1
|
Gupta RA, Higham JP, Pearce A, Urriola-Muñoz P, Barker KH, Paine L, Ghooraroo J, Raine T, Hockley JRF, Rahman T, St John Smith E, Brown AJH, Ladds G, Suzuki R, Bulmer DC. GPR35 agonists inhibit TRPA1-mediated colonic nociception through suppression of substance P release. Pain 2024:00006396-990000000-00727. [PMID: 39382322 DOI: 10.1097/j.pain.0000000000003399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Accepted: 07/25/2024] [Indexed: 10/10/2024]
Abstract
ABSTRACT The development of nonopioid analgesics for the treatment of abdominal pain is a pressing clinical problem. To address this, we examined the expression of Gi/o-coupled receptors, which typically inhibit nociceptor activation, in colonic sensory neurons. This led to the identification of the orphan receptor GPR35 as a visceral analgesic drug target because of its marked coexpression with transient receptor potential ankyrin 1 (TRPA1), a mediator of noxious mechanotransduction in the bowel. Building on in silico docking simulations, we confirmed that the mast cell stabiliser, cromolyn (CS), and phosphodiesterase inhibitor, zaprinast, are agonists at mouse GPR35, promoting the activation of different Gi/o subunits. Pretreatment with either CS or zaprinast significantly attenuated TRPA1-mediated colonic nociceptor activation and prevented TRPA1-mediated mechanosensitisation. These effects were lost in tissue from GPR35-/- mice and were shown to be mediated by inhibition of TRPA1-evoked substance P (SP) release. This observation highlights the pronociceptive effect of SP and its contribution to TRPA1-mediated colonic nociceptor activation and sensitisation. Consistent with this mechanism of action, we confirmed that TRPA1-mediated colonic contractions evoked by SP release were abolished by CS pretreatment in a GPR35-dependent manner. Our data demonstrate that GPR35 agonists prevent the activation and sensitisation of colonic nociceptors through the inhibition of TRPA1-mediated SP release. These findings highlight the potential of GPR35 agonists to deliver nonopioid analgesia for the treatment of abdominal pain.
Collapse
Affiliation(s)
- Rohit A Gupta
- Department of Pharmacology, University of Cambridge, Tennis Court Road, Cambridge, United Kingdom
| | - James P Higham
- Department of Pharmacology, University of Cambridge, Tennis Court Road, Cambridge, United Kingdom
| | - Abigail Pearce
- Department of Pharmacology, University of Cambridge, Tennis Court Road, Cambridge, United Kingdom
| | - Paulina Urriola-Muñoz
- Department of Pharmacology, University of Cambridge, Tennis Court Road, Cambridge, United Kingdom
| | - Katie H Barker
- Department of Pharmacology, University of Cambridge, Tennis Court Road, Cambridge, United Kingdom
| | - Luke Paine
- Department of Pharmacology, University of Cambridge, Tennis Court Road, Cambridge, United Kingdom
| | - Joshua Ghooraroo
- Department of Pharmacology, University of Cambridge, Tennis Court Road, Cambridge, United Kingdom
| | - Tim Raine
- Department of Gastroenterology, Addenbrookes Hospital, Cambridge University Teaching Hospitals, Cambridge, United Kingdom
| | - James R F Hockley
- Department of Pharmacology, University of Cambridge, Tennis Court Road, Cambridge, United Kingdom
| | - Taufiq Rahman
- Department of Pharmacology, University of Cambridge, Tennis Court Road, Cambridge, United Kingdom
| | - Ewan St John Smith
- Department of Pharmacology, University of Cambridge, Tennis Court Road, Cambridge, United Kingdom
| | - Alastair J H Brown
- Nxera, Steinmetz Building, Granta Park Great Abington, Cambridge, United Kingdom
| | - Graham Ladds
- Department of Pharmacology, University of Cambridge, Tennis Court Road, Cambridge, United Kingdom
| | - Rie Suzuki
- Nxera, Steinmetz Building, Granta Park Great Abington, Cambridge, United Kingdom
| | - David C Bulmer
- Department of Pharmacology, University of Cambridge, Tennis Court Road, Cambridge, United Kingdom
| |
Collapse
|
2
|
Makaro A, Świerczyński M, Pokora K, Sarniak B, Kordek R, Fichna J, Salaga M. Empagliflozin attenuates intestinal inflammation through suppression of nitric oxide synthesis and myeloperoxidase activity in in vitro and in vivo models of colitis. Inflammopharmacology 2024; 32:377-392. [PMID: 37086302 PMCID: PMC10907478 DOI: 10.1007/s10787-023-01227-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Accepted: 04/07/2023] [Indexed: 04/23/2023]
Abstract
Inflammatory bowel diseases (IBD) are characterized by chronic and relapsing inflammation affecting the gastrointestinal (GI) tract. The incidence and prevalence of IBD are relatively high and still increasing. Additionally, current therapeutic strategies for IBD are not optimal. These facts urge todays' medicine to find a novel way to treat IBD. Here, we focused on the group of anti-diabetic drugs called gliflozins, which inhibit sodium glucose co-transporter type 2 (SGLT-2). Numerous studies demonstrated that gliflozins exhibit pleiotropic effect, including anti-inflammatory properties. In this study, we tested the effect of three gliflozins; empagliflozin (EMPA), dapagliflozin (DAPA), and canagliflozin (CANA) in in vitro and in vivo models of intestinal inflammation. Our in vitro experiments revealed that EMPA and DAPA suppress the production of nitric oxide in LPS-treated murine RAW264.7 macrophages. In in vivo part of our study, we showed that EMPA alleviates acute DSS-induced colitis in mice. Treatment with EMPA reduced macro- and microscopic colonic damage, as well as partially prevented from decrease in tight junction gene expression. Moreover, EMPA attenuated biochemical inflammatory parameters including reduced activity of myeloperoxidase. We showed that SGLT-2 inhibitors act as anti-inflammatory agents independently from their hypoglycemic effects. Our observations suggest that gliflozins alleviate inflammation through their potent effects on innate immune cells.
Collapse
Affiliation(s)
- Adam Makaro
- Department of Biochemistry, Faculty of Medicine, Medical University of Lodz, Lodz, Poland
| | - Mikołaj Świerczyński
- Department of Biochemistry, Faculty of Medicine, Medical University of Lodz, Lodz, Poland
| | - Kacper Pokora
- Department of Biochemistry, Faculty of Medicine, Medical University of Lodz, Lodz, Poland
| | - Barbara Sarniak
- Department of Biochemistry, Faculty of Medicine, Medical University of Lodz, Lodz, Poland
| | - Radzisław Kordek
- Department of Pathology, Faculty of Medicine, Medical University of Lodz, Lodz, Poland
| | - Jakub Fichna
- Department of Biochemistry, Faculty of Medicine, Medical University of Lodz, Lodz, Poland
| | - Maciej Salaga
- Department of Biochemistry, Faculty of Medicine, Medical University of Lodz, Lodz, Poland.
| |
Collapse
|
3
|
Yao K, Dou B, Zhang Y, Chen Z, Li Y, Fan Z, Ma Y, Du S, Wang J, Xu Z, Liu Y, Lin X, Wang S, Guo Y. Inflammation-the role of TRPA1 channel. Front Physiol 2023; 14:1093925. [PMID: 36875034 PMCID: PMC9977828 DOI: 10.3389/fphys.2023.1093925] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Accepted: 02/08/2023] [Indexed: 02/18/2023] Open
Abstract
Recently, increasing numbers of studies have demonstrated that transient receptor potential ankyrin 1 (TRPA1) can be used as a potential target for the treatment of inflammatory diseases. TRPA1 is expressed in both neuronal and non-neuronal cells and is involved in diverse physiological activities, such as stabilizing of cell membrane potential, maintaining cellular humoral balance, and regulating intercellular signal transduction. TRPA1 is a multi-modal cell membrane receptor that can sense different stimuli, and generate action potential signals after activation via osmotic pressure, temperature, and inflammatory factors. In this study, we introduced the latest research progress on TRPA1 in inflammatory diseases from three different aspects. First, the inflammatory factors released after inflammation interacts with TRPA1 to promote inflammatory response; second, TRPA1 regulates the function of immune cells such as macrophages and T cells, In addition, it has anti-inflammatory and antioxidant effects in some inflammatory diseases. Third, we have summarized the application of antagonists and agonists targeting TRPA1 in the treatment of some inflammatory diseases.
