1
|
Saroukhani S, Samms-Vaughan M, Bressler J, Lee M, Byrd-Williams C, Hessabi M, Grove ML, Shakespeare-Pellington S, Loveland KA, Rahbar MH. Additive or Interactive Associations of Food Allergies with Glutathione S-Transferase Genes in Relation to ASD and ASD Severity in Jamaican Children. J Autism Dev Disord 2024; 54:704-724. [PMID: 36436147 DOI: 10.1007/s10803-022-05813-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/30/2022] [Indexed: 11/29/2022]
Abstract
To investigate additive and interactive associations of food allergies with three glutathione S-transferase (GST) genes in relation to ASD and ASD severity in Jamaican children. Using data from 344 1:1 age- and sex-matched ASD cases and typically developing controls, we assessed additive and interactive associations of food allergies with polymorphisms in GST genes (GSTM1, GSTP1 and GSTT1) in relation to ASD by applying conditional logistic regression models, and in relation to ASD severity in ASD cases as measured by the Autism Diagnostic Observation Schedule-2nd Edition (ADOS-2) total and domains specific comparison scores (CSs) by fitting general linear models. Although food allergies and GST genes were not associated with ASD, ASD cases allergic to non-dairy food had higher mean ADOS-2 Restricted and Repetitive Behaviors (RRB) CS (8.8 vs. 8.0, P = 0.04). In addition, allergy to dairy was associated with higher mean RRB CS only among ASD cases with GSTT1 DD genotype (9.9 vs. 7.8, P < 0.01, interaction P = 0.01), and GSTP1 Val/Val genotype under a recessive genetic model (9.8 vs. 7.8, P = 0.02, interaction P = 0.06). Our findings are consistent with the role for GST genes in ASD and food allergies, though require replication in other populations.
Collapse
Affiliation(s)
- Sepideh Saroukhani
- Division of Clinical and Translational Sciences, Department of Internal Medicine, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, 77030, USA
- Biostatistics/Epidemiology/Research Design (BERD) Core, Center for Clinical and Translational Sciences (CCTS), The University of Texas Health Science Center at Houston, Houston, TX, 77030, USA
| | - Maureen Samms-Vaughan
- Department of Child & Adolescent Health, The University of the West Indies (UWI), Mona Campus, Kingston 7, Kingston, Jamaica
| | - Jan Bressler
- Department of Epidemiology, Human Genetics, School of Public Health, The University of Texas Health Science Center at Houston, Houston, TX, 77030, USA
- Human Genetics Center, School of Public Health, The University of Texas Health Science Center at Houston, Houston, TX, 77030, USA
| | - MinJae Lee
- Peter O'Donnell Jr. School of Public Health, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Courtney Byrd-Williams
- Department of Health Promotion and Behavioral Sciences, Michael & Susan Dell Center for Healthy Living, School of Public Health Regional Campus at Austin, The University of Texas Health Science Center at Houston, Austin, TX, 78701, USA
| | - Manouchehr Hessabi
- Biostatistics/Epidemiology/Research Design (BERD) Core, Center for Clinical and Translational Sciences (CCTS), The University of Texas Health Science Center at Houston, Houston, TX, 77030, USA
| | - Megan L Grove
- Department of Epidemiology, Human Genetics, School of Public Health, The University of Texas Health Science Center at Houston, Houston, TX, 77030, USA
- Human Genetics Center, School of Public Health, The University of Texas Health Science Center at Houston, Houston, TX, 77030, USA
| | - Sydonnie Shakespeare-Pellington
- Department of Child & Adolescent Health, The University of the West Indies (UWI), Mona Campus, Kingston 7, Kingston, Jamaica
| | - Katherine A Loveland
- Louis A. Faillace, MD, Department of Psychiatry and Behavioral Sciences, McGovern Medical School, The University of Texas Health Science Center at Houston, TX, 77030, Houston, USA
| | - Mohammad H Rahbar
- Division of Clinical and Translational Sciences, Department of Internal Medicine, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, 77030, USA.
- Biostatistics/Epidemiology/Research Design (BERD) Core, Center for Clinical and Translational Sciences (CCTS), The University of Texas Health Science Center at Houston, Houston, TX, 77030, USA.
