1
|
Wang Q, Zeng F, Fang C, Sun Y, Zhao X, Rong X, Zhang H, Xu Y. Galectin-3 alleviates demyelination by modulating microglial anti-inflammatory polarization through PPARγ-CD36 axis. Brain Res 2024; 1842:149106. [PMID: 38986827 DOI: 10.1016/j.brainres.2024.149106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 06/27/2024] [Accepted: 06/29/2024] [Indexed: 07/12/2024]
Abstract
Demyelination is characterized by disruption of myelin sheath and disorders in myelin formation. Currently, there are no effective therapeutic treatments available. Microglia, especially anti-inflammatory phenotype microglia are critical for remyelination. Galectin-3 (Gal-3), which is known to modulate microglia activation, is correlated with myelination. In this study, we aimed to elucidate the roles of Gal-3 during myelin formation and explore the efficiency and mechanism of rGal-3 administration in remyelination. We enrolled Gal-3 knockout (Lgals3 KO) mice and demonstrated Lgals3 KO causes demyelination during spontaneous myelinogenesis. We performed a cuprizone (CPZ) intoxication model and found Lgals3 KO aggravates demyelinated lesions and favors microglial pro-inflammatory phenotype polarization. Recombinant Gal-3 (rGal-3) administration alleviates CPZ intoxication and drives microglial towards anti-inflammatory phenotype. Additionally, RNA sequencing results reveal the correlation between Gal-3 and the PPARγ-CD36 axis. Thus, we performed SSO and GW9662 administration to inhibit the activation of the PPARγ-CD36 axis and found that rGal-3 administration modulates microglial phenotype polarization by regulating the PPARγ-CD36 axis. Together, our findings highlight the importance of Gal-3 in myelination and provide insights into rGal-3 administration for modulating microglial anti-inflammatory phenotype polarization through the PPARγ-CD36 axis.
Collapse
Affiliation(s)
- Qian Wang
- Department of Infectious and Liver Diseases, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, PR China; Department of Neonatology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, PR China.
| | - Fansen Zeng
- Department of Infectious and Liver Diseases, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, PR China
| | - Chunxiao Fang
- Department of Infectious and Liver Diseases, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, PR China
| | - Yi Sun
- Department of Neonatology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, PR China
| | - Xiaopeng Zhao
- Department of Neonatology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, PR China
| | - Xiao Rong
- Department of Neonatology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, PR China
| | - Huayan Zhang
- Department of Neonatology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, PR China.
| | - Yi Xu
- Department of Infectious and Liver Diseases, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, PR China.
| |
Collapse
|
2
|
Krstic B, Selakovic D, Jovicic N, Krstic M, Katanic Stankovic JS, Rosic S, Milovanovic D, Rosic G. Complex Hippocampal Response to Thermal Skin Injury and Protocols with Hyperbaric Oxygen Therapy and Filipendula ulmaria Extract in Rats. Int J Mol Sci 2024; 25:3033. [PMID: 38474277 DOI: 10.3390/ijms25053033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 02/27/2024] [Accepted: 02/28/2024] [Indexed: 03/14/2024] Open
Abstract
The aim of this study was to evaluate the alterations of the hippocampal function that may be related to anxiogenic response to thermal skin injury, including the morpho-functional alterations, and the effects of hyperbaric oxygen (HBO) and Filipendula ulmaria (FU) extract in the treatment of anxiety-like behavior that coincides with thermal skin injury. A rat thermal skin injury experimental model was performed on 2-month-old male Wistar albino rats. The evaluated therapeutic protocols included HBO and/or antioxidant supplementation. HBO was applied for 7 days in the hyperbaric chamber (100% O2, 2.5 ATA, 60 min). Oral administration of FU extract (final concentration of 100 mg/kg b.w.) to achieve antioxidant supplementation was also applied for 7 days. Anxiety level was estimated in the open field and elevated plus-maze test, which was followed by anesthesia, sacrifice, and collection of hippocampal tissue samples. HBO treatment and FU supplementation significantly abolished anxiogenic response to thermal skin injury. This beneficial effect was accompanied by the reduction in hippocampal pro-inflammatory and pro-apoptotic indicators, and enhanced BDNF and GABA-ARα2S gene expression, previously observed in untreated burns. The hippocampal relative gene expression of melatonin receptors and NPY positively responded to the applied protocols, in the same manner as µ and δ opioid receptors, while the opposite response was observed for κ receptors. The results of this study provide some confirmations that adjuvant strategies, such as HBO and antioxidant supplementation, may be simultaneously applied in the treatment of the anxiety-like behavior that coincides with thermal skin injury.
Collapse
Affiliation(s)
- Bojana Krstic
- Department of Physiology, Faculty of Medical Sciences, University of Kragujevac, 34000 Kragujevac, Serbia
| | - Dragica Selakovic
- Department of Physiology, Faculty of Medical Sciences, University of Kragujevac, 34000 Kragujevac, Serbia
| | - Nemanja Jovicic
- Department of Histology and Embryology, Faculty of Medical Sciences, University of Kragujevac, 34000 Kragujevac, Serbia
| | - Milos Krstic
- Department of Physiology, Faculty of Medical Sciences, University of Kragujevac, 34000 Kragujevac, Serbia
| | - Jelena S Katanic Stankovic
- Department of Science, Institute for Information Technologies Kragujevac, University of Kragujevac, 34000 Kragujevac, Serbia
| | - Sara Rosic
- Department of Physiology, Faculty of Medical Sciences, University of Kragujevac, 34000 Kragujevac, Serbia
| | - Dragan Milovanovic
- Clinical Pharmacology Department, Clinical Centre Kragujevac, 34000 Kragujevac, Serbia
- Department of Pharmacology and Toxicology, Faculty of Medical Sciences, University of Kragujevac, 34000 Kragujevac, Serbia
| | - Gvozden Rosic
- Department of Physiology, Faculty of Medical Sciences, University of Kragujevac, 34000 Kragujevac, Serbia
| |
Collapse
|
3
|
Hermann DM, Bacigaluppi M, Peruzzotti-Jametti L. Editorial: Hot topics in cellular neuropathology, volume II: promoting neuronal plasticity in the injured central nervous system. Front Cell Neurosci 2023; 17:1269763. [PMID: 37731464 PMCID: PMC10507398 DOI: 10.3389/fncel.2023.1269763] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Accepted: 08/23/2023] [Indexed: 09/22/2023] Open
Affiliation(s)
- Dirk M. Hermann
- Department of Neurology, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Marco Bacigaluppi
- Department of Neurology and Neuroimmunology Unit, San Raffaele Hospital, Milan, Italy
| | - Luca Peruzzotti-Jametti
- Department of Clinical Neurosciences, University of Cambridge, Cambridge, United Kingdom
- Department of Metabolism, Digestion and Reproduction, Imperial College London, London, United Kingdom
| |
Collapse
|
4
|
Artık A, Kocaman O, Kara H, Tuncer SÇ. Galectin-3 levels in school aged children with autism spectrum disorder. INTERNATIONAL JOURNAL OF DEVELOPMENTAL DISABILITIES 2022; 69:757-761. [PMID: 37547549 PMCID: PMC10402832 DOI: 10.1080/20473869.2022.2150035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 11/17/2022] [Accepted: 11/17/2022] [Indexed: 08/08/2023]
Abstract
Objective: Autism spectrum disorder (ASD) is a group of neurodevelopmental disorders with underlying pathogenesis and etiological factors not fully understood. We assumed that galectin-3, which is also linked with inflammatory responses, may be central to the ethiopathogenesis of ASD. Method: The current study consisted of 33 psychotropic medication-naive children with ASD and 32 control subjects. The Schedule for Affective Disorders and Schizophrenia for School-Aged Children, Present and Lifetime Version-DSM-5 (K-SADS-PL-DSM-5) was used to screen healthy controls for psychiatric disorders by a psychiatrist after a physical examination by a pediatrician. The clinical severity of the ASD symptoms has been assessed by the Childhood Autism Rating Scale (CARS). Venous blood samples were collected and serum galectin-3 levels were measured. Results: When the ASD and control groups are compared, the mean galectin-3 level is 417.77 (SD = 200.20) in the ASD group and 243.08 (SD = 64.65) in the control group, and there is a statistically significant difference between the groups (p < 0.001). When examining whether there is a correlation between galectin-3 levels and CARS total scores, no statistically significant correlation was found between them (r = 0.015, p = 0.933). Discussion: In this study, we examined whether serum galectin-3 levels have a relation with ASD in childhood or not. Our findings have indicated that the children with ASD have higher serum galectin-3 levels compared to the controls. However, no significant relationship has been found between serum galectin-3 levels and ASD symptom severity.