Collapse
Affiliation(s)
- Kaifang Yao
- Research Center of Experimental Acupuncture Science, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Baomin Dou
- Research Center of Experimental Acupuncture Science, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Yue Zhang
- Research Center of Experimental Acupuncture Science, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Zhihan Chen
- Research Center of Experimental Acupuncture Science, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Yanwei Li
- Research Center of Experimental Acupuncture Science, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Zezhi Fan
- Research Center of Experimental Acupuncture Science, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Yajing Ma
- Research Center of Experimental Acupuncture Science, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Simin Du
- Research Center of Experimental Acupuncture Science, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Jiangshan Wang
- Research Center of Experimental Acupuncture Science, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Zhifang Xu
- Research Center of Experimental Acupuncture Science, Tianjin University of Traditional Chinese Medicine, Tianjin, China.,School of Acupuncture & Moxibustion and Tuina, Tianjin University of Traditional Chinese Medicine, Tianjin, China.,National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China
| | - Yangyang Liu
- Research Center of Experimental Acupuncture Science, Tianjin University of Traditional Chinese Medicine, Tianjin, China.,School of Acupuncture & Moxibustion and Tuina, Tianjin University of Traditional Chinese Medicine, Tianjin, China.,National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China
| | - Xiaowei Lin
- Research Center of Experimental Acupuncture Science, Tianjin University of Traditional Chinese Medicine, Tianjin, China.,School of Acupuncture & Moxibustion and Tuina, Tianjin University of Traditional Chinese Medicine, Tianjin, China.,National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China
| | - Shenjun Wang
- Research Center of Experimental Acupuncture Science, Tianjin University of Traditional Chinese Medicine, Tianjin, China.,School of Acupuncture & Moxibustion and Tuina, Tianjin University of Traditional Chinese Medicine, Tianjin, China.,National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China
| | - Yi Guo
- Research Center of Experimental Acupuncture Science, Tianjin University of Traditional Chinese Medicine, Tianjin, China.,National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China.,School of Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| |
Collapse
|
4
|
Dai YC, Qiao D, Fang CY, Chen QQ, Que RY, Xiao TG, Zheng L, Wang LJ, Zhang YL. Single-cell RNA-sequencing combined with bulk RNA-sequencing analysis of peripheral blood reveals the characteristics and key immune cell genes of ulcerative colitis. World J Clin Cases 2022; 10:12116-12135. [PMID: 36483809 PMCID: PMC9724533 DOI: 10.12998/wjcc.v10.i33.12116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 09/27/2022] [Accepted: 10/27/2022] [Indexed: 11/22/2022] Open
Abstract
BACKGROUND Ulcerative colitis (UC) is a complicated disease caused by the interaction between genetic and environmental factors that affects mucosal homeostasis and triggers an inappropriate immune response. Single-cell RNA sequencing (scRNA-seq) can be used to rapidly obtain the precise gene expression patterns of thousands of cells in the intestine, analyze the characteristics of cells with the same phenotype, and provide new insights into the growth and development of intestinal organs, the clonal evolution of cells, and immune cell changes. These findings can provide new ideas for the diagnosis and treatment of intestinal diseases.
AIM To identify clinical phenotypes and biomarkers that can predict the response of UC patients to specific therapeutic drugs and thus aid the diagnosis and treatment of UC.
METHODS Using the Gene Expression Omnibus (GEO) database, we analyzed peripheral blood cell subtypes of patients with UC by scRNA-seq combined with bulk RNA sequencing (RNA-seq) to reveal the core genes of UC. We then combined weighted gene correlation network analysis (WGCNA) and least absolute shrinkage and selection operator (LASSO) analysis to reveal diagnostic markers of UC.
RESULTS After processing the scRNA-seq data, we obtained data from approximately 24340 cells and identified 17 cell types. Through intercellular communication analysis, we selected monocyte marker genes as the candidate gene set for the prediction model. Construction of a WGCNA coexpression network identified RhoB, cathepsin D (CTSD) and zyxin (ZYX) as core genes. Immune infiltration analysis showed that these three core genes were strongly correlated with immune cells. Functional enrichment analysis showed that the differentially expressed genes were closely related to immune and inflammatory responses, which are associated with many challenges in the diagnosis and treatment of UC.
CONCLUSION Through scRNA-seq analysis, LASSO diagnostic model building and WGCNA, we identified RhoB, CTSD and ZYX as core genes of UC that are closely related to monocyte infiltration that may serve as diagnostic markers and molecular targets for UC therapeutic intervention.
Collapse
Affiliation(s)
- Yan-Cheng Dai
- Department of Gastroenterology, Shanghai Traditional Chinese Medicine-Integrated Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200082, China
| | - Dan Qiao
- Department of Gastroenterology, Shanghai Traditional Chinese Medicine-Integrated Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200082, China
| | - Chen-Ye Fang
- Department of Gastroenterology, Traditional Chinese Medicine Hospital of Ningbo, Ningbo 315000, Zhejiang Province, China
| | - Qiu-Qin Chen
- Department of Pathology, Shanghai Traditional Chinese Medicine-Integrated Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200082, China
| | - Ren-Ye Que
- Department of Gastroenterology, Shanghai Traditional Chinese Medicine-Integrated Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200082, China
| | - Tie-Gang Xiao
- Department of Gastroenterology, Shanghai Traditional Chinese Medicine-Integrated Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200082, China
| | - Lie Zheng
- Department of Gastroenterology, Traditional Chinese Medicine Hospital of Xi’an 730000, Shaanxi Province, China
| | - Li-Juan Wang
- Experimental Education Center, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Ya-Li Zhang
- Institute of Digestive Diseases, LongHua Hospital Shanghai University of Traditional Chinese Medicine, Shanghai 200032, China
| |
Collapse
|
5
|
Hong ZS, Xie J, Wang XF, Dai JJ, Mao JY, Bai YY, Sheng J, Tian Y. Moringa oleifera Lam. Peptide Remodels Intestinal Mucosal Barrier by Inhibiting JAK-STAT Activation and Modulating Gut Microbiota in Colitis. Front Immunol 2022; 13:924178. [PMID: 35911761 PMCID: PMC9336532 DOI: 10.3389/fimmu.2022.924178] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Accepted: 06/20/2022] [Indexed: 12/11/2022] Open
Abstract
Ulcerative colitis is a chronic inflammatory bowel disease (IBD), but progress in exploring its pathogenesis and finding effective drugs for its prevention and treatment has stalled in recent years. The seeds of Moringa oleifera Lam. are rich in proteins known to have multiple physiological activities. In our earlier work, we had isolated and purified a peptide (MOP) having the sequence KETTTIVR, from M. oleifera seeds; however, its anti-inflammatory activity and mechanism in vivo were unclear. Here we used the dextran sulfate sodium (DSS)-induced colitis model to study the anti-inflammatory activity and mechanism of this MOP. Our results are the first to show that MOP can ameliorate the pathological phenotype, inflammation, and intestinal barrier disruption in mice with colitis. Furthermore, RNA sequencing revealed that MOP inhibits the Janus kinase/signal transducer and activator of transcription (JAK-STAT) pathway activation. Next, by using 16s rRNA gene sequencing, we found that MOP can ameliorate DSS-induced gut microbiota dysbiosis. In addition, an untargeted metabolomics analysis suggested that MOP is able to modulate the level of lipid and amino acid metabolites in IBD-stricken mice. Altogether, these results indicate that MOP ameliorates colitis by remodeling intestinal mucosal barrier by inhibiting JAK-STAT pathway’s activation and regulating gut microbiota and its metabolites, thus providing a basis for further processing and design of bioactive foods from M. oleifera seeds.