- Department of Epidemiology, Human Genetics, School of Public Health, The University of Texas Health Science Center at Houston, Houston, TX, 77030, USA.
| |
Collapse
|
2
|
Ma R, Wang P, Yang Q, Zhu Y, Zhang L, Wang Y, Sun L, Li W, Ge J, Zhu P. Interpregnancy interval and early infant neurodevelopment: the role of maternal-fetal glucose metabolism. BMC Med 2024; 22:2. [PMID: 38169387 PMCID: PMC10762827 DOI: 10.1186/s12916-023-03191-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Accepted: 11/22/2023] [Indexed: 01/05/2024] Open
Abstract
BACKGROUND Interpregnancy interval (IPI) is associated with a variety of adverse maternal and infant outcomes. However, reports of its associations with early infant neurodevelopment are limited and the mechanisms of this association have not been elucidated. Maternal-fetal glucose metabolism has been shown to be associated with infant neurodevelopmental. The objective of this study was to determine whether this metabolism plays a role in the relationship between IPI and neurodevelopment. METHODS This prospective birth cohort study included 2599 mother-infant pairs. The IPI was calculated by subtracting the gestational age of the current pregnancy from the interval at the end of the previous pregnancy. Neurodevelopmental outcomes at 12 months in infants were assessed by the Ages and Stages Questionnaire Edition 3 (ASQ-3). Maternal fasting venous blood was collected at 24-28 weeks and cord blood was collected at delivery. The association between IPI and neurodevelopment was determined by logistic regression. Mediation and sensitivity analyses were also conducted. RESULTS In our cohort, 14.0% had an IPI < 12 months. IPI < 12 months increased the failure of the communication domain, fine motor domain, and personal social domain of the ASQ (relative risks (RRs) with 95% confidence interval (CI): 1.73 [1.11,2.70]; 1.73 [1.10,2.72]; 1.51 [1.00,2.29]). Maternal homeostasis model assessment of insulin resistance (HOMA-IR) and cord blood C-peptide was significantly associated with failure in the communication domain [RRs with 95% CI: 1.15 (1.02, 1.31); 2.15 (1.26, 3.67)]. The proportion of the association between IPI and failure of the communication domain risk mediated by maternal HOMA-IR and cord blood C-peptide was 14.4%. CONCLUSIONS IPI < 12 months was associated with failing the communication domain in infants. Maternal-fetal glucose metabolism abnormality may partially explain the risk of neurodevelopmental delay caused by short IPI.
Collapse
Affiliation(s)
- Ruirui Ma
- Department of Maternal, Child and Adolescent Health, School of Public Health, Anhui Medical University, 81 Meishan Road, Hefei, 230032, Anhui, China
- MOE Key Laboratory of Population Health Across Life Cycle, Anhui Medical University, Hefei, China
- NHC Key Laboratory of Study On Abnormal Gametes and Reproductive Tract, Anhui Medical University, Hefei, China
- Anhui Provincial Key Laboratory of Population Health and Aristogenics, Anhui Medical University, Hefei, China
- Center for Big Data and Population Health of IHM, Anhui Medical University, Hefei, China
| | - Peng Wang
- Department of Maternal, Child and Adolescent Health, School of Public Health, Anhui Medical University, 81 Meishan Road, Hefei, 230032, Anhui, China
- MOE Key Laboratory of Population Health Across Life Cycle, Anhui Medical University, Hefei, China
- NHC Key Laboratory of Study On Abnormal Gametes and Reproductive Tract, Anhui Medical University, Hefei, China
- Anhui Provincial Key Laboratory of Population Health and Aristogenics, Anhui Medical University, Hefei, China
- Center for Big Data and Population Health of IHM, Anhui Medical University, Hefei, China
| | - Qiaolan Yang
- Department of Maternal, Child and Adolescent Health, School of Public Health, Anhui Medical University, 81 Meishan Road, Hefei, 230032, Anhui, China
- Department of Urology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Yuanyuan Zhu
- Department of Maternal, Child and Adolescent Health, School of Public Health, Anhui Medical University, 81 Meishan Road, Hefei, 230032, Anhui, China
- MOE Key Laboratory of Population Health Across Life Cycle, Anhui Medical University, Hefei, China