Collapse
Affiliation(s)
- Abdülbaki Artık
- Child and Adolescent Mental Health Department, Faculty of Medicine, Uşak University, Uşak, Turkey
| | - Orhan Kocaman
- Child and Adolescent Mental Health Department, Faculty of Medicine, Kütahya University, Kütahya, Turkey
| | - Halil Kara
- Child and Adolescent Mental Health Department, Faculty of Medicine, Aksaray University, Aksaray, Turkey
| | - Sibel Çiğdem Tuncer
- Department of Medical Biochemistry, Faculty of Medicine, Aksaray University, Aksaray, Turkey
| |
Collapse
|
5
|
Ge MM, Chen N, Zhou YQ, Yang H, Tian YK, Ye DW. Galectin-3 in Microglia-Mediated Neuroinflammation: Implications for Central Nervous System Diseases. Curr Neuropharmacol 2022; 20:2066-2080. [PMID: 35105290 PMCID: PMC9886847 DOI: 10.2174/1570159x20666220201094547] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Revised: 12/27/2021] [Accepted: 01/29/2022] [Indexed: 11/22/2022] Open
Abstract
Microglial activation is one of the common hallmarks shared by various central nervous system (CNS) diseases. Based on surrounding circumstances, activated microglia play either detrimental or neuroprotective effects. Galectin-3 (Gal-3), a group of β-galactoside-binding proteins, has been cumulatively revealed to be a crucial biomarker for microglial activation after injuries or diseases. In consideration of the important role of Gal-3 in the regulation of microglial activation, it might be a potential target for the treatment of CNS diseases. Recently, Gal-3 expression has been extensively investigated in numerous pathological processes as a mediator of neuroinflammation, as well as in cell proliferation. However, the underlying mechanisms of Gal-3 involved in microgliamediated neuroinflammation in various CNS diseases remain to be further investigated. Moreover, several clinical studies support that the levels of Gal-3 are increased in the serum or cerebrospinal fluid of patients with CNS diseases. Thus, we summarized the roles and underlying mechanisms of Gal-3 in activated microglia, thus providing a better insight into its complexity expression pattern, and contrasting functions in CNS diseases.
Collapse
Affiliation(s)
- Meng-Meng Ge
- Department of Anesthesiology and Pain Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China;
| | - Nan Chen
- Department of Anesthesiology and Pain Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China;
| | - Ya-Qun Zhou
- Department of Anesthesiology and Pain Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China;
| | - Hui Yang
- Department of Anesthesiology and Pain Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China;
| | - Yu-Ke Tian
- Department of Anesthesiology and Pain Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; ,Address correspondence to these authors at the Department of Neurosurgery, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, Taiyuan, 030032, China. E-mail: ., Department of Anesthesiology and Pain Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China. E-mail:
| | - Da-Wei Ye
- Department of Neurosurgery, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, Taiyuan, 030032, China; ,Cancer Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China,Address correspondence to these authors at the Department of Neurosurgery, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, Taiyuan, 030032, China. E-mail: ., Department of Anesthesiology and Pain Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China. E-mail:
| |
Collapse
|
6
|
Wang Q, Diao S, Qiu H, Gao R, Wang M, Chen Q, Xiao M, Li Z, Chen C. Galectin-3 administration drives remyelination after hypoxic-ischemic induced perinatal white matter injury. Front Cell Neurosci 2022; 16:976002. [PMID: 36204450 PMCID: PMC9532057 DOI: 10.3389/fncel.2022.976002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Accepted: 08/31/2022] [Indexed: 11/29/2022] Open
Abstract
Hypoxic-ischemic (HI) induced perinatal white matter injury (PWMI) is a major cause of neurologic disabilities characterized by selective oligodendroglial death and myelin disruption. Galectin-3 (Gal-3) modulates postnatal subventricular zone gliogenesis and attenuates ischemic injury. However, the association between Gal-3 and myelin formation still remains unclear. In this study, we first perform Gal-3 knockdown (KD) to identify the importance of Gal-3 on myelin formation. Our results show impeded myelin formation, manifested by Olig2/CC1 (+) mature oligodendrocytes number, expression of oligodendroglial maturation-associated markers (MBP and CNPase), and myelin thickness and integrity. Then we perform recombinant Gal-3 (rGal-3) administration by intracerebroventricular injection. Notably, although rGal-3 administration shows no beneficial effect on oligodendrogenesis and myelin formation under normal condition, our results show that rGal-3 administration attenuates cognitive deficits and drives remyelination after PWMI, which are coupled to signs of enhanced myelin resiliency and cognition. Also, our results indicates that the significant increases in substrates for remyelination of rGal-3 administration are accompanied by enhanced Iba-1 (microglia marker)/ Mrc1 (M2 marker) (+) microglia and decreased Iba-1/ iNOS (M1 marker) (+) microglia. Altogether, our data in this research confirm the association between Gal-3 and myelin formation, underscore its position for the capacity for remyelination and restoration of function, and unveils the efficacy of rGal-3 administration with anti-inflammatory phenotype microglia (M2 microglia) activation. Thus, the findings suggest that Gal-3 plays a significant role in myelin formation and remyelination restoration.