Collapse
Affiliation(s)
- Zi-Shan Hong
- College of Food Science and Technology, Yunnan Agricultural University, Kunming, China
- National Research and Development Professional Center for Moringa Processing Technology, Yunnan Agricultural University, Kunming, China
| | - Jing Xie
- College of Food Science and Technology, Yunnan Agricultural University, Kunming, China
- National Research and Development Professional Center for Moringa Processing Technology, Yunnan Agricultural University, Kunming, China
- Engineering Research Center of Development and Utilization of Food and Drug Homologous Resources, Ministry of Education, Yunnan Agricultural University, Kunming, China
| | - Xue-Feng Wang
- College of Food Science and Technology, Yunnan Agricultural University, Kunming, China
- Yunnan Provincial Engineering Research Center for Edible and Medicinal Homologous Functional Food, Yunnan Agricultural University, Kunming, China
| | - Jing-Jing Dai
- College of Food Science and Technology, Yunnan Agricultural University, Kunming, China
- National Research and Development Professional Center for Moringa Processing Technology, Yunnan Agricultural University, Kunming, China
- Engineering Research Center of Development and Utilization of Food and Drug Homologous Resources, Ministry of Education, Yunnan Agricultural University, Kunming, China
| | - Jia-Ying Mao
- College of Food Science and Technology, Yunnan Agricultural University, Kunming, China
- National Research and Development Professional Center for Moringa Processing Technology, Yunnan Agricultural University, Kunming, China
- Yunnan Provincial Engineering Research Center for Edible and Medicinal Homologous Functional Food, Yunnan Agricultural University, Kunming, China
| | - Yu-Ying Bai
- College of Food Science and Technology, Yunnan Agricultural University, Kunming, China
- Engineering Research Center of Development and Utilization of Food and Drug Homologous Resources, Ministry of Education, Yunnan Agricultural University, Kunming, China
- Yunnan Provincial Engineering Research Center for Edible and Medicinal Homologous Functional Food, Yunnan Agricultural University, Kunming, China
| | - Jun Sheng
- College of Food Science and Technology, Yunnan Agricultural University, Kunming, China
- Key Laboratory of Pu-er Tea Science, Ministry of Education, Yunnan Agricultural University, Kunming, China
- *Correspondence: Jun Sheng, ; Yang Tian,
| | - Yang Tian
- College of Food Science and Technology, Yunnan Agricultural University, Kunming, China
- Engineering Research Center of Development and Utilization of Food and Drug Homologous Resources, Ministry of Education, Yunnan Agricultural University, Kunming, China
- *Correspondence: Jun Sheng, ; Yang Tian,
| |
Collapse
|
6
|
Feng J, Hibberd TJ, Luo J, Yang P, Xie Z, Travis L, Spencer NJ, Hu H. Modification of Neurogenic Colonic Motor Behaviours by Chemogenetic Ablation of Calretinin Neurons. Front Cell Neurosci 2022; 16:799717. [PMID: 35317196 PMCID: PMC8934436 DOI: 10.3389/fncel.2022.799717] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Accepted: 01/31/2022] [Indexed: 12/31/2022] Open
Abstract
How the enteric nervous system determines the pacing and propagation direction of neurogenic contractions along the colon remains largely unknown. We used a chemogenetic strategy to ablate enteric neurons expressing calretinin (CAL). Mice expressing human diphtheria toxin receptor (DTR) in CAL neurons were generated by crossing CAL-ires-Cre mice with Cre-dependent ROSA26-DTR mice. Immunohistochemical analysis revealed treatment with diphtheria toxin incurred a 42% reduction in counts of Hu-expressing colonic myenteric neurons (P = 0.036), and 57% loss of CAL neurons (comprising ∼25% of all Hu neurons; P = 0.004) compared to control. As proportions of Hu-expressing neurons, CAL neurons that contained nitric oxide synthase (NOS) were relatively spared (control: 15 ± 2%, CAL-DTR: 13 ± 1%; P = 0.145), while calretinin neurons lacking NOS were significantly reduced (control: 26 ± 2%, CAL-DTR: 18 ± 5%; P = 0.010). Colonic length and pellet sizes were significantly reduced without overt inflammation or changes in ganglionic density. Interestingly, colonic motor complexes (CMCs) persisted with increased frequency (mid-colon interval 111 ± 19 vs. 189 ± 24 s, CAL-DTR vs. control, respectively, P < 0.001), decreased contraction size (mid-colon AUC 26 ± 24 vs. 59 ± 13 gram/seconds, CAL-DTR vs. control, respectively, P < 0.001), and lacked preferential anterograde migration (P < 0.001). The functional effects of modest calretinin neuron ablation, particularly increased neurogenic motor activity frequencies, differ from models that incur general enteric neuron loss, and suggest calretinin neurons may contribute to pacing, force, and polarity of CMCs in the large bowel.
Collapse
Affiliation(s)
- Jing Feng
- Center for the Study of Itch and Sensory Disorders, Department of Anesthesiology, Washington University School of Medicine, St. Louis, MO, United States
- Center for Neurological and Psychiatric Research and Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Tim J. Hibberd
- College of Medicine and Public Health, Centre for Neuroscience, Flinders University, Adelaide, SA, Australia
| | - Jialie Luo
- Center for the Study of Itch and Sensory Disorders, Department of Anesthesiology, Washington University School of Medicine, St. Louis, MO, United States
| | - Pu Yang
- Center for the Study of Itch and Sensory Disorders, Department of Anesthesiology, Washington University School of Medicine, St. Louis, MO, United States
| | - Zili Xie
- Center for the Study of Itch and Sensory Disorders, Department of Anesthesiology, Washington University School of Medicine, St. Louis, MO, United States
| | - Lee Travis
- College of Medicine and Public Health, Centre for Neuroscience, Flinders University, Adelaide, SA, Australia
| | - Nick J. Spencer
- College of Medicine and Public Health, Centre for Neuroscience, Flinders University, Adelaide, SA, Australia
- *Correspondence: Nick J. Spencer,
| | - Hongzhen Hu
- Center for the Study of Itch and Sensory Disorders, Department of Anesthesiology, Washington University School of Medicine, St. Louis, MO, United States
- Hongzhen Hu,
| |
Collapse
|
7
|
Brizuela M, Castro J, Harrington AM, Brierley SM. Pruritogenic mechanisms and gut sensation: putting the "irritant" into irritable bowel syndrome. Am J Physiol Gastrointest Liver Physiol 2021; 320:G1131-G1141. [PMID: 33949199 DOI: 10.1152/ajpgi.00331.2020] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Chronic abdominal pain is a common clinical condition experienced by patients with irritable bowel syndrome (IBS). A general lack of suitable treatment options for the management of visceral pain is the major contributing factor to the debilitating nature of the disease. Understanding the underlying causes of chronic visceral pain is pivotal to identifying new effective therapies for IBS. This review provides the current evidence, demonstrating that mediators and receptors that induce itch in the skin also act as "gut irritants" in the gastrointestinal tract. Activation of these receptors triggers specific changes in the neuronal excitability of sensory pathways responsible for the transmission of nociceptive information from the periphery to the central nervous system leading to visceral hypersensitivity and visceral pain. Accumulating evidence points to significant roles of irritant mediators and their receptors in visceral hypersensitivity and thus constitutes potential targets for the development of more effective therapeutic options for IBS.