- Anhui Provincial Key Laboratory of Population Health and Aristogenics, Anhui Medical University, Hefei, China
- Center for Big Data and Population Health of IHM, Anhui Medical University, Hefei, China
| | - Lei Zhang
- Department of Maternal, Child and Adolescent Health, School of Public Health, Anhui Medical University, 81 Meishan Road, Hefei, 230032, Anhui, China
- MOE Key Laboratory of Population Health Across Life Cycle, Anhui Medical University, Hefei, China
- Anhui Provincial Key Laboratory of Population Health and Aristogenics, Anhui Medical University, Hefei, China
- Center for Big Data and Population Health of IHM, Anhui Medical University, Hefei, China
| | - Yuhong Wang
- Department of Maternal, Child and Adolescent Health, School of Public Health, Anhui Medical University, 81 Meishan Road, Hefei, 230032, Anhui, China
- MOE Key Laboratory of Population Health Across Life Cycle, Anhui Medical University, Hefei, China
- Anhui Provincial Key Laboratory of Population Health and Aristogenics, Anhui Medical University, Hefei, China
- Center for Big Data and Population Health of IHM, Anhui Medical University, Hefei, China
| | - Lijun Sun
- Department of Maternal, Child and Adolescent Health, School of Public Health, Anhui Medical University, 81 Meishan Road, Hefei, 230032, Anhui, China
| | - Wenxiang Li
- Department of Maternal, Child and Adolescent Health, School of Public Health, Anhui Medical University, 81 Meishan Road, Hefei, 230032, Anhui, China
| | - Jinfang Ge
- School of Pharmacy, Anhui Medical University, 81 Meishan Road, Hefei, 230032, Anhui, China.
| | - Peng Zhu
- Department of Maternal, Child and Adolescent Health, School of Public Health, Anhui Medical University, 81 Meishan Road, Hefei, 230032, Anhui, China.
- MOE Key Laboratory of Population Health Across Life Cycle, Anhui Medical University, Hefei, China.
- NHC Key Laboratory of Study On Abnormal Gametes and Reproductive Tract, Anhui Medical University, Hefei, China.
- Anhui Provincial Key Laboratory of Population Health and Aristogenics, Anhui Medical University, Hefei, China.
- Center for Big Data and Population Health of IHM, Anhui Medical University, Hefei, China.
| |
Collapse
|
3
|
Kim JH, Yi YY, Ha EK, Cha HR, Han MY, Baek HS. Neurodevelopment at 6 years of age in children with atopic dermatitis. Allergol Int 2023; 72:116-127. [PMID: 36058807 DOI: 10.1016/j.alit.2022.08.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Revised: 07/17/2022] [Accepted: 07/26/2022] [Indexed: 01/25/2023] Open
Abstract
BACKGROUND Few studies have reported an association between atopic dermatitis and cognitive impairment in children. Therefore, we evaluated the association between atopic dermatitis (AD) and neurodevelopmental dysfunction in children. METHODS We analyzed 2,395,966 children born between 2008 and 2012 in Korea. All data were acquired from the databases of the Korean National Health Insurance System. AD was defined as five or more diagnoses before age 24 months. The outcome was suspected neurodevelopmental dysfunction in the gross motor skill, fine motor skill, cognition, language, sociality, and self-care domains of the Korean Developmental Screening Test for Infants and Children at age 6 years. The positive control outcome was defined as attention deficit hyperactive disorder (ADHD). The associations were assessed using ordinal logistic regression, adjusting for asthma and allergic rhinitis. RESULTS Among the eligible children, 89,452 and 30,557 were allocated to the control and AD groups, respectively. In the weighted data, the AD group showed a higher risk of suspected neurodevelopmental dysfunction in the total score (weighted adjusted odds ratio [95% CI] 1.10 [1.05-1.16]), gross motor skills (1.14 [1.04-1.25]), and fine motor skills (1.15 [1.06-1.25]) than the control group. The AD with steroids or hospitalization groups showed an increased risk of suspected neurodevelopmental dysfunction. In addition, the AD group showed a significant association with mental retardation, psychological development disorder, and behavioral and emotional disorders as well as ADHD. CONCLUSIONS AD before age 2 years may be associated with an increased risk of neurodevelopmental dysfunction including gross and fine motor skills in the young childhood period.