Collapse
Affiliation(s)
- Qian Wang
- Department of Neonatology, Children's Hospital of Fudan University, Shanghai, China
- Key Laboratory of Neonatal Diseases, National Health Commission, Shanghai, China
- Department of Neonatology, Women and Children's Medical Center of Guangzhou, Guangzhou, China
| | - Sihao Diao
- Department of Neonatology, Children's Hospital of Fudan University, Shanghai, China
- Key Laboratory of Neonatal Diseases, National Health Commission, Shanghai, China
| | - Han Qiu
- Department of Neonatology, Children's Hospital of Fudan University, Shanghai, China
- Key Laboratory of Neonatal Diseases, National Health Commission, Shanghai, China
| | - Ruiwei Gao
- Department of Neonatology, Children's Hospital of Fudan University, Shanghai, China
- Key Laboratory of Neonatal Diseases, National Health Commission, Shanghai, China
| | - Minjie Wang
- Department of Neonatology, Children's Hospital of Fudan University, Shanghai, China
- Key Laboratory of Neonatal Diseases, National Health Commission, Shanghai, China
| | - Qiufan Chen
- Department of Neonatology, Children's Hospital of Fudan University, Shanghai, China
- Key Laboratory of Neonatal Diseases, National Health Commission, Shanghai, China
- Department of Neonatology, Women and Children's Medical Center of Guangzhou, Guangzhou, China
| | - Mili Xiao
- Department of Neonatology, Children's Hospital of Fudan University, Shanghai, China
- Key Laboratory of Neonatal Diseases, National Health Commission, Shanghai, China
| | - Zhihua Li
- Department of Neonatology, Children's Hospital of Fudan University, Shanghai, China
- Key Laboratory of Neonatal Diseases, National Health Commission, Shanghai, China
| | - Chao Chen
- Department of Neonatology, Children's Hospital of Fudan University, Shanghai, China
- Key Laboratory of Neonatal Diseases, National Health Commission, Shanghai, China
- *Correspondence: Chao Chen
| |
Collapse
|
7
|
Galectins—Potential Therapeutic Targets for Neurodegenerative Disorders. Int J Mol Sci 2022; 23:ijms231911012. [PMID: 36232314 PMCID: PMC9569834 DOI: 10.3390/ijms231911012] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2022] [Revised: 09/13/2022] [Accepted: 09/14/2022] [Indexed: 11/17/2022] Open
Abstract
Advancements in medicine have increased the longevity of humans, resulting in a higher incidence of chronic diseases. Due to the rise in the elderly population, age-dependent neurodegenerative disorders are becoming increasingly prevalent. The available treatment options only provide symptomatic relief and do not cure the underlying cause of the disease. Therefore, it has become imperative to discover new markers and therapies to modulate the course of disease progression and develop better treatment options for the affected individuals. Growing evidence indicates that neuroinflammation is a common factor and one of the main inducers of neuronal damage and degeneration. Galectins (Gals) are a class of β-galactoside-binding proteins (lectins) ubiquitously expressed in almost all vital organs. Gals modulate various cellular responses and regulate significant biological functions, including immune response, proliferation, differentiation, migration, and cell growth, through their interaction with glycoproteins and glycolipids. In recent years, extensive research has been conducted on the Gal superfamily, with Gal-1, Gal-3, and Gal-9 in prime focus. Their roles have been described in modulating neuroinflammation and neurodegenerative processes. In this review, we discuss the role of Gals in the causation and progression of neurodegenerative disorders. We describe the role of Gals in microglia and astrocyte modulation, along with their pro- and anti-inflammatory functions. In addition, we discuss the potential use of Gals as a novel therapeutic target for neuroinflammation and restoring tissue damage in neurodegenerative diseases.
Collapse
|
8
|
Effects of Different Lipopolysaccharide Doses on Short- and Long-Term Spatial Memory and Hippocampus Morphology in an Experimental Alzheimer’s Disease Model. CLINICAL AND TRANSLATIONAL NEUROSCIENCE 2022. [DOI: 10.3390/ctn6030020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Background: Alzheimer’s disease (AD) is a progressive neurodegenerative disease and the most common cause of dementia. Various animal models are widely used to investigate its underlying mechanisms, including lipopolysaccharide (LPS)-induced neuroinflammation models. Aim: In this study, we aimed to investigate the effect of different doses (0.25, 0.5, and 0.75 mg/kg) of LPS on short- and long-term spatial memory and hippocampal morphology in an experimental AD mouse model. Materials and methods: Twenty-four adult male Swiss mice (SWR/J) weighing 18–25 g were divided into four groups: control, 0.25 mg/kg LPS, 0.50 mg/kg LPS, and 0.75 mg/kg LPS. All groups were treated with LPS or vehicle for 7 days. Behavioral tests were started (Morris water maze for 6 days and Y maze for 1 day) on the last 2 days of injections. After the behavioral procedures, tissues were collected for further histological investigations. Result: All LPS doses induced significant short- and long-term spatial memory impairment in both the Y maze and Morris water maze compared with the control group. Furthermore, histological examination of the hippocampus indicated degenerating neurons in both the 0.50 mg/kg and 0.75 mg/kg LPS groups, while the 0.25 mg/kg LPS group showed less degeneration. Conclusion: our results showed that 0.75 mg/kg LPS had a greater impact on early-stage spatial learning memory and short-term memory than other doses. Our behavioral and histological findings suggest 0.75 mg/kg LPS as a promising dose for LPS-induced AD models.
Collapse
|
9
|
Nikolic S, Gazdic-Jankovic M, Rosic G, Miletic-Kovacevic M, Jovicic N, Nestorovic N, Stojkovic P, Filipovic N, Milosevic-Djordjevic O, Selakovic D, Zivanovic M, Seklic D, Milivojević N, Markovic A, Seist R, Vasilijic S, Stankovic KM, Stojkovic M, Ljujic B. Orally administered fluorescent nanosized polystyrene particles affect cell viability, hormonal and inflammatory profile, and behavior in treated mice. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 305:119206. [PMID: 35405220 DOI: 10.1016/j.envpol.2022.119206] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Revised: 03/12/2022] [Accepted: 03/22/2022] [Indexed: 06/14/2023]
Abstract
Commercially manufactured or generated through environmental degradation, microplastics (MPs) and nanoplastics (NPs) considerably contribute to environmental pollution. There is a knowledge gap in how exposure to MPs/NPs changes cellular function and affects animal and human health. Here, we demonstrate that after oral uptake, fluorescent polystyrene (PS) nanoparticles pass through the mouse digestive system, accumulate and aggregate in different organs, and induce functional changes in cells and organs. Using cochlear explant as a novel in vitro system, we confirmed the consequences of PS-MP/NP interaction with inner ear cells by detecting aggregates and hetero-aggregates of PS particles in hair cells. The testes of treated males accumulated MPs/NPs in the interstitial compartment surrounding the seminiferous tubules, which was associated with a statistically significant decrease in testosterone levels. Male mice showed increased secretion of interleukins (IL-12p35 and IL-23) by splenocytes while cyto- and genotoxicity tests indicated impaired cell viability and increased DNA damage in spleen tissue. Males also showed a broad range of anxiogenic responses to PS nanoparticles while hippocampal samples from treated females showed an increased expression of Bax and Nlrp3 genes, indicating a pro-apoptotic/proinflammatory effect of PS treatment. Taken together, induced PS effects are also gender-dependent, and therefore, strongly motivate future research to mitigate the deleterious effects of nanosized plastic particles.
Collapse
Affiliation(s)
- Sandra Nikolic
- Department of Genetics, Faculty of Medical Sciences, University of Kragujevac, Kragujevac, Serbia
| | - Marina Gazdic-Jankovic
- Department of Genetics, Faculty of Medical Sciences, University of Kragujevac, Kragujevac, Serbia
| | - Gvozden Rosic
- Department of Physiology, Faculty of Medical Sciences, University of Kragujevac, Kragujevac, Serbia
| | - Marina Miletic-Kovacevic
- Department of Histology and Embryology, University of Kragujevac, Faculty of Medical Sciences, Kragujevac, Serbia
| | - Nemanja Jovicic
- Department of Histology and Embryology, University of Kragujevac, Faculty of Medical Sciences, Kragujevac, Serbia
| | - Natasa Nestorovic
- Institute for Biological Research "Sinisa Stankovic", National Institute of Republic of Serbia, University of Belgrade, Serbia
| | | | - Nenad Filipovic
- Faculty of Engineering, University of Kragujevac, Kragujevac, Serbia
| | - Olivera Milosevic-Djordjevic
- Department of Genetics, Faculty of Medical Sciences, University of Kragujevac, Kragujevac, Serbia; Department of Biology and Ecology, Faculty of Science, University of Kragujevac, Kragujevac, Serbia
| | - Dragica Selakovic
- Department of Physiology, Faculty of Medical Sciences, University of Kragujevac, Kragujevac, Serbia
| | - Marko Zivanovic
- Laboratory for Bioengineering, Institute of Information Technologies Kragujevac, University of Kragujevac, Kragujevac, Serbia
| | - Dragana Seklic
- Laboratory for Bioengineering, Institute of Information Technologies Kragujevac, University of Kragujevac, Kragujevac, Serbia
| | - Nevena Milivojević
- Laboratory for Bioengineering, Institute of Information Technologies Kragujevac, University of Kragujevac, Kragujevac, Serbia
| | - Aleksandra Markovic
- Department of Biology and Ecology, Faculty of Science, University of Kragujevac, Kragujevac, Serbia
| | - Richard Seist
- Department of Otolaryngology - Head and Neck Surgery, Harvard Medical School and Massachusetts Eye and Ear, Boston, MA, United States; Program Department of Otorhinolaryngology-Head and Neck Surgery, Paracelsus Medical University, Salzburg, Austria
| | - Sasa Vasilijic
- Department of Otolaryngology - Head and Neck Surgery, Harvard Medical School and Massachusetts Eye and Ear, Boston, MA, United States
| | - Konstantina M Stankovic
- Department of Otolaryngology - Head and Neck Surgery, Harvard Medical School and Massachusetts Eye and Ear, Boston, MA, United States
| | - Miodrag Stojkovic
- Department of Genetics, Faculty of Medical Sciences, University of Kragujevac, Kragujevac, Serbia; SPEBO Medical, Fertility Clinic Leskovac, Serbia
| | - Biljana Ljujic
- Department of Genetics, Faculty of Medical Sciences, University of Kragujevac, Kragujevac, Serbia.