Collapse
Affiliation(s)
- Mariana Brizuela
- Visceral Pain Research Group, College of Medicine and Public Health, Flinders Health and Medical Research Institute, Flinders University, Adelaide, South Australia, Australia.,Hopwood Centre for Neurobiology, Lifelong Health Theme, South Australian Health and Medical Research Institute, Adelaide, South Australia, Australia
| | - Joel Castro
- Visceral Pain Research Group, College of Medicine and Public Health, Flinders Health and Medical Research Institute, Flinders University, Adelaide, South Australia, Australia.,Hopwood Centre for Neurobiology, Lifelong Health Theme, South Australian Health and Medical Research Institute, Adelaide, South Australia, Australia
| | - Andrea M Harrington
- Visceral Pain Research Group, College of Medicine and Public Health, Flinders Health and Medical Research Institute, Flinders University, Adelaide, South Australia, Australia.,Hopwood Centre for Neurobiology, Lifelong Health Theme, South Australian Health and Medical Research Institute, Adelaide, South Australia, Australia
| | - Stuart M Brierley
- Visceral Pain Research Group, College of Medicine and Public Health, Flinders Health and Medical Research Institute, Flinders University, Adelaide, South Australia, Australia.,Hopwood Centre for Neurobiology, Lifelong Health Theme, South Australian Health and Medical Research Institute, Adelaide, South Australia, Australia.,Discipline of Medicine, University of Adelaide, Adelaide, South Australia, Australia
| |
Collapse
|
8
|
Dmochowska N, Tieu W, Keller MD, Hollis CA, Campaniello MA, Mavrangelos C, Takhar P, Hughes PA. 89Zr-pro-MMP-9 F(ab') 2 detects colitis induced intestinal and kidney fibrosis. Sci Rep 2020; 10:20372. [PMID: 33230169 PMCID: PMC7683569 DOI: 10.1038/s41598-020-77390-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2019] [Accepted: 11/04/2020] [Indexed: 12/26/2022] Open
Abstract
Intestinal fibrosis is a common complication of inflammatory bowel disease but remains difficult to detect. Matrix metalloproteases (MMPs) have key roles in fibrosis and are therefore potential targets for fibrosis detection. We determined whether immunoPET of F(ab′)2 antibody fragments targeting MMPs detects colitis induced colonic fibrosis. Mice were administered 2% dextran sulfate sodium treated water for 1 cycle (inflamed) or 3 cycles (fibrotic), or were untreated (control). Colonic and kidney collagen, innate cytokine, MMPs and fecal MPO concentrations were analyzed by multiplex/ELISA. α-pro-MMP-9 F(ab′)2 fragments were engineered and conjugated to 89Zr for PET imaging, ex-vivo Cherenkov analysis and bio-distribution. Colonic innate cytokine concentrations and fecal myeloperoxidase were increased in inflamed mice but not fibrotic mice, while collagen concentrations were increased in fibrotic mice. MMPs were increased in inflamed mice, but only pro-MMP-9 remained increased in fibrotic mice. 89Zr-pro-MMP-9 F(ab′)2 uptake was increased in the intestine but also in the kidney of fibrotic mice, where collagen and pro-MMP-9 concentrations were increased. 89Zr-pro-MMP-9 F(ab′)2 detects colitis induced intestinal fibrosis and associated kidney fibrosis.
Collapse
Affiliation(s)
- Nicole Dmochowska
- Centre for Nutrition and Gastrointestinal Diseases, Adelaide Medical School, Level 7, University of Adelaide and South Australian Health and Medical Research Institute, Adelaide, South Australia, 5000, Australia
| | - William Tieu
- Molecular Imaging and Therapy Research Unit (MITRU), South Australian Health and Medical Research Institute, Adelaide, Australia
| | - Marianne D Keller
- Centre for Nutrition and Gastrointestinal Diseases, Adelaide Medical School, Level 7, University of Adelaide and South Australian Health and Medical Research Institute, Adelaide, South Australia, 5000, Australia.,Preclinical, Imaging and Research Laboratories (PIRL), South Australian Health and Medical Research Institute, Adelaide, Australia
| | - Courtney A Hollis
- Molecular Imaging and Therapy Research Unit (MITRU), South Australian Health and Medical Research Institute, Adelaide, Australia
| | - Melissa A Campaniello
- Centre for Nutrition and Gastrointestinal Diseases, Adelaide Medical School, Level 7, University of Adelaide and South Australian Health and Medical Research Institute, Adelaide, South Australia, 5000, Australia
| | - Chris Mavrangelos
- Centre for Nutrition and Gastrointestinal Diseases, Adelaide Medical School, Level 7, University of Adelaide and South Australian Health and Medical Research Institute, Adelaide, South Australia, 5000, Australia
| | - Prab Takhar
- Molecular Imaging and Therapy Research Unit (MITRU), South Australian Health and Medical Research Institute, Adelaide, Australia
| | - Patrick A Hughes
- Centre for Nutrition and Gastrointestinal Diseases, Adelaide Medical School, Level 7, University of Adelaide and South Australian Health and Medical Research Institute, Adelaide, South Australia, 5000, Australia.
| |
Collapse
|
9
|
Uhlig F, Grundy L, Garcia-Caraballo S, Brierley SM, Foster SJ, Grundy D. Identification of a Quorum Sensing-Dependent Communication Pathway Mediating Bacteria-Gut-Brain Cross Talk. iScience 2020; 23:101695. [PMID: 33163947 PMCID: PMC7607502 DOI: 10.1016/j.isci.2020.101695] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Revised: 07/03/2020] [Accepted: 10/14/2020] [Indexed: 12/12/2022] Open
Abstract
Despite recently established contributions of the intestinal microbiome to human health and disease, our understanding of bacteria-host communication pathways with regard to the gut-brain axis remains limited. Here we provide evidence that intestinal neurons are able to "sense" bacteria independently of the host immune system. Using supernatants from cultures of the opportunistic pathogen Staphylococcus aureus (S. aureus) we demonstrate the release of mediators with neuromodulatory properties at high population density. These mediators induced a biphasic response in extrinsic sensory afferent nerves, increased membrane permeability in cultured sensory neurons, and altered intestinal motility and secretion. Genetic manipulation of S. aureus revealed two key quorum sensing-regulated classes of pore forming toxins that mediate excitation and inhibition of extrinsic sensory nerves, respectively. As such, bacterial mediators have the potential to directly modulate gut-brain communication to influence intestinal symptoms and reflex function in vivo, contributing to homeostatic, behavioral, and sensory consequences of infection.
