conti B. Lack of interleukin-13 receptor α1 delays the loss of dopaminergic neurons during chronic stress. J Neuroinflammation 2017; 14:88. [PMID: 28427412 PMCID: PMC5399344 DOI: 10.1186/s12974-017-0862-1] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2016] [Accepted: 04/07/2017] [Indexed: 12/23/2022] Open
Abstract
Background The majority of Parkinson’s disease (PD) cases are sporadic and idiopathic suggesting that this neurodegenerative disorder is the result of both environmental and genetic factors. Stress and neuroinflammation are among the factors being investigated for their possible contributions to PD. Experiments in rodents showed that severe chronic stress can reduce the number of dopaminergic neurons in the substantia nigra pars compacta (SNc); the same cells that are lost in PD. These actions are at least in part mediated by increased oxidative stress. Here, we tested the hypothesis that the interleukin-13 receptor alpha 1 (IL-13Rα1), a cytokine receptor whose activation increases the vulnerability of dopaminergic neurons to oxidative damage, participates in the stress-dependent damage of these neurons. Methods Mice were subject to daily sessions of 8 h (acute) stress for 16 weeks (5 days a week), a procedure previously showed to induce loss of dopaminergic neurons in the SNc. The source and the kinetics of interleukin-13 (IL-13), the endogenous ligand of IL-13Rα1, were evaluated 0, 1, 3, 6, and 8 h and at 16 weeks of stress. Identification of IL-13 producing cell-type was performed by immunofluorescent and by in situ hybridization experiments. Markers of oxidative stress, microglia activation, and the number of dopaminergic neurons in IL-13Rα1 knock-out animals (Il13ra1Y/−) and their wild-type littermates (Il13ra1Y/+) were evaluated at 16 weeks of stress and at 20 weeks, following a 4 week non-stressed period and compared to non-stressed mice. Results IL-13 was expressed in microglial cells within the SN and in a fraction of the tyrosine hydroxylase-positive neurons in the SNc. IL-13 levels were elevated during daily stress and peaked at 6 h. 16 weeks of chronic restraint stress significantly reduced the number of SNc dopaminergic neurons in Il13ra1Y/+mice. Neuronal loss at 16 weeks was significantly lower in Il13ra1Y/− mice. However, the loss of dopaminergic neurons measured at 20 weeks, after 4 weeks of non-stress following the 16 weeks of stress, was similar in Il13ra1Y/+ and Il13ra1Y/− mice. Conclusions IL-13, a cytokine previously demonstrated to increase the susceptibility of SNc dopaminergic neurons to oxidative stress, is elevated in the SN by restraint stress. Lack of IL-13Rα1 did not prevent nor halted but delayed neuronal loss in the mouse model of chronic restraint stress. IL-13/IL-13Rα1 may represent a target to reduce the rate of DA neuronal loss that can occur during severe chronic restraint stress. Electronic supplementary material The online version of this article (doi:10.1186/s12974-017-0862-1) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Simone Mori
- Department of Molecular Medicine, The Scripps Research Institute, 10550 N. Torrey Pines Road, La Jolla, CA, 92037, USA
| | - Shuei Sugama
- Department of Physiology, Nippon Medical School, Tokyo, 113-8602, Japan
| | - William Nguyen
- Department of Molecular Medicine, The Scripps Research Institute, 10550 N. Torrey Pines Road, La Jolla, CA, 92037, USA
| | - Tatiana Michel
- Department of Molecular Medicine, The Scripps Research Institute, 10550 N. Torrey Pines Road, La Jolla, CA, 92037, USA.,Department of Infection and Immunity, Luxembourg Institute of Health, Esch-sur-Alzette, L-4354, Luxembourg
| | - M Germana Sanna
- Department of Molecular Medicine, The Scripps Research Institute, 10550 N. Torrey Pines Road, La Jolla, CA, 92037, USA
| | - Manuel Sanchez-Alavez
- Department of Neuroscience, The Scripps Research Institute, 10550 N. Torrey Pines Road, La Jolla, CA, 92037, USA
| | - Rigo Cintron-Colon
- Department of Molecular Medicine, The Scripps Research Institute, 10550 N. Torrey Pines Road, La Jolla, CA, 92037, USA
| | - Gianluca Moroncini
- Dipartimento di Scienze Cliniche e Molecolari, Università Politecnica delle Marche, 60020, Ancona, Italy
| | | | - Pamela Maher
- Cellular Neurobiology Laboratory, Salk Institute for Biological Studies, La Jolla, CA, 92307, USA
| | - Bruno Conti
- Department of Molecular Medicine, The Scripps Research Institute, 10550 N. Torrey Pines Road, La Jolla, CA, 92037, USA. .,Department of Neuroscience, The Scripps Research Institute, 10550 N. Torrey Pines Road, La Jolla, CA, 92037, USA. .,Dorris Neuroscience Center, The Scripps Research Institute, 10550 N. Torrey Pines Road, La Jolla, CA, 92037, USA.
| |
Collapse
|
18
|
Sugama S, Kakinuma Y. Letter to the Editor Re: "Reconsidering the role of glial cells in chronic stress-induced dopaminergic neurons loss within the substantia nigra? Friend of foe?" by Ong et al. Brain Behavior and Immunity, 2016. Brain Behav Immun 2017; 60:383. [PMID: 27915071 DOI: 10.1016/j.bbi.2016.11.028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/11/2016] [Accepted: 11/29/2016] [Indexed: 11/28/2022] Open
Affiliation(s)
- Shuei Sugama
- Department of Physiology, Nippon Medical School, 1-1-5 Sendagi, Bunkyo-ku, Tokyo 113-8602, Japan.
| | - Yoshihiko Kakinuma
- Department of Physiology, Nippon Medical School, 1-1-5 Sendagi, Bunkyo-ku, Tokyo 113-8602, Japan
| |
Collapse
|
19
|
Authors' response re: "Reconsidering the role of glial cells in chronic stress-induced dopaminergic neurons loss within the substantia nigra? Friend of foe?" by Ong et al. Brain Behavior and Immunity, 2016. Brain Behav Immun 2017; 60:384. [PMID: 27915072 DOI: 10.1016/j.bbi.2016.11.029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/29/2016] [Accepted: 11/29/2016] [Indexed: 11/20/2022] Open
|