| |
Collapse
|
10
|
Targeting microglia–oligodendrocyte crosstalk in neurodegenerative and psychiatric disorders. Drug Discov Today 2022; 27:2562-2573. [DOI: 10.1016/j.drudis.2022.06.015] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2021] [Revised: 06/09/2022] [Accepted: 06/29/2022] [Indexed: 02/07/2023]
|
11
|
Rahimian R, Belliveau C, Chen R, Mechawar N. Microglial Inflammatory-Metabolic Pathways and Their Potential Therapeutic Implication in Major Depressive Disorder. Front Psychiatry 2022; 13:871997. [PMID: 35782423 PMCID: PMC9245023 DOI: 10.3389/fpsyt.2022.871997] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Accepted: 05/23/2022] [Indexed: 12/19/2022] Open
Abstract
Increasing evidence supports the notion that neuroinflammation plays a critical role in the etiology of major depressive disorder (MDD), at least in a subset of patients. By virtue of their capacity to transform into reactive states in response to inflammatory insults, microglia, the brain's resident immune cells, play a pivotal role in the induction of neuroinflammation. Experimental studies have demonstrated the ability of microglia to recognize pathogens or damaged cells, leading to the activation of a cytotoxic response that exacerbates damage to brain cells. However, microglia display a wide range of responses to injury and may also promote resolution stages of inflammation and tissue regeneration. MDD has been associated with chronic priming of microglia. Recent studies suggest that altered microglial morphology and function, caused either by intense inflammatory activation or by senescence, may contribute to depression and associated impairments in neuroplasticity. In this context, modifying microglia phenotype by tuning inflammatory pathways might have important translational relevance to harness neuroinflammation in MDD. Interestingly, it was recently shown that different microglial phenotypes are associated with distinct metabolic pathways and analysis of the underlying molecular mechanisms points to an instrumental role for energy metabolism in shaping microglial functions. Here, we review various canonical pro-inflammatory, anti-inflammatory and metabolic pathways in microglia that may provide new therapeutic opportunities to control neuroinflammation in brain disorders, with a strong focus on MDD.
Collapse
Affiliation(s)
- Reza Rahimian
- Douglas Mental Health University Institute, McGill Group for Suicide Studies, Verdun, QC, Canada
| | - Claudia Belliveau
- Douglas Mental Health University Institute, McGill Group for Suicide Studies, Verdun, QC, Canada
- Integrated Program in Neuroscience, McGill University, Montreal, QC, Canada
| | - Rebecca Chen
- Douglas Mental Health University Institute, McGill Group for Suicide Studies, Verdun, QC, Canada
- Integrated Program in Neuroscience, McGill University, Montreal, QC, Canada
| | - Naguib Mechawar
- Douglas Mental Health University Institute, McGill Group for Suicide Studies, Verdun, QC, Canada
- Integrated Program in Neuroscience, McGill University, Montreal, QC, Canada
- Department of Psychiatry, McGill University, Montreal, QC, Canada
| |
Collapse
|
12
|
Antidepressant-like Effects of Renin Inhibitor Aliskiren in an Inflammatory Mouse Model of Depression. Brain Sci 2022; 12:brainsci12050655. [PMID: 35625041 PMCID: PMC9139539 DOI: 10.3390/brainsci12050655] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 05/09/2022] [Accepted: 05/13/2022] [Indexed: 11/16/2022] Open
Abstract
Depression is considered a neuropsychic disease that has global prevalence and is associated with disability. The pathophysiology of depression is not well understood; however, emerging evidence has indicated that neuroinflammation could contribute to developing depression symptoms. One of the factors that have a role in the development of neuroinflammation is the renin–angiotensin system. Therefore, the goal of the current study is to determine the antidepressant-like effects of Aliskiren, a renin inhibitor, against lipopolysaccharide (LPS)-induced depressive-like behavior in mice, glial cell activation, and the upregulation of proinflammatory cytokines in the prefrontal cortex. For behavioral studies, the open field test (OFT), tail suspension test (TST), forced swim test (FST), and sucrose preference test (SPT) were used. Inflammatory markers were assessed using real-time polymerase chain reaction (RT-PCR). LPS administration (0.5 mg/kg, intraperitoneal injection (i.p.)) sufficiently reduced the number of crossings in OFT, whereas Aliskiren pretreatment (10 mg/kg, i.p.) attenuated the LPS effect for two hours after LPS injection. The treatments did not show effects on locomotor activity in OFT 24 h after LPS administration. LPS increased the immobility time in TST and FST or reduced sucrose consumption in SPT after 24 h. Aliskiren reversed the effects induced by LPS in TST, FST, and SPT. CD11 b mRNA, a microglial marker, GFAP mRNA, an astroglial marker, and proinflammatory cytokines genes (TNF-α, IL-1β, and IL-6) were upregulated in the prefrontal cortex in LPS exposed animals. However, Aliskiren reduced LPS-induced inflammatory genes in the prefrontal cortex. Hence, the outcomes conclude that Aliskiren prevents depressive illness associated with neuroinflammation in humans.
Collapse
|
13
|
Hyperbaric Oxygen Therapy Improves Parkinson’s Disease by Promoting Mitochondrial Biogenesis via the SIRT-1/PGC-1α Pathway. Biomolecules 2022; 12:biom12050661. [PMID: 35625589 PMCID: PMC9138219 DOI: 10.3390/biom12050661] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Revised: 03/25/2022] [Accepted: 04/28/2022] [Indexed: 12/30/2022] Open
Abstract
Hyperbaric oxygen therapy (HBOT) has been suggested as a potential adjunctive therapy for Parkinson’s disease (PD). PD is a neurodegenerative disease characterized by the progressive loss of dopaminergic neurons in the substantia nigra pars compacta (SNpc). The aim of this study was to investigate the protective mechanisms of HBOT on neurons and motor function in a 1-Methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) mouse model of PD and 1-methyl-4-phenylpyridinium (MPP+)-mediated neurotoxicity in SH-SY5Y cells on the potential protective capability. In vivo: male C57BL/6 mice were randomly divided into three groups: control, MPTP group and MPTP+HBOT group. The MPTP-treated mice were intraperitoneally received MPTP (20 mg/kg) four times at 2 h intervals within a day. The day after MPTP treatment, MPTP+HBOT mice were exposed to hyperbaric oxygen at 2.5 atmosphere absolute (ATA) with 100% oxygen for 1 h once daily for 7 consecutive days. In vitro: retinoic acid (RA)-differentiated SH-SY5Y cells were treated with MPP+ for 1 h followed by hyperbaric oxygen at 2.5 ATA with 100% oxygen for 1 h. The results showed that MPTP induced a significant loss in tyrosine hydroxylase (TH)-positive neurons in the SNpc of mice. HBOT treatment significantly increased the number of TH-positive neurons, with enhanced neurotrophic factor BDNF, decreased apoptotic signaling and attenuated inflammatory mediators in the midbrain of MPTP-treated mice. In addition, MPTP treatment decreased the locomotor activity and grip strength of mice, and these effects were shown to improve after HBOT treatment. Furthermore, MPTP decreased mitochondrial biogenesis signaling (SIRT-1, PGC-1α and TFAM), as well as mitochondrial marker VDAC expression, while HBOT treatment was shown to upregulate protein expression. In cell experiments, MPP+ reduced neurite length, while HBOT treatment attenuated neurite retraction. Conclusions: the effects of HBOT in MPTP-treated mice might come from promoting mitochondrial biogenesis, decreasing apoptotic signaling and attenuating inflammatory mediators in the midbrain, suggesting its potential benefits in PD treatment.