Collapse
Affiliation(s)
- Friederike Uhlig
- Department of Biomedical Science, University of Sheffield, Sheffield, UK
| | - Luke Grundy
- Visceral Pain Research Group, College of Medicine and Public Health, Flinders Health and Medical Research Institute (FHMRI), Flinders University, Bedford Park, SA, Australia
- Hopwood Centre for Neurobiology, Lifelong Health Theme, South Australian Health and Medical Research Institute (SAHMRI), North Terrace, Adelaide, SA, Australia
- Discipline of Medicine, University of Adelaide, Adelaide, SA, Australia
| | - Sonia Garcia-Caraballo
- Visceral Pain Research Group, College of Medicine and Public Health, Flinders Health and Medical Research Institute (FHMRI), Flinders University, Bedford Park, SA, Australia
- Hopwood Centre for Neurobiology, Lifelong Health Theme, South Australian Health and Medical Research Institute (SAHMRI), North Terrace, Adelaide, SA, Australia
- Discipline of Medicine, University of Adelaide, Adelaide, SA, Australia
| | - Stuart M. Brierley
- Visceral Pain Research Group, College of Medicine and Public Health, Flinders Health and Medical Research Institute (FHMRI), Flinders University, Bedford Park, SA, Australia
- Hopwood Centre for Neurobiology, Lifelong Health Theme, South Australian Health and Medical Research Institute (SAHMRI), North Terrace, Adelaide, SA, Australia
- Discipline of Medicine, University of Adelaide, Adelaide, SA, Australia
| | - Simon J. Foster
- Department of Molecular Biology and Biotechnology, University of Sheffield, Sheffield, UK
- Florey Institute, University of Sheffield, Sheffield, UK
| | - David Grundy
- Department of Biomedical Science, University of Sheffield, Sheffield, UK
| |
Collapse
|
10
|
Xie Q, Chen X, Meng ZM, Huang XL, Zhang Q, Zhou JQ, Zhang L, He FQ, Zou YP, Gan HT. Glial-derived neurotrophic factor regulates enteric mast cells and ameliorates dextran sulfate sodium-induced experimental colitis. Int Immunopharmacol 2020; 85:106638. [PMID: 32470881 DOI: 10.1016/j.intimp.2020.106638] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2019] [Revised: 05/11/2020] [Accepted: 05/22/2020] [Indexed: 02/08/2023]
Abstract
BACKGROUND & AIMS Although interactions between enteric glial cells (EGCs) and enteric mast cells have been demonstrated to play an important role in the pathogenesis of inflammatory bowel disease (IBD), the exact mechanisms by which EGCs regulate enteric mast cells are still unknown. The aims of this study were to investigate whether glial-derived neurotrophic factor (GDNF), which has been confirmed to be produced mostly by EGCs, might regulate enteric mast cells and ameliorate dextran sulfate sodium (DSS)-induced experimental colitis. METHODS Recombinant adenoviral vectors encoding GDNF (Ad-GDNF) were administered intracolonically in experimental colitis induced by DSS. The disease activity index and histological score were measured. The expression of tumour necrosis factor-α (TNF-α), interleukin-6 and myeloperoxidase (MPO) activity were measured by ELISA assay. The expression of trypsin and β-hexosaminidase were evaluated. GDNF specific receptor (GFR-α1/RET) was detected. The calcium reflux was tested by microplate reader. The expression p-JNK was analyzed by western blot assay. RESULTS GDNF resulted in a significant inhibition of the activation of enteric mast cells by down-regulating JNK signal pathway, lessening intracellular calcium influx, and then reducing the degranulation as well as the expression of pro-inflammatory cytokines via combing with its receptor (GFR-α1/RET) in mast cells, and these inhibitory effects were abrogated by treatment with neutralizing antibody against GDNF. Moreover, the administration of GDNF led to an amelioration of experimental colitis. CONCLUSIONS GDNF are able to regulate enteric mast cells and ameliorate experimental colitis. GDNF might be an important mediator of the cross-talk between EGCs and enteric mast cells, and GDNF might be a useful therapeutic drug for IBD.
Collapse
Affiliation(s)
- Qin Xie
- Department of Geriatric Medicine and Gastroenterology, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu 611731, China; Chinese Academy of Sciences Sichuan Translational Medical Research Hospital, Chengdu 610072, China
| | - Xi Chen
- Department of Gastroenterology and the Center of Inflammatory Bowel Disease, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China
| | - Zhang Min Meng
- Department of Geriatrics and National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China
| | - Xiao Li Huang
- Department of Geriatrics and National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China
| | - Qiao Zhang
- Department of Geriatrics and National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China
| | - Jin Qiu Zhou
- Department of Geriatrics and National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China
| | - Li Zhang
- Department of Geriatric Medicine and Gastroenterology, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu 611731, China
| | - Fu Qian He
- Department of Geriatrics and National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China
| | - Yu Pei Zou
- Department of Geriatrics and National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China
| | - Hua Tian Gan
- Department of Geriatrics and National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China; Department of Gastroenterology and the Center of Inflammatory Bowel Disease, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China.
| |
Collapse
|
11
|
Wardill HR, Choo JM, Dmochowska N, Mavrangelos C, Campaniello MA, Bowen JM, Rogers GB, Hughes PA. Acute Colitis Drives Tolerance by Persistently Altering the Epithelial Barrier and Innate and Adaptive Immunity. Inflamm Bowel Dis 2019; 25:1196-1207. [PMID: 30794280 DOI: 10.1093/ibd/izz011] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/25/2018] [Revised: 11/29/2018] [Accepted: 01/18/2019] [Indexed: 12/12/2022]
Abstract
BACKGROUND Inflammatory bowel disease (IBD) has a remitting and relapsing disease course; however, relatively little is understood regarding how inflammatory damage in acute colitis influences the microbiota, epithelial barrier, and immune function in subsequent colitis. METHODS Mice were administered trinitrobenzene sulphonic acid (TNBS) via enema, and inflammation was assessed 2 days (d2) or 28 days (d28) later. Colitis was reactivated in some mice by re-treating at 28 days with TNBS and assessing 2 days later (d30). Epithelial responsiveness to secretagogues, microbiota composition, colonic infiltration, and immune activation was compared between all groups. RESULTS At day 28, the distal colon had healed, mucosa was restored, and innate immune response had subsided, but colonic transepithelial transport (P = 0.048), regulatory T-cell (TREG) infiltration (P = 0.014), adherent microbiota composition (P = 0.0081), and responsiveness of stimulated innate immune bone marrow cells (P < 0.0001 for IL-1β) differed relative to health. Two days after subsequent instillation of TNBS (d30 mice), the effects on inflammatory damage (P < 0.0001), paracellular permeability (P < 0.0001), and innate immune infiltration (P < 0.0001 for Ly6C+ Ly6G- macrophages) were reduced relative to d2 colitis. However, TREG infiltration was increased (P < 0.0001), and the responsiveness of stimulated T cells in the mesenteric lymph nodes shifted from pro-inflammatory at d2 to immune-suppressive at d30 (P < 0.0001 for IL-10). These effects were observed despite similar colonic microbiota composition and degradation of the mucosal layer between d2 and d30. CONCLUSIONS Collectively, these results indicate that acute colitis chronically alters epithelial barrier function and both innate and adaptive immune responses. These effects reduce the consequences of a subsequent colitis event, warranting longitudinal studies in human IBD subjects.