Collapse
Affiliation(s)
- Ju Hee Kim
- Department of Pediatrics, Kangdong Sacred Heart Hospital, Hallym University College of Medicine, Seoul, South Korea
| | - Yoon Young Yi
- Department of Pediatrics, Kangdong Sacred Heart Hospital, Hallym University College of Medicine, Seoul, South Korea
| | - Eun Kyo Ha
- Department of Pediatrics, Hallym University Kangnam Sacred Heart Hospital, Seoul, South Korea
| | - Hey Ryung Cha
- Department of Data Science, Sejong University College of Software Convergence, Seoul, South Korea
| | - Man Yong Han
- Department of Pediatrics, CHA Bundang Medical Center, CHA University School of Medicine, Seongnam, South Korea.
| | - Hey-Sung Baek
- Department of Pediatrics, Kangdong Sacred Heart Hospital, Hallym University College of Medicine, Seoul, South Korea.
| |
Collapse
|
4
|
Tao Y, Zhou E, Li F, Meng L, Li Q, Wu L. Allergenicity Alleviation of Bee Pollen by Enzymatic Hydrolysis: Regulation in Mice Allergic Mediators, Metabolism, and Gut Microbiota. Foods 2022; 11:foods11213454. [PMID: 36360070 PMCID: PMC9658975 DOI: 10.3390/foods11213454] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 10/26/2022] [Accepted: 10/28/2022] [Indexed: 11/06/2022] Open
Abstract
Bee pollen as a nutrient-rich functional food has been considered for use as an adjuvant for chronic disease therapy. However, bee pollen can trigger food-borne allergies, causing a great concern to food safety. Our previous study demonstrated that the combined use of cellulase, pectinase and papain can hydrolyze allergens into peptides and amino acids, resulting in reduced allergenicity of bee pollen based on in vitro assays. Herein, we aimed to further explore the mechanisms behind allergenicity alleviation of enzyme-treated bee pollen through a BALB/c mouse model. Results showed that the enzyme-treated bee pollen could mitigate mice scratching frequency, ameliorate histopathological injury, decrease serum IgE level, and regulate bioamine production. Moreover, enzyme-treated bee pollen can modulate metabolic pathways and gut microbiota composition in mice, further supporting the alleviatory allergenicity of enzyme-treated bee pollen. The findings could provide a foundation for further development and utilization of hypoallergenic bee pollen products.
Collapse
Affiliation(s)
- Yuxiao Tao
- Institute of Apicultural Research, Chinese Academy of Agricultural Sciences (CAAS), Beijing 100093, China
| | - Enning Zhou
- Institute of Apicultural Research, Chinese Academy of Agricultural Sciences (CAAS), Beijing 100093, China
| | - Fukai Li
- Key Laboratory of Agro-Product Quality and Safety, Institute of Quality Standards and Testing Technology for Agro-Products, Chinese Academy of Agricultural Sciences (CAAS), Beijing 100081, China
| | - Lifeng Meng
- Institute of Apicultural Research, Chinese Academy of Agricultural Sciences (CAAS), Beijing 100093, China
| | - Qiangqiang Li
- Institute of Apicultural Research, Chinese Academy of Agricultural Sciences (CAAS), Beijing 100093, China
- Correspondence: ; Tel.: +86-132-6949-5300
| | - Liming Wu
- Institute of Apicultural Research, Chinese Academy of Agricultural Sciences (CAAS), Beijing 100093, China
| |
Collapse
|
5
|
A Personalized Multidisciplinary Approach to Evaluating and Treating Autism Spectrum Disorder. J Pers Med 2022; 12:jpm12030464. [PMID: 35330464 PMCID: PMC8949394 DOI: 10.3390/jpm12030464] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2022] [Revised: 03/09/2022] [Accepted: 03/10/2022] [Indexed: 02/06/2023] Open
Abstract
Autism Spectrum Disorder (ASD) is a complex neurodevelopmental disorder without a known cure. Current standard-of-care treatments focus on addressing core symptoms directly but have provided limited benefits. In many cases, individuals with ASD have abnormalities in multiple organs, including the brain, immune and gastrointestinal system, and multiple physiological systems including redox and metabolic systems. Additionally, multiple aspects of the environment can adversely affect children with ASD including the sensory environment, psychosocial stress, dietary limitations and exposures to allergens and toxicants. Although it is not clear whether these medical abnormalities and environmental factors are related to the etiology of ASD, there is evidence that many of these factors can modulate ASD symptoms, making them a potential treatment target for improving core and associated ASD-related symptoms and improving functional limitation. Additionally, addressing underlying biological disturbances that drive pathophysiology has the potential to be disease modifying. This article describes a systematic approach using clinical history and biomarkers to personalize medical treatment for children with ASD. This approach is medically comprehensive, making it attractive for a multidisciplinary approach. By concentrating on treatable conditions in ASD, it is possible to improve functional ability and quality of life, thus providing optimal outcomes.