Collapse
|
14
|
Kong Y, He G, Zhang X, Li J. The Role of Neutrophil Extracellular Traps in Lipopolysaccharide-Induced Depression-like Behaviors in Mice. Brain Sci 2021; 11:brainsci11111514. [PMID: 34827513 PMCID: PMC8615738 DOI: 10.3390/brainsci11111514] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Revised: 11/10/2021] [Accepted: 11/12/2021] [Indexed: 12/25/2022] Open
Abstract
Peripheral inflammation plays a key role in the development of depression-like behaviors. However, the mechanisms underlying these effects remain largely unknown. Here, we found that the level of citrullinated histone H3 (cit-H3) significantly increased in the plasma of wildtype mice treated with lipopolysaccharide (LPS), which indicated that neutrophil extracellular traps (NETs) were formed. Moreover, the LPS-induced depression-like and asocial behaviors were significantly alleviated in the mice deficient of NETs. Mechanistically, NETs formation aggravated peripheral inflammation by increasing the concentrations of TNF-α, IL-1β and IL-6 in plasma, which are major proinflammatory cytokines that can enter the brain, resulting in microglia activation and reduced astrocytes. Following this, increased TNF-α and IL-1β were released into brain, inducing neuroinflammation and finally depression-like behaviors. Prohibiting NETs by PAD4 ablation significantly prevented LPS-induced microglia activation and the loss of astrocytes. Our results propose the role for peripheral NETs in LPS-induced depression-like behavior, and that NETs might be a potential target to prevent inflammation-induced major depressive disorder.
Collapse
Affiliation(s)
- Yue Kong
- The Key Laboratory of Developmental Genes and Human Disease, School of Life Sciences and Technology, Southeast University, Nanjing 210018, China
- Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China; (G.H.); (X.Z.)
- Correspondence: (Y.K.); (J.L.)
| | - Guiqin He
- Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China; (G.H.); (X.Z.)
- Shanghai Clinical Research Center for Mental Health, Shanghai 200032, China
| | - Xiaolin Zhang
- Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China; (G.H.); (X.Z.)
| | - Jin Li
- Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China; (G.H.); (X.Z.)
- Shanghai Clinical Research Center for Mental Health, Shanghai 200032, China
- Correspondence: (Y.K.); (J.L.)
| |
Collapse
|
15
|
Maruszewska-Cheruiyot M, Stear M, Donskow-Łysoniewska K. Galectins - Important players of the immune response to CNS parasitic infection. Brain Behav Immun Health 2021; 13:100221. [PMID: 34589740 PMCID: PMC8474370 DOI: 10.1016/j.bbih.2021.100221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Revised: 01/18/2021] [Accepted: 01/30/2021] [Indexed: 11/18/2022] Open
Abstract
Galectins are a family of proteins that bind β-galactosides and play key roles in a variety of cellular processes including host defense and entry of parasites into the host cells. They have been well studied in hosts but less so in parasites. As both host and parasite galectins are highly upregulated proteins following infection, galectins are an area of increasing interest and their role in immune modulation has only recently become clear. Correlation of CNS parasitic diseases with mental disorders as a result of direct or indirect interaction has been observed. Therefore, galectins produced by the parasite should be taken into consideration as potential therapeutic agents.
Collapse
Affiliation(s)
- Marta Maruszewska-Cheruiyot
- Laboratory of Parasitology, General Karol Kaczkowski Military Institute of Hygiene and Epidemiology, Kozielska 4, 01-163, Warsaw, Poland
- Corresponding author.
| | - Michael Stear
- Department of Animal, Plant and Soil Science, Agribio, La Trobe University, Bundoora, VIC, 3086, Australia
| | - Katarzyna Donskow-Łysoniewska
- Laboratory of Parasitology, General Karol Kaczkowski Military Institute of Hygiene and Epidemiology, Kozielska 4, 01-163, Warsaw, Poland
| |
Collapse
|
16
|
Fenton-Navarro B, Garduño Ríos D, Torner L, Letechipía-Vallejo G, Cervantes M. Melatonin Decreases Circulating Levels of Galectin-3 and Cytokines, Motor Activity, and Anxiety Following Acute Global Cerebral Ischemia in Male Rats. Arch Med Res 2021; 52:505-513. [DOI: 10.1016/j.arcmed.2021.01.009] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Revised: 11/21/2020] [Accepted: 01/21/2021] [Indexed: 12/23/2022]
|
17
|
Analysis of Astroglial Secretomic Profile in the Mecp2-Deficient Male Mouse Model of Rett Syndrome. Int J Mol Sci 2021; 22:ijms22094316. [PMID: 33919253 PMCID: PMC8122273 DOI: 10.3390/ijms22094316] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Revised: 04/09/2021] [Accepted: 04/16/2021] [Indexed: 02/08/2023] Open
Abstract
Mutations in the X-linked MECP2 gene are responsible for Rett syndrome (RTT), a severe neurological disorder. MECP2 is a transcriptional modulator that finely regulates the expression of many genes, specifically in the central nervous system. Several studies have functionally linked the loss of MECP2 in astrocytes to the appearance and progression of the RTT phenotype in a non-cell autonomous manner and mechanisms are still unknown. Here, we used primary astroglial cells from Mecp2-deficient (KO) pups to identify deregulated secreted proteins. Using a differential quantitative proteomic analysis, twenty-nine proteins have been identified and four were confirmed by Western blotting with new samples as significantly deregulated. To further verify the functional relevance of these proteins in RTT, we tested their effects on the dendritic morphology of primary cortical neurons from Mecp2 KO mice that are known to display shorter dendritic processes. Using Sholl analysis, we found that incubation with Lcn2 or Lgals3 for 48 h was able to significantly increase the dendritic arborization of Mecp2 KO neurons. To our knowledge, this study, through secretomic analysis, is the first to identify astroglial secreted proteins involved in the neuronal RTT phenotype in vitro, which could open new therapeutic avenues for the treatment of Rett syndrome.
Collapse
|
18
|
Srejovic IM, Lukic ML. Galectin-3 in T cell-mediated immunopathology and autoimmunity. Immunol Lett 2021; 233:57-67. [PMID: 33753135 DOI: 10.1016/j.imlet.2021.03.009] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Accepted: 03/17/2021] [Indexed: 01/05/2023]
Abstract
Galectin-3 (Gal-3) is the only member of galectin family able to form pentamers and heterodimers with chemokines. Its presence in various cells and tissues suggests variety of regulatory functions in physiological conditions, but increasing body of evidence indicates involvement of Gal-3 in pathological cascades of many diseases. Gal-3 exerts different, sometimes opposite, effects in various disorders or in different phases of the same disease. These differences in action of Gal-3 are related to the localization of Gal-3 in the cell, types of receptors through which it acts, or the types of cells that secrete it. As a regulator of immune response and T-cell activity, Gal-3 appears to have important role in development of autoimmunity mediated by T cells. Absence of Gal-3 in C57Bl6 mice favors Th2 mediated inflammatory myocarditis but attenuate fibrosis. Recent data also indicate Gal-3 involvement in development atherosclerosis. In pathogenesis of diabetes type 1 and autoimmune components of diabetes type 2 Gal-3 may have detrimental or protective role depending on its intracellular or extracellular localization. Gal-3 mediates autoimmune hepatic damage through activation of T-cells or natural killer T cells. Gal-3 is an important mediator in neurodevelopment, neuropathology and behavior due to its expression both in neurons and glial cells. All together, assessing the role of Gal-3 in immunopathology and autoimmunity it could be concluded that it is an important participant in pathogenesis, as well as promising monitoring marker and therapeutic target.