Collapse
Affiliation(s)
- Hannah R Wardill
- Centre for Nutrition and Gastrointestinal Disease, Adelaide Medical School, University of Adelaide & South Australian Health and Medical Research Institute, Adelaide, Australia
| | - Jocelyn M Choo
- Infection and Immunity Theme, South Australian Health and Medical Research Institute, Adelaide, Australia
| | - Nicole Dmochowska
- Centre for Nutrition and Gastrointestinal Disease, Adelaide Medical School, University of Adelaide & South Australian Health and Medical Research Institute, Adelaide, Australia
| | - Chris Mavrangelos
- Centre for Nutrition and Gastrointestinal Disease, Adelaide Medical School, University of Adelaide & South Australian Health and Medical Research Institute, Adelaide, Australia
| | - Melissa A Campaniello
- Centre for Nutrition and Gastrointestinal Disease, Adelaide Medical School, University of Adelaide & South Australian Health and Medical Research Institute, Adelaide, Australia
| | - Joanne M Bowen
- Adelaide Medical School, University of Adelaide, Adelaide Australia
| | - Geraint B Rogers
- Infection and Immunity Theme, South Australian Health and Medical Research Institute, Adelaide, Australia
- College of Medicine and Public Health, Flinders University, Bedford Park, South Australia, Australia
| | - Patrick A Hughes
- Centre for Nutrition and Gastrointestinal Disease, Adelaide Medical School, University of Adelaide & South Australian Health and Medical Research Institute, Adelaide, Australia
| |
Collapse
|
12
|
Costello SP, Hughes PA, Waters O, Bryant RV, Vincent AD, Blatchford P, Katsikeros R, Makanyanga J, Campaniello MA, Mavrangelos C, Rosewarne CP, Bickley C, Peters C, Schoeman MN, Conlon MA, Roberts-Thomson IC, Andrews JM. Effect of Fecal Microbiota Transplantation on 8-Week Remission in Patients With Ulcerative Colitis: A Randomized Clinical Trial. JAMA 2019; 321:156-164. [PMID: 30644982 PMCID: PMC6439766 DOI: 10.1001/jama.2018.20046] [Citation(s) in RCA: 533] [Impact Index Per Article: 106.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
IMPORTANCE High-intensity, aerobically prepared fecal microbiota transplantation (FMT) has demonstrated efficacy in treating active ulcerative colitis (UC). FMT protocols involving anaerobic stool processing methods may enhance microbial viability and allow efficacy with a lower treatment intensity. OBJECTIVE To assess the efficacy of a short duration of FMT therapy to induce remission in UC using anaerobically prepared stool. DESIGN, SETTING, AND PARTICIPANTS A total of 73 adults with mild to moderately active UC were enrolled in a multicenter, randomized, double-blind clinical trial in 3 Australian tertiary referral centers between June 2013 and June 2016, with 12-month follow-up until June 2017. INTERVENTIONS Patients were randomized to receive either anaerobically prepared pooled donor FMT (n = 38) or autologous FMT (n = 35) via colonoscopy followed by 2 enemas over 7 days. Open-label therapy was offered to autologous FMT participants at 8 weeks and they were followed up for 12 months. MAIN OUTCOMES AND MEASURES The primary outcome was steroid-free remission of UC, defined as a total Mayo score of ≤2 with an endoscopic Mayo score of 1 or less at week 8. Total Mayo score ranges from 0 to 12 (0 = no disease and 12 = most severe disease). Steroid-free remission of UC was reassessed at 12 months. Secondary clinical outcomes included adverse events. RESULTS Among 73 patients who were randomized (mean age, 39 years; women, 33 [45%]), 69 (95%) completed the trial. The primary outcome was achieved in 12 of the 38 participants (32%) receiving pooled donor FMT compared with 3 of the 35 (9%) receiving autologous FMT (difference, 23% [95% CI, 4%-42%]; odds ratio, 5.0 [95% CI, 1.2-20.1]; P = .03). Five of the 12 participants (42%) who achieved the primary end point at week 8 following donor FMT maintained remission at 12 months. There were 3 serious adverse events in the donor FMT group and 2 in the autologous FMT group. CONCLUSIONS AND RELEVANCE In this preliminary study of adults with mild to moderate UC, 1-week treatment with anaerobically prepared donor FMT compared with autologous FMT resulted in a higher likelihood of remission at 8 weeks. Further research is needed to assess longer-term maintenance of remission and safety. TRIAL REGISTRATION anzctr.org.au Identifier: ACTRN12613000236796.
Collapse
Affiliation(s)
- Samuel P. Costello
- Centre for Nutrition and Gastrointestinal Disease, Adelaide Medical School, University of Adelaide and South Australian Health and Medical Research Institute, Adelaide, South Australia, Australia
- Inflammatory Bowel Disease Service, Department of Gastroenterology and Hepatology, Royal Adelaide Hospital, Adelaide, South Australia, Australia
- Inflammatory Bowel Disease Service, Department of Gastroenterology, The Queen Elizabeth Hospital, Woodville, South Australia, Australia
| | - Patrick A. Hughes
- Centre for Nutrition and Gastrointestinal Disease, Adelaide Medical School, University of Adelaide and South Australian Health and Medical Research Institute, Adelaide, South Australia, Australia
| | - Oliver Waters
- Department of Gastroenterology, Fiona Stanley Hospital, Murdoch, Western Australia, Australia
| | - Robert V. Bryant
- Centre for Nutrition and Gastrointestinal Disease, Adelaide Medical School, University of Adelaide and South Australian Health and Medical Research Institute, Adelaide, South Australia, Australia
- Inflammatory Bowel Disease Service, Department of Gastroenterology and Hepatology, Royal Adelaide Hospital, Adelaide, South Australia, Australia
- Inflammatory Bowel Disease Service, Department of Gastroenterology, The Queen Elizabeth Hospital, Woodville, South Australia, Australia
| | - Andrew D. Vincent
- Freemasons Foundation Centre for Men’s Health, Adelaide Medical School, University of Adelaide, Adelaide, South Australia, Australia
| | - Paul Blatchford
- CSIRO Health & Biosecurity, Adelaide, South Australia, Australia
| | - Rosa Katsikeros
- Inflammatory Bowel Disease Service, Department of Gastroenterology, The Queen Elizabeth Hospital, Woodville, South Australia, Australia
| | - Jesica Makanyanga
- Department of Gastroenterology, Fiona Stanley Hospital, Murdoch, Western Australia, Australia
| | - Melissa A. Campaniello
- Centre for Nutrition and Gastrointestinal Disease, Adelaide Medical School, University of Adelaide and South Australian Health and Medical Research Institute, Adelaide, South Australia, Australia
| | - Chris Mavrangelos
- Centre for Nutrition and Gastrointestinal Disease, Adelaide Medical School, University of Adelaide and South Australian Health and Medical Research Institute, Adelaide, South Australia, Australia
| | | | - Chelsea Bickley
- CSIRO Health & Biosecurity, Adelaide, South Australia, Australia
| | - Cian Peters
- Inflammatory Bowel Disease Service, Department of Gastroenterology and Hepatology, Royal Adelaide Hospital, Adelaide, South Australia, Australia
| | - Mark N. Schoeman
- Centre for Nutrition and Gastrointestinal Disease, Adelaide Medical School, University of Adelaide and South Australian Health and Medical Research Institute, Adelaide, South Australia, Australia
- Inflammatory Bowel Disease Service, Department of Gastroenterology and Hepatology, Royal Adelaide Hospital, Adelaide, South Australia, Australia