Collapse
|
6
|
De Paepe E, Van Gijseghem L, De Spiegeleer M, Cox E, Vanhaecke L. A Systematic Review of Metabolic Alterations Underlying IgE-Mediated Food Allergy in Children. Mol Nutr Food Res 2021; 65:e2100536. [PMID: 34648231 DOI: 10.1002/mnfr.202100536] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Revised: 08/10/2021] [Indexed: 12/24/2022]
Abstract
SCOPE Immunoglobulin E-mediated food allergies (IgE-FA) are characterized by an ever-increasing prevalence, currently reaching up to 10.4% of children in the European Union. Metabolomics has the potential to provide a deeper understanding of the pathogenic mechanisms behind IgE-FA. METHODS AND RESULTS In this work, literature is systematically searched using Web of Science, PubMed, Scopus, and Embase, from January 2010 until May 2021, including human and animal metabolomic studies on multiple biofluids (urine, blood, feces). In total, 15 studies on IgE-FA are retained and a dataset of 277 potential biomarkers is compiled for in-depth pathway mapping. Decreased indoleamine 2,3-dioxygenase-1 (IDO- 1) activity is hypothesized due to altered plasma levels of tryptophan and its metabolites in IgE-FA children. In feces of children prior to IgE-FA, aberrant metabolization of sphingolipids and histidine is noted. Decreased fecal levels of (branched) short chain fatty acids ((B)SCFAs) compel a shift towards aerobic glycolysis and suggest dysbiosis, associated with an immune system shift towards T-helper 2 (Th2) responses. During animal anaphylaxis, a similar switch towards glycolysis is observed, combined with increased ketogenic pathways. Additionally, altered histidine, purine, pyrimidine, and lipid pathways are observed. CONCLUSION To conclude, this work confirms the unprecedented opportunities of metabolomics and supports the in-depth pathophysiological qualification in the quest towards improved diagnostic and prognostic biomarkers for IgE-FA.