Collapse
Affiliation(s)
- Ivan M Srejovic
- University of Kragujevac, Faculty of Medical Sciences, Department of Physiology, Svetozara Markovica 69, 34000, Kragujevac, Serbia.
| | - Miodrag L Lukic
- University of Kragujevac, Faculty of Medical Sciences, Department of Physiology, Svetozara Markovica 69, 34000, Kragujevac, Serbia; University of Kragujevac, Faculty of Medical Sciences, Center for Molecular Medicine and Stem Cell Research, Svetozara Markovica 69, 34000, Kragujevac, Serbia.
| |
Collapse
|
19
|
King DR, Salako DC, Arthur-Bentil SK, Rubin AE, Italiya JB, Tan JS, Macris DG, Neely HK, Palka JM, Grodin JL, Davis-Bordovsky K, Faubion M, North CS, Brown ES. Relationship between novel inflammatory biomarker galectin-3 and depression symptom severity in a large community-based sample. J Affect Disord 2021; 281:384-389. [PMID: 33352408 PMCID: PMC7856258 DOI: 10.1016/j.jad.2020.12.050] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Revised: 12/04/2020] [Accepted: 12/11/2020] [Indexed: 01/13/2023]
Abstract
Major depressive disorder is associated with pro-inflammatory markers, such as cytokines TNF-alpha, IL-6, IL-1ß, and C-reactive protein. Galectin-3 is a novel emerging biomarker with pro-inflammatory properties. It is a saccharide binding protein distributed throughout many tissues with varying functions and is a predictor of poor outcomes in patients with heart failure and stroke. However, its role as a predictor in depressive symptom severity remains undefined. Data from the community-based Dallas Heart Study (n = 2554) were examined using a multiple linear regression analysis to evaluate the relationship between galectin-3 and depressive symptom severity as assessed with Quick Inventory of Depressive Symptomatology Self-Report (QIDS-SR) scores. Additional covariates included age, sex, race/ethnicity, body mass index (BMI), years of education, serum creatinine, history of diabetes, and smoking history. Galectin-3 levels statistically significantly predicted QIDS-SR depressive symptom severity (β = 0.055, p = .015). Female sex, smoking status, and BMI were found to be statistically significant positive predictors of depression severity, while age, years of education, non-Hispanic White race, and Hispanic ethnicity were negative predictors of depressive symptom severity. In this large sample, higher galectin-3 levels were associated with higher levels of depressive symptoms. The findings suggest that galectin-3 may be a new and useful inflammatory biomarker associated with depression.
Collapse
Affiliation(s)
- Darlene R. King
- Department of Psychiatry, The University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd, MC 8849 Dallas, TX 75390-8849, USA
| | - Damilola C. Salako
- Department of Psychiatry, The University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd, MC 8849 Dallas, TX 75390-8849, USA
| | - Samia Kate Arthur-Bentil
- Department of Psychiatry, The University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd, MC 8849 Dallas, TX 75390-8849, USA
| | - Arielle E. Rubin
- Department of Psychiatry, The University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd, MC 8849 Dallas, TX 75390-8849, USA
| | - Jay B. Italiya
- Department of Psychiatry, The University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd, MC 8849 Dallas, TX 75390-8849, USA
| | - Jenny S. Tan
- Department of Psychiatry, The University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd, MC 8849 Dallas, TX 75390-8849, USA
| | - Dimitri G. Macris
- Department of Psychiatry, The University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd, MC 8849 Dallas, TX 75390-8849, USA
| | - Hunter K. Neely
- Department of Psychiatry, The University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd, MC 8849 Dallas, TX 75390-8849, USA
| | - Jayme M. Palka
- Department of Psychiatry, The University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd, MC 8849 Dallas, TX 75390-8849, USA
| | - Justin L. Grodin
- Division of Cardiology, Department of Internal Medicine, The University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd, Dallas, TX 75390-8830, USA
| | - Kaylee Davis-Bordovsky
- Department of Psychiatry, The University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd, MC 8849 Dallas, TX 75390-8849, USA
| | - Matthew Faubion
- Department of Psychiatry, The University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd, MC 8849 Dallas, TX 75390-8849, USA
| | - Carol S. North
- Department of Psychiatry, The University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd, MC 8849 Dallas, TX 75390-8849, USA,The Altshuler Center for Education & Research, Metrocare Services, 1250 Mockingbird Ln, Suite 330, Dallas, TX 75247, USA
| | - E. Sherwood Brown
- Department of Psychiatry, The University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd, MC 8849 Dallas, TX 75390-8849, USA,Corresponding author: E. Sherwood Brown, M.D., Ph.D., Department of Psychiatry, The University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd, Dallas, TX 75390-8849, Tel: 214-645-6950, Fax: 214-645-6951,
| |
Collapse
|
20
|
Sadlonova M, Meyer T, Binder L, Wachter R, Edelmann F, Herrmann-Lingen C. Higher galectin-3 levels are independently associated with lower anxiety in patients with risk factors for heart failure. Biopsychosoc Med 2020; 14:24. [PMID: 33024450 PMCID: PMC7531142 DOI: 10.1186/s13030-020-00195-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Accepted: 06/09/2020] [Indexed: 12/04/2022] Open
Abstract
Background Galectin-3 promotes the proliferation of neural progenitor cells and is engaged in cell-cell adhesion, cell-matrix interactions, and macrophage activation. In addition, in patients with heart failure this carbohydrate-binding protein is a known prognostic marker for cardiovascular mortality. However, its association with psychological variables has not been investigated so far. Methods Using data from the multicenter, observational Diast-CHF (Diagnostic Trial on Prevalence and Clinical Course of Diastolic Dysfunction and Heart Failure) trial, we studied in participants with cardiovascular risk factors (n = 1260, age 66.7 ± 8.0 years, males 51%, left ventricular ejection fraction 60.0 ± 8.1%) the relationship between serum concentrations of galectin-3 and anxiety. Galectin-3 levels were measured by means of a sandwich enzyme-linked immunosorbent assay, and anxiety was assessed using the Hospital Anxiety and Depression Scale (HADS). Results In univariate analysis, there was a weak but significant inverse correlation between galectin-3 and HADS anxiety (rho = − 0.076; p = 0.008). Linear regression models adjusted for sex, age, body-mass index, estimated glomerular filtration rate, left ventricular ejection fraction, 6-min walking distance, the 36-item Short-Form Health Survey (SF-36) subscale physical functioning, and known biomarkers for heart failure confirmed that serum galectin-3 significantly and independently predicted self-rated anxiety (B = -2.413; 95%CI = -2.413–-4.422; p = 0.019). Conclusion In patients with cardiovascular risk factors, serum concentrations of galectin-3 showed an inverse association with anxiety, which was independent of both the severity of physical impairment and established risk factors for the progression of heart failure.