| | | | - Ian C. Roberts-Thomson
- Centre for Nutrition and Gastrointestinal Disease, Adelaide Medical School, University of Adelaide and South Australian Health and Medical Research Institute, Adelaide, South Australia, Australia
- Inflammatory Bowel Disease Service, Department of Gastroenterology, The Queen Elizabeth Hospital, Woodville, South Australia, Australia
| | - Jane M. Andrews
- Centre for Nutrition and Gastrointestinal Disease, Adelaide Medical School, University of Adelaide and South Australian Health and Medical Research Institute, Adelaide, South Australia, Australia
- Inflammatory Bowel Disease Service, Department of Gastroenterology and Hepatology, Royal Adelaide Hospital, Adelaide, South Australia, Australia
| |
Collapse
|
13
|
Dmochowska N, Tieu W, Keller MD, Wardill HR, Mavrangelos C, Campaniello MA, Takhar P, Hughes PA. Immuno-PET of Innate Immune Markers CD11b and IL-1β Detects Inflammation in Murine Colitis. J Nucl Med 2018; 60:858-863. [PMID: 30413657 DOI: 10.2967/jnumed.118.219287] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2018] [Accepted: 10/22/2018] [Indexed: 12/17/2022] Open
Abstract
Inflammatory bowel disease (IBD) is a chronic relapsing and remitting inflammatory disease of the gastrointestinal tract. The diagnosis and monitoring of IBD are reliant on endoscopy, which is invasive and does not provide information on specific mediators. Symptom flare in IBD is associated with increased activation of innate immune pathways. Immuno-PET approaches have previously demonstrated the ability to detect colitis; however, a direct comparison of antibodies targeted to innate immune mediators and cells has not been done. We aimed to compare immuno-PET of antibodies to IL-1β and CD11b against standard 18F-FDG and MRI approaches to detect colonic inflammation. Methods: Colonic concentrations of IL-1β and myeloperoxidase were determined by ELISA, and colonic infiltration by CD11b-positive CD3-negative innate immune cells was determined by flow cytometry and compared between healthy and dextran sodium sulphate-treated colitic mice. PET of 89Zr-lα-IL-1β, 89Zr-α-CD11b, and 18F-FDG was compared by volume-of-interest analysis and with MRI by region-of-interest analysis. Imaging results were confirmed by ex vivo biodistribution analysis. Results: Colonic inflammation was associated with impaired colonic epithelial barrier permeability, increased colonic IL-1β and myeloperoxidase concentrations, and increased CD11b-positive CD3-negative innate immune cell infiltration into the colon. 89Zr-α-IL-1β and 89Zr-α-CD11b immuno-PET detected colonic inflammation, as did 18F-FDG, and all PET tracers were more sensitive than MRI. Although 18F-FDG volumes of interest correlated with colitis severity and a strong trend was observed with 89Zr-α-IL-1β, no correlation was observed for 89Zr-α-CD11b or MRI. 89Zr-α-IL-1β was distributed mainly to the gastrointestinal tract, whereas 89Zr-α-CD11b was distributed to more tissue types. Conclusion: Immuno-PET using antibodies directed to innate immune markers detected colonic inflammation, with 89Zr-α-IL-1β providing a more tissue-specific signal than 89Zr-α-CD11b. Development of these technologies for human subjects will potentially provide a less invasive approach than endoscopy for diagnosing and monitoring IBD.
Collapse
Affiliation(s)
- Nicole Dmochowska
- Centre for Nutrition and Gastrointestinal Diseases, Adelaide Medical School, University of Adelaide and South Australian Health and Medical Research Institute, Adelaide, Australia
| | - William Tieu
- Molecular Imaging and Therapy Research Unit, South Australian Health and Medical Research Institute, Adelaide, Australia; and
| | - Marianne D Keller
- Centre for Nutrition and Gastrointestinal Diseases, Adelaide Medical School, University of Adelaide and South Australian Health and Medical Research Institute, Adelaide, Australia.,Preclinical, Imaging, and Research Laboratories, South Australian Health and Medical Research Institute, Adelaide, Australia
| | - Hannah R Wardill
- Centre for Nutrition and Gastrointestinal Diseases, Adelaide Medical School, University of Adelaide and South Australian Health and Medical Research Institute, Adelaide, Australia
| | - Chris Mavrangelos
- Centre for Nutrition and Gastrointestinal Diseases, Adelaide Medical School, University of Adelaide and South Australian Health and Medical Research Institute, Adelaide, Australia
| | - Melissa A Campaniello
- Centre for Nutrition and Gastrointestinal Diseases, Adelaide Medical School, University of Adelaide and South Australian Health and Medical Research Institute, Adelaide, Australia
| | - Prab Takhar
- Molecular Imaging and Therapy Research Unit, South Australian Health and Medical Research Institute, Adelaide, Australia; and
| | - Patrick A Hughes
- Centre for Nutrition and Gastrointestinal Diseases, Adelaide Medical School, University of Adelaide and South Australian Health and Medical Research Institute, Adelaide, Australia
| |
Collapse
|
14
|
Lopes de Oliveira GA, Alarcón de la Lastra C, Rosillo MÁ, Castejon Martinez ML, Sánchez-Hidalgo M, Rolim Medeiros JV, Villegas I. Preventive effect of bergenin against the development of TNBS-induced acute colitis in rats is associated with inflammatory mediators inhibition and NLRP3/ASC inflammasome signaling pathways. Chem Biol Interact 2018; 297:25-33. [PMID: 30365937 DOI: 10.1016/j.cbi.2018.10.020] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2018] [Revised: 10/01/2018] [Accepted: 10/22/2018] [Indexed: 01/09/2023]
Abstract
Ulcerative colitis is an idiopathic inflammatory bowel disease characterized by intestinal inflammation; blocking this inflammatory process may be the key to the development of new naturally occurring anti-inflammatory drugs, with greater efficiency and lower side effects. The objective of this study is to explore the effects of bergenin (BG) in TNBS (2,4,6-trinitrobenzenesulfonic acid)-induced acute colitis model in rats in order to assist in the studies for the development of novel natural product therapies for inflammatory bowel disease. 48 Wistar rats were randomized into six groups: (i) Control and (ii) TNBS control; (iii) 5-ASA 100 mg/kg/day (iv) BG 12 mg/kg/day (v) BG 25 mg/kg/day and (vi) BG 50 mg/kg/day. Colitis was induced by instillation of TNBS. Colitis was evaluated by an independent observer who was blinded to the treatment. Our results revealed that bergenin decreased the macroscopic and microscopic damage signs of colitis, and reduced the degree of neutrophilic infiltration in the colon tissue; also, it was capable to down-regulate COX-2, iNOS, IkB-α, and pSTAT3 protein expression. Similarly, using a protocol for indirect ELISA quantification of cytokines, bergenin treatment reduced IL-1β, IFN-γ and IL-10 levels, and inhibited both canonical (IL-1) and non-canonical (IL-11) NLRP3/ASC inflammasome signaling pathways in TNBS-induced acute colitis. Conclusion: Our study has provided evidence that administration of bergenin reduced the damage caused by TNBS in an experimental model of acute colitis in rats, reduced levels of pro-inflammatory proteins and cytokines probably by modulation of pSTAT3 and NF-κB signaling and blocking canonical and non-canonical NLRP3/ASC inflammasome pathways.