Collapse
Affiliation(s)
- Ellen De Paepe
- Department of Translational Physiology, Infectiology and Public Health, Laboratory of Chemical Analysis, Faculty of Veterinary Medicine, Ghent University, Ghent, Belgium
| | - Lynn Van Gijseghem
- Department of Translational Physiology, Infectiology and Public Health, Laboratory of Chemical Analysis, Faculty of Veterinary Medicine, Ghent University, Ghent, Belgium
| | - Margot De Spiegeleer
- Department of Translational Physiology, Infectiology and Public Health, Laboratory of Chemical Analysis, Faculty of Veterinary Medicine, Ghent University, Ghent, Belgium
| | - Eric Cox
- Department of Translational Physiology, Infectiology and Public Health, Laboratory of Immunology, Ghent University, Ghent, Belgium
| | - Lynn Vanhaecke
- Department of Translational Physiology, Infectiology and Public Health, Laboratory of Chemical Analysis, Faculty of Veterinary Medicine, Ghent University, Ghent, Belgium.,Institute for Global Food Security, School of Biological Sciences, Queen's University Belfast, Northern Ireland, Belfast, UK
| |
Collapse
|
7
|
Schmidt RJ, Liang D, Busgang SA, Curtin P, Giulivi C. Maternal Plasma Metabolic Profile Demarcates a Role for Neuroinflammation in Non-Typical Development of Children. Metabolites 2021; 11:545. [PMID: 34436486 PMCID: PMC8400060 DOI: 10.3390/metabo11080545] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2021] [Revised: 08/11/2021] [Accepted: 08/12/2021] [Indexed: 11/16/2022] Open
Abstract
Maternal and cord plasma metabolomics were used to elucidate biological pathways associated with increased diagnosis risk for autism spectrum disorders (ASD). Metabolome-wide associations were assessed in both maternal and umbilical cord plasma in relation to diagnoses of ASD and other non-typical development (Non-TD) compared to typical development (TD) in the Markers of Autism risk in Babies: Learning Early Signs (MARBLES) cohort study of children born to mothers who already have at least one child with ASD. Analyses were stratified by sample matrix type, machine mode, and annotation confidence level. Dimensionality reduction techniques were used [i.e, principal component analysis (PCA) and random subset weighted quantile sum regression (WQSRS)] to minimize the high multiple comparison burden. With WQSRS, a metabolite mixture obtained from the negative mode of maternal plasma decreased the odds of Non-TD compared to TD. These metabolites, all related to the prostaglandin pathway, underscored the relevance of neuroinflammation status. No other significant findings were observed. Dimensionality reduction strategies provided confirming evidence that a set of maternal plasma metabolites are important in distinguishing Non-TD compared to TD diagnosis. A lower risk for Non-TD was linked to anti-inflammatory elements, thereby linking neuroinflammation to detrimental brain function consistent with studies ranging from neurodevelopment to neurodegeneration.
Collapse
Affiliation(s)
- Rebecca J. Schmidt
- Department of Public Health Sciences, School of Medicine, University of California Davis, Davis, CA 95616, USA;
- Medical Investigation of Neurodevelopmental Disorders (MIND) Institute, School of Medicine, University of California Davis, Sacramento, CA 95817, USA
| | - Donghai Liang
- Gangarosa Department of Environmental Health, Rollins School of Public Health, Emory University, Atlanta, GA 30322, USA;
| | - Stefanie A. Busgang
- Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; (S.A.B.); (P.C.)
| | - Paul Curtin
- Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; (S.A.B.); (P.C.)
| | - Cecilia Giulivi
- Medical Investigation of Neurodevelopmental Disorders (MIND) Institute, School of Medicine, University of California Davis, Sacramento, CA 95817, USA
- Department of Molecular Biosciences, School of Veterinary Medicine, University of California Davis, Davis, CA 95616, USA
| |
Collapse
|
8
|
Yonekawa MKA, Penteado BDB, Dal'Ongaro Rodrigues A, Lourenço EMG, Barbosa EG, das Neves SC, de Oliveira RJ, Marques MR, Silva DB, de Lima DP, Beatriz A, Oses JP, Dos S Jaques JA, Santos EDAD. l-Hypaphorine and d-hypaphorine: Specific antiacetylcholinesterase activity in rat brain tissue. Bioorg Med Chem Lett 2021; 47:128206. [PMID: 34146704 DOI: 10.1016/j.bmcl.2021.128206] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 06/07/2021] [Accepted: 06/13/2021] [Indexed: 11/20/2022]
Abstract
Acetylcholinesterase (AChEis) inhibitors are used to treat neurodegenerative diseases like Alzheimer's disease (AD). l-Hypaphorine (l-HYP) is a natural indole alkaloid that has been shown to have effects on the central nervous system (CNS). The goal of this research was to synthesize l-HYP and d-HYP and test their anticholinesterasic properties in rat brain regions. l-HYP suppressed acetylcholinesterase (AChE) activity only in the cerebellum, whereas d-HYP inhibited AChE activity in all CNS regions studied. No cytotoxic effect on normal human cells (HaCaT) was observed in the case of l-HYP and d-HYP although an increase in cell proliferation. Molecular modeling studies revealed that d-HYP and l-HYP have significant differences in their binding mode positions and interact stereospecifically with AChE's amino acid residues.