Collapse
Affiliation(s)
- Monika Sadlonova
- Department of Psychosomatic Medicine and Psychotherapy, University of Göttingen Medical Center, Göttingen, Germany.,Department of Thoracic and Cardiovascular Surgery, University of Göttingen Medical Center, Göttingen, Germany.,German Center for Cardiovascular Research (DZHK), partner site Göttingen, Göttingen, Germany
| | - Thomas Meyer
- Department of Psychosomatic Medicine and Psychotherapy, University of Göttingen Medical Center, Göttingen, Germany.,German Center for Cardiovascular Research (DZHK), partner site Göttingen, Göttingen, Germany
| | - Lutz Binder
- German Center for Cardiovascular Research (DZHK), partner site Göttingen, Göttingen, Germany.,Institute for Clinical Chemistry, University of Göttingen Medical Center, Göttingen, Germany
| | - Rolf Wachter
- German Center for Cardiovascular Research (DZHK), partner site Göttingen, Göttingen, Germany.,Department of Cardiology and Pneumology, University of Göttingen Medical Center, Göttingen, Germany.,Department of Cardiology, University of Leipzig Medical Center, Leipzig, Germany
| | - Frank Edelmann
- Department of Cardiology and Pneumology, University of Göttingen Medical Center, Göttingen, Germany.,Department of Internal Medicine and Cardiology, Charité University Medicine, Campus Virchow Klinikum, Berlin, Germany.,German Center for Cardiovascular Research (DZHK), partner site Berlin, Berlin, Germany.,Berlin Institute of Health (BIH), Berlin, Germany
| | - Christoph Herrmann-Lingen
- Department of Psychosomatic Medicine and Psychotherapy, University of Göttingen Medical Center, Göttingen, Germany.,German Center for Cardiovascular Research (DZHK), partner site Göttingen, Göttingen, Germany
| |
Collapse
|
21
|
Srejovic I, Selakovic D, Jovicic N, Jakovljević V, Lukic ML, Rosic G. Galectin-3: Roles in Neurodevelopment, Neuroinflammation, and Behavior. Biomolecules 2020; 10:biom10050798. [PMID: 32455781 PMCID: PMC7277476 DOI: 10.3390/biom10050798] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/1970] [Revised: 05/09/2020] [Accepted: 05/13/2020] [Indexed: 12/16/2022] Open
Abstract
There is a plethora of evidence to suggest that Galectin-3 plays an important role in normal functions of mammalian cells, as well as in different pathogenic conditions. This review highlights recent data published by researchers, including our own team, on roles of Galectin-3 in the nervous system. Here, we discuss the roles of Galectin-3 in brain development, its roles in glial cells, as well as the interactions of glial cells with other neural and invading cells in pathological conditions. Galectin-3 plays an important role in the pathogenesis of neuroinflammatory and neurodegenerative disorders, such as multiple sclerosis, Alzheimer’s disease, Parkinson’s disease, and Huntington’s disease. On the other hand, there is also evidence of the protective role of Galectin-3 due to its anti-apoptotic effect in target cells. Interestingly, genetic deletion of Galectin-3 affects behavioral patterns in maturing and adult mice. The results reviewed in this paper and recent development of highly specific inhibitors suggests that Galectin-3 may be an important therapeutic target in pathological conditions including the disorders of the central nervous system.
Collapse
Affiliation(s)
- Ivan Srejovic
- Department of Physiology, Faculty of Medical Sciences, University of Kragujevac, Svetozara Markovica 69, 34000 Kragujevac Serbia; (I.S.); (D.S.); (V.J.)
| | - Dragica Selakovic
- Department of Physiology, Faculty of Medical Sciences, University of Kragujevac, Svetozara Markovica 69, 34000 Kragujevac Serbia; (I.S.); (D.S.); (V.J.)
| | - Nemanja Jovicic
- Department of Histology and Embryology, Faculty of Medical Sciences, University of Kragujevac, Svetozara Markovica 69, 34000 Kragujevac, Serbia;
| | - Vladimir Jakovljević
- Department of Physiology, Faculty of Medical Sciences, University of Kragujevac, Svetozara Markovica 69, 34000 Kragujevac Serbia; (I.S.); (D.S.); (V.J.)
- Department of Human Pathology, 1st Moscow State Medical University IM Sechenov, 119146 Moscow, Russia
| | - Miodrag L. Lukic
- Department of Physiology—Molecular Medicine Unit, Faculty of Medical Sciences, University of Kragujevac, Svetozara Markovica 69, 34000 Kragujevac, Serbia
- Correspondence: (M.L.L.); (G.R.)
| | - Gvozden Rosic
- Department of Physiology, Faculty of Medical Sciences, University of Kragujevac, Svetozara Markovica 69, 34000 Kragujevac Serbia; (I.S.); (D.S.); (V.J.)
- Correspondence: (M.L.L.); (G.R.)
| |
Collapse
|
22
|
Kiliç F, Işik Ü, Demirdaş A, Usta A. Serum galectin-3 levels are decreased in schizophrenia. ACTA ACUST UNITED AC 2020; 42:398-402. [PMID: 32159713 PMCID: PMC7430395 DOI: 10.1590/1516-4446-2019-0699] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2019] [Accepted: 11/12/2019] [Indexed: 11/22/2022]
Abstract
Objective: To determine whether changes in serum galectin-3 (gal-3) concentrations in schizophrenia patients have etiopathogenetic importance. Since very little research has assessed the connection between galectins and schizophrenia, we wanted to examine alterations in the inflammatory marker gal-3 in schizophrenia and investigate possible correlations between clinical symptomatology and serum concentrations. Methods: Forty-eight schizophrenia patients and 44 healthy controls were included in this study. The Scale for the Assessment of Positive Symptoms (SAPS) and the Scale for the Assessment of Negative Symptoms (SANS) were administered to determine symptom severity. Venous blood samples were collected, and serum gal-3 levels were measured. Results: Mean serum gal-3 levels were significantly lower in schizophrenia patients, and there were no significant differences in age or sex with the control group. There was also a significant positive correlation between serum gal-3 concentrations and negative schizophrenia symptoms according to the SANS. Conclusion: The results indicate that gal-3 is decreased in schizophrenia patients, which could contribute to inflammation in the pathogenesis of schizophrenia.
Collapse
Affiliation(s)
- Faruk Kiliç
- Department of Psychiatry, Süleyman Demirel University Medicine Faculty, Isparta, Turkey
| | - Ümit Işik
- Department of Child and Adolescent Psychiatry, Süleyman Demirel University Medicine Faculty, Isparta, Turkey
| | - Arif Demirdaş
- Department of Psychiatry, Süleyman Demirel University Medicine Faculty, Isparta, Turkey
| | - Ayşe Usta
- Department of Psychiatry, Süleyman Demirel University Medicine Faculty, Isparta, Turkey
| |
Collapse
|
23
|
Vukovic R, Kumburovic I, Joksimovic Jovic J, Jovicic N, Katanic Stankovic JS, Mihailovic V, Djuric M, Velickovic S, Arnaut A, Selakovic D, Rosic G. N-Acetylcysteine Protects against the Anxiogenic Response to Cisplatin in Rats. Biomolecules 2019; 9:biom9120892. [PMID: 31861240 PMCID: PMC6995611 DOI: 10.3390/biom9120892] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2019] [Revised: 12/04/2019] [Accepted: 12/08/2019] [Indexed: 12/12/2022] Open
Abstract
Since cisplatin therapy is usually accompanied with numerous toxicities, including neurotoxicity, that involve tissue oxidative damage, the aim of this study was to evaluate the possible protective effect of N-acetylcysteine (NAC) on the anxiogenic response to cisplatin (CIS). Thirty-two male Wistar albino rats divided into four groups (control, cisplatin, NAC, and CIS + NAC). All treatments were delivered intraperitoneally. On day one, the control and cisplatin groups received saline while the NAC and CIS + NAC groups were administered with NAC (500 mg/kg). On the fifth day, the control group received saline while the CIS group was treated with cisplatin (7.5 mg/kg), the NAC group again received NAC (500 mg/kg), and the CIS + NAC group was simultaneously treated with cisplatin and NAC (7.5 and 500 mg/kg, respectively). Behavioral testing, performed on the tenth day in the open field (OF) and elevated plus maze (EPM) tests, revealed the anxiogenic effect of cisplatin that was significantly attenuated by NAC. The hippocampal sections evaluation showed increased oxidative stress (increased lipid peroxidation and decline in antioxidant enzymes activity) and proapoptotic action (predominantly by diminished antiapoptotic gene expression) following a single dose of cisplatin. NAC supplementation along with cisplatin administration reversed the prooxidative and proapoptotic effects of cisplatin. In conclusion, the results obtained in this study confirmed that antioxidant supplementation with NAC may attenuate the cisplatin-induced anxiety. The mechanism of anxiolytic effect achieved by NAC may include the decline in oxidative damage that down regulates increased apoptosis and reverses the anxiogenic action of cisplatin.