Collapse
Affiliation(s)
- Guilherme Antônio Lopes de Oliveira
- Postgraduate Program in Biotechnology, Northeast Biotechnology Network (RENORBIO) Federal University of Piauí, São Sebastião Street 2819, 64202-020, Parnaíba, PI, Brazil
| | - Catalina Alarcón de la Lastra
- Department of Pharmacology, Faculty of Pharmacy, University of Seville, Profesor García González Street 2, 41012, Seville, Spain
| | - Maria Ángeles Rosillo
- Department of Pharmacology, Faculty of Pharmacy, University of Seville, Profesor García González Street 2, 41012, Seville, Spain
| | - Maria Luisa Castejon Martinez
- Department of Pharmacology, Faculty of Pharmacy, University of Seville, Profesor García González Street 2, 41012, Seville, Spain
| | - Marina Sánchez-Hidalgo
- Department of Pharmacology, Faculty of Pharmacy, University of Seville, Profesor García González Street 2, 41012, Seville, Spain
| | - Jand Venes Rolim Medeiros
- Postgraduate Program in Biotechnology, Northeast Biotechnology Network (RENORBIO) Federal University of Piauí, São Sebastião Street 2819, 64202-020, Parnaíba, PI, Brazil.
| | - Isabel Villegas
- Department of Pharmacology, Faculty of Pharmacy, University of Seville, Profesor García González Street 2, 41012, Seville, Spain.
| |
Collapse
|
15
|
Hofma BR, Wardill HR, Mavrangelos C, Campaniello MA, Dimasi D, Bowen JM, Smid SD, Bonder CS, Beckett EA, Hughes PA. Colonic migrating motor complexes are inhibited in acute tri-nitro benzene sulphonic acid colitis. PLoS One 2018; 13:e0199394. [PMID: 29933379 PMCID: PMC6014673 DOI: 10.1371/journal.pone.0199394] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2018] [Accepted: 06/06/2018] [Indexed: 01/04/2023] Open
Abstract
Background Inflammatory Bowel Disease (IBD) is characterized by overt inflammation of the intestine and is typically accompanied by symptoms of bloody diarrhea, abdominal pain and cramping. The Colonic Migrating Motor Complex (CMMC) directs the movement of colonic luminal contents over long distances. The tri-nitrobenzene sulphonic acid (TNBS) model of colitis causes inflammatory damage to enteric nerves, however it remains to be determined whether these changes translate to functional outcomes in CMMC activity. We aimed to visualize innate immune cell infiltration into the colon using two-photon laser scanning intra-vital microscopy, and to determine whether CMMC activity is altered in the tri-nitro benzene sulphonic (TNBS) model of colitis. Methods Epithelial barrier permeability was compared between TNBS treated and healthy control mice in-vitro and in-vivo. Innate immune activation was determined by ELISA, flow cytometry and by 2-photon intravital microscopy. The effects of TNBS treatment and IL-1β on CMMC function were determined using a specialized organ bath. Results TNBS colitis increased epithelial barrier permeability in-vitro and in-vivo. Colonic IL-1β concentrations, colonic and systemic CD11b+ cell infiltration, and the number of migrating CD11b+ cells on colonic blood vessels were all increased in TNBS treated mice relative to controls. CMMC frequency and amplitude were inhibited in the distal and mid colon of TNBS treated mice. CMMC activity was not altered by superfusion with IL-1β. Conclusions TNBS colitis damages the epithelial barrier and increases innate immune cell activation in the colon and systemically. Innate cell migration into the colon is readily identifiable by two-photon intra-vital microscopy. CMMC are inhibited by inflammation, but this is not due to direct effects of IL-1β.
Collapse
Affiliation(s)
- Ben R. Hofma
- Adelaide Medical School, University of Adelaide, Adelaide, Australia
- Centre for Nutrition and GI Diseases, Adelaide Medical School, University of Adelaide and South Australian Health and Medical Research Institute, Adelaide, Australia
| | - Hannah R. Wardill
- Adelaide Medical School, University of Adelaide, Adelaide, Australia
- Centre for Nutrition and GI Diseases, Adelaide Medical School, University of Adelaide and South Australian Health and Medical Research Institute, Adelaide, Australia
| | - Chris Mavrangelos
- Centre for Nutrition and GI Diseases, Adelaide Medical School, University of Adelaide and South Australian Health and Medical Research Institute, Adelaide, Australia
| | - Melissa A. Campaniello
- Centre for Nutrition and GI Diseases, Adelaide Medical School, University of Adelaide and South Australian Health and Medical Research Institute, Adelaide, Australia
| | - David Dimasi
- Centre for Cancer Biology, University of South Australia and SA Pathology, Adelaide, Australia
| | - Joanne M. Bowen
- Adelaide Medical School, University of Adelaide, Adelaide, Australia
| | - Scott D. Smid
- Adelaide Medical School, University of Adelaide, Adelaide, Australia
| | - Claudine S. Bonder
- Adelaide Medical School, University of Adelaide, Adelaide, Australia
- Centre for Cancer Biology, University of South Australia and SA Pathology, Adelaide, Australia
| | | | - Patrick A. Hughes
- Adelaide Medical School, University of Adelaide, Adelaide, Australia
- Centre for Nutrition and GI Diseases, Adelaide Medical School, University of Adelaide and South Australian Health and Medical Research Institute, Adelaide, Australia
- * E-mail:
| |
Collapse
|
16
|
Beckers AB, Weerts ZZRM, Helyes Z, Masclee AAM, Keszthelyi D. Review article: transient receptor potential channels as possible therapeutic targets in irritable bowel syndrome. Aliment Pharmacol Ther 2017; 46:938-952. [PMID: 28884838 DOI: 10.1111/apt.14294] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/10/2017] [Revised: 06/06/2017] [Accepted: 08/17/2017] [Indexed: 12/12/2022]
Abstract
BACKGROUND Abdominal pain in irritable bowel syndrome (IBS) remains challenging to treat effectively. Researchers have attempted to elucidate visceral nociceptive processes in order to guide treatment development. Transient receptor potential (TRP) channels have been implied in the generation (TRPV1, TRPV4, TRPA1) and inhibition (TRPM8) of visceral pain signals. Pathological changes in their functioning have been demonstrated in inflammatory conditions, and appear to be present in IBS as well. AIM To provide a comprehensive review of the current literature on TRP channels involved in visceral nociception. In particular, we emphasise the clinical implications of these nociceptors in the treatment of IBS. METHODS Evidence to support this review was obtained from an electronic database search via PubMed using the search terms "visceral nociception," "visceral hypersensitivity," "irritable bowel syndrome" and "transient receptor potential channels." After screening the abstracts the articles deemed relevant were cross-referenced for additional manuscripts. RESULTS Recent studies have resulted in significant advances in our understanding of TRP channel mediated visceral nociception. The diversity of TRP channel sensitization pathways is increasingly recognised. Endogenous TRP agonists, including poly-unsaturated fatty acid metabolites and hydrogen sulphide, have been implied in augmented visceral pain generation in IBS. New potential targets for treatment development have been identified (TRPA1 and TRPV4,) and alternative means of affecting TRP channel signalling (partial antagonists, downstream targeting and RNA-based therapy) are currently being explored. CONCLUSIONS The improved understanding of mechanisms involved in visceral nociception provides a solid basis for the development of new treatment strategies for abdominal pain in IBS.
Collapse
Affiliation(s)
- A B Beckers
- Division of Gastroenterology-Hepatology, Department of Internal Medicine, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Center, Maastricht, Limburg, The Netherlands
| | - Z Z R M Weerts
- Division of Gastroenterology-Hepatology, Department of Internal Medicine, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Center, Maastricht, Limburg, The Netherlands
| | - Z Helyes
- Department of Pharmacology and Pharmacotherapy, Molecular Pharmacology Research Team, University of Pécs Medical School, János Szentágothai Research Centre, University of Pécs, Pécs, Baranya, Hungary
| | - A A M Masclee
- Division of Gastroenterology-Hepatology, Department of Internal Medicine, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Center, Maastricht, Limburg, The Netherlands
| | - D Keszthelyi
- Division of Gastroenterology-Hepatology, Department of Internal Medicine, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Center, Maastricht, Limburg, The Netherlands
| |
Collapse
|