Collapse
Affiliation(s)
- Murilo K A Yonekawa
- Laboratório de Bioquímica Geral e de Microrganismos, Instituto de Biociências, Universidade Federal de Mato Grosso do Sul, Campo Grande, MS, Brazil
| | - Bruna de B Penteado
- Laboratório de Bioquímica Geral e de Microrganismos, Instituto de Biociências, Universidade Federal de Mato Grosso do Sul, Campo Grande, MS, Brazil
| | - Amanda Dal'Ongaro Rodrigues
- Laboratório de Bioquímica Geral e de Microrganismos, Instituto de Biociências, Universidade Federal de Mato Grosso do Sul, Campo Grande, MS, Brazil
| | - Estela M G Lourenço
- Laboratório de Pesquisa 4, Instituto de Química, Universidade Federal de Mato Grosso do Sul, Campo Grande, MS, Brazil
| | - Euzébio G Barbosa
- Departamento de Farmácia, Centro de Ciências da Saúde, Universidade Federal do Rio Grande do Norte, Natal, RN, Brazil
| | - Silvia C das Neves
- Centro de Estudos e Células Tronco, Terapia Celular e Genética Toxicológica, Universidade Federal de Mato Grosso do Sul, NHU, Campo Grande, MS, Brazil
| | - Rodrigo J de Oliveira
- Centro de Estudos e Células Tronco, Terapia Celular e Genética Toxicológica, Universidade Federal de Mato Grosso do Sul, NHU, Campo Grande, MS, Brazil
| | - Maria R Marques
- Laboratório de Bioquímica Geral e de Microrganismos, Instituto de Biociências, Universidade Federal de Mato Grosso do Sul, Campo Grande, MS, Brazil
| | - Denise B Silva
- Laboratório de Produtos Naturais e Espectrometria de Massas, Faculdade de Ciências Farmacêuticas, Alimentos e Nutrição, Universidade Federal do Mato Grosso do Sul, Campo Grande, MS, Brazil
| | - Dênis P de Lima
- Laboratório de Pesquisa 4, Instituto de Química, Universidade Federal de Mato Grosso do Sul, Campo Grande, MS, Brazil
| | - Adilson Beatriz
- Laboratório de Pesquisa 4, Instituto de Química, Universidade Federal de Mato Grosso do Sul, Campo Grande, MS, Brazil
| | - Jean P Oses
- Laboratório de Bioquímica Geral e de Microrganismos, Instituto de Biociências, Universidade Federal de Mato Grosso do Sul, Campo Grande, MS, Brazil
| | - Jeandre A Dos S Jaques
- Laboratório de Bioquímica Geral e de Microrganismos, Instituto de Biociências, Universidade Federal de Mato Grosso do Sul, Campo Grande, MS, Brazil
| | - Edson Dos A Dos Santos
- Laboratório de Bioquímica Geral e de Microrganismos, Instituto de Biociências, Universidade Federal de Mato Grosso do Sul, Campo Grande, MS, Brazil.
| |
Collapse
|
9
|
Chua RXY, Tay MJY, Ooi DSQ, Siah KTH, Tham EH, Shek LPC, Meaney MJ, Broekman BFP, Loo EXL. Understanding the Link Between Allergy and Neurodevelopmental Disorders: A Current Review of Factors and Mechanisms. Front Neurol 2021; 11:603571. [PMID: 33658968 PMCID: PMC7917177 DOI: 10.3389/fneur.2020.603571] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Accepted: 12/30/2020] [Indexed: 12/17/2022] Open
Abstract
Both allergic diseases and neurodevelopmental disorders are non-communicable diseases (NCDs) that not only impact on the quality of life and but also result in substantial economic burden. Immune dysregulation and inflammation are typical hallmarks in both allergic and neurodevelopmental disorders, suggesting converging pathophysiology. Epidemiological studies provided convincing evidence for the link between allergy and neurodevelopmental diseases such as attention-deficit hyperactivity disorder (ADHD) and autism spectrum disorder (ASD). Possible factors influencing the development of these disorders include maternal depression and anxiety, gestational diabetes mellitus, maternal allergic status, diet, exposure to environmental pollutants, microbiome dysbiosis, and sleep disturbances that occur early in life. Moreover, apart from inflammation, epigenetics, gene expression, and mitochondrial dysfunction have emerged as possible underlying mechanisms in the pathogenesis of these conditions. The exploration and understanding of these shared factors and possible mechanisms may enable us to elucidate the link in the comorbidity.