Collapse
Affiliation(s)
- Rade Vukovic
- Clinic for Anesthesiology and Critical Care, Military Medical Academy, Crnotravska 17, 11000 Belgrade, Serbia;
| | - Igor Kumburovic
- Department of Physiology, Faculty of Medical Sciences, University of Kragujevac, Svetozara Markovica 69, 34000 Kragujevac, Serbia; (I.K.); (J.J.J.)
| | - Jovana Joksimovic Jovic
- Department of Physiology, Faculty of Medical Sciences, University of Kragujevac, Svetozara Markovica 69, 34000 Kragujevac, Serbia; (I.K.); (J.J.J.)
| | - Nemanja Jovicic
- Department of Histology and Embryology, Faculty of Medical Sciences, University of Kragujevac, Svetozara Markovica 69, 34000 Kragujevac, Serbia;
| | - Jelena S. Katanic Stankovic
- Department of Science, Institute for Information Technologies Kragujevac, University of Kragujevac, Jovana Cvijica b.b., 34000 Kragujevac, Serbia;
| | - Vladimir Mihailovic
- Department of Chemistry, Faculty of Science, University of Kragujevac, Radoja Domanovica 12, 34000 Kragujevac, Serbia;
| | - Milos Djuric
- Institute of Pharmacology, Clinical Pharmacology and Toxicology, Faculty of Medicine, University of Belgrade, Dr Subotica 8, 11000 Belgrade, Serbia;
| | - Stefan Velickovic
- Department of Dentistry, Faculty of Medical Sciences, University of Kragujevac, Svetozara Markovica 69, 34000 Kragujevac, Serbia; (S.V.); (A.A.)
| | - Aleksandra Arnaut
- Department of Dentistry, Faculty of Medical Sciences, University of Kragujevac, Svetozara Markovica 69, 34000 Kragujevac, Serbia; (S.V.); (A.A.)
| | - Dragica Selakovic
- Department of Physiology, Faculty of Medical Sciences, University of Kragujevac, Svetozara Markovica 69, 34000 Kragujevac, Serbia; (I.K.); (J.J.J.)
- Correspondence: (D.S.); (G.R.)
| | - Gvozden Rosic
- Department of Physiology, Faculty of Medical Sciences, University of Kragujevac, Svetozara Markovica 69, 34000 Kragujevac, Serbia; (I.K.); (J.J.J.)
- Correspondence: (D.S.); (G.R.)
| |
Collapse
|
24
|
Deficiency in Androgen Receptor Aggravates the Depressive-Like Behaviors in Chronic Mild Stress Model of Depression. Cells 2019; 8:cells8091021. [PMID: 31480771 PMCID: PMC6769639 DOI: 10.3390/cells8091021] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2019] [Revised: 08/22/2019] [Accepted: 08/28/2019] [Indexed: 02/06/2023] Open
Abstract
While androgen receptor (AR) and stress may influence the development of the major depressive disorder (MDD), the detailed relationship, however, remains unclear. Here we found loss of AR accelerated development of depressive-like behaviors in mice under chronic mild stress (CMS). Mechanism dissection indicated that AR might function via altering the expression of miR-204-5p to modulate the brain-derived neurotrophic factor (BDNF) expression to influence the depressive-like behaviors in the mice under the CMS. Adding the antiandrogen flutamide with the stress hormone corticosterone can additively decrease BDNF mRNA in mouse hippocampus mHippoE-14 cells, which can then be reversed via down-regulating the miR-204-5p expression. Importantly, targeting this newly identified AR-mediated miR-204-5p/BDNF/AKT/MAPK signaling with small molecules including 7,8-DHF and fluoxetine, all led to alter the depressive-like behavior in AR knockout mice under CMS exposure. Together, results from these preclinical studies conclude that decreased AR may accelerate the stress-induced MDD via altering miR-204-5p/BDNF/AKT/MAPK signaling, and targeting this newly identified signaling may help in the development of better therapeutic approaches to reduce the development of MDD.
Collapse
|
25
|
Atalar MN, Abuşoğlu S, Ünlü A, Tok O, İpekçi SH, Baldane S, Kebapcılar L. Assessment of serum galectin-3, methylated arginine and Hs-CRP levels in type 2 diabetes and prediabetes. Life Sci 2019; 231:116577. [PMID: 31211997 DOI: 10.1016/j.lfs.2019.116577] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2019] [Revised: 06/01/2019] [Accepted: 06/14/2019] [Indexed: 01/16/2023]
Abstract
PURPOSE Galectin-3 is associated with the process of inflammation and fibrosis. The aim of this study was both to evaluate of galectin-3, methylated arginines and hs-CRP in subjects with type 2 diabetes and prediabetes and to investigate a relation between serum galectin-3, methylated arginines and hs-CRP levels. METHODS In this study, all subjects were defined as the control group, type 2 diabetes (n = 84) by fasting plasma glucose and prediabetes (n = 34) by 75-g oral glucose tolerance test. Also, participants with type 2 diabetes were divided into as group I (HbA1c ≤7%, n = 40) and group II (HbA1c ≥7%, n = 44). The analysis of serum methylated arginines levels was analyzed by tandem mass spectrometry. Galectin-3 levels were determined via chemiluminescent microparticle immunoassay (CMIA). RESULTS Serum galectin-3, ADMA, L-NMMA and SDMA levels were significantly lower in the control group (13.3 ± 3.42; 0.630 (0.13-1.36); 0.176 (0.02-0.53); 0.115 (0.04-0.26), respectively) compared to diabetic subjects (15.71 ± 4.22; 0.825 (0.23-2.80); 0.366 (0.08-1.41); 0.1645 (0.06-0.47), p = 0.002, p = 0.01, p = 0.001 and p = 0.006, respectively). Galectin-3 was positively correlated with hs-CRP (r = 0.295 p = 0.001), L-NMMA (r = 0.181 p = 0.022), HbA1c (r = 0.247 p = 0.002), neopterin (r = 0.160 p = 0.045) and FPG (r = 0.207 p = 0.001) respectively. Also, there was positively correlated ADMA with FPG (r = 0.192 p = 0.016) and eAG (r = 0.235 p = 0.003). CONCLUSIONS Thus, galectin-3 might be a useful prognostic marker in the population with prediabetes and diabetes. Moreover, it can be a marker showing the condition of developing complications in diabetic patients.
Collapse
Affiliation(s)
- Mehmet Nuri Atalar
- Iğdır University, Department of Biochemistry, Faculty of Arts and Science, Iğdır, Turkey.
| | - Sedat Abuşoğlu
- Department of Biochemistry, Selcuk University Faculty of Medicine, Konya, Turkey
| | - Ali Ünlü
- Department of Biochemistry, Selcuk University Faculty of Medicine, Konya, Turkey
| | - Oğuzhan Tok
- Department of Biochemistry, Selcuk University Faculty of Medicine, Konya, Turkey
| | | | - Süleyman Baldane
- Department of Endocrinology, Selcuk University Faculty of Medicine, Konya, Turkey
| | - Levent Kebapcılar
- Department of Endocrinology, Selcuk University Faculty of Medicine, Konya, Turkey
| |
Collapse
|