Collapse
Affiliation(s)
- Regena Xin Yi Chua
- Department of Pediatrics, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Michelle Jia Yu Tay
- Department of Pediatrics, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Delicia Shu Qin Ooi
- Department of Pediatrics, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore.,Khoo Teck Puat-National University Children's Medical Institute, National University Hospital, National University Health System, Singapore, Singapore
| | - Kewin Tien Ho Siah
- Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore.,Division of Gastroenterology & Hepatology, University Medicine Cluster, National University Hospital, Singapore, Singapore
| | - Elizabeth Huiwen Tham
- Department of Pediatrics, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore.,Khoo Teck Puat-National University Children's Medical Institute, National University Hospital, National University Health System, Singapore, Singapore.,Singapore Institute for Clinical Sciences (SICS), Agency for Science, Technology and Research (ASTAR), Singapore, Singapore
| | - Lynette Pei-Chi Shek
- Department of Pediatrics, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore.,Khoo Teck Puat-National University Children's Medical Institute, National University Hospital, National University Health System, Singapore, Singapore.,Singapore Institute for Clinical Sciences (SICS), Agency for Science, Technology and Research (ASTAR), Singapore, Singapore
| | - Michael J Meaney
- Department of Pediatrics, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore.,Singapore Institute for Clinical Sciences (SICS), Agency for Science, Technology and Research (ASTAR), Singapore, Singapore.,Ludmer Centre for Neuroinformatics and Mental Health and Department of Psychiatry, McGill University, Montréal, QC, Canada
| | - Birit F P Broekman
- Singapore Institute for Clinical Sciences (SICS), Agency for Science, Technology and Research (ASTAR), Singapore, Singapore.,Department of Psychiatry, Onze Lieve Vrouwe Gasthuis and Amsterdam University Medical Centre, VU University Medical Center, Amsterdam, Netherlands
| | - Evelyn Xiu Ling Loo
- Department of Pediatrics, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore.,Singapore Institute for Clinical Sciences (SICS), Agency for Science, Technology and Research (ASTAR), Singapore, Singapore
| |
Collapse
|
10
|
Sala R, Amet L, Blagojevic-Stokic N, Shattock P, Whiteley P. Bridging the Gap Between Physical Health and Autism Spectrum Disorder. Neuropsychiatr Dis Treat 2020; 16:1605-1618. [PMID: 32636630 PMCID: PMC7335278 DOI: 10.2147/ndt.s251394] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Accepted: 05/05/2020] [Indexed: 12/12/2022] Open
Abstract
Autism spectrum disorder (ASD) is a highly complex and heterogeneous developmental disorder that affects how individuals communicate with other people and relate to the world around them. Research and clinical focus on the behavioural and cognitive manifestations of ASD, whilst important, have obscured the recognition that ASD is also commonly associated with a range of physical and mental health conditions. Many physical conditions appear with greater frequency in individuals with ASD compared to non-ASD populations. These can contribute to a worsening of social communication and behaviour, lower quality of life, higher morbidity and premature mortality. We highlight some of the key physical comorbidities affecting the immune and the gastrointestinal systems, metabolism and brain function in ASD. We discuss how healthcare professionals working with individuals with ASD and parents/carers have a duty to recognise their needs in order to improve their overall health and wellbeing, deliver equality in their healthcare experiences and reduce the likelihood of morbidity and early mortality associated with the condition.
Collapse
Affiliation(s)
- Regina Sala
- Centre for Psychiatry, Wolfson Institute, Barts & The London School of Medicine & Dentistry Queen Mary University of London, London, UK
| | | | | | - Paul Shattock
- Education & Services for People with Autism, Sunderland, UK
| | - Paul Whiteley
- Education & Services for People with Autism Research, Sunderland, UK
| |
Collapse
|