Differential mRNA Expression Profiling Reveals the Role of MiR-375 in Inflammation of Bovine Mammary Epithelial Cells.
Animals (Basel) 2022;
12:ani12111431. [PMID:
35681895 PMCID:
PMC9179474 DOI:
10.3390/ani12111431]
[Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Revised: 05/29/2022] [Accepted: 05/30/2022] [Indexed: 02/05/2023] Open
Abstract
Simple Summary
Bovine mammary epithelial cells (bMECs) are often used as cell models for mammary gland research. They are the most important cells for mammary gland function and the first line of defense for pathogen identification. MicroRNAs (miRNAs) are important regulatory factors involved in many physiological and pathological processes. Here, we examined a transcriptome profile of bovine mammary epithelial cell lines transfected with miR-375 inhibitor or negative control (NC) inhibitor, and further reveal the potential role of miR-375 in bMECs by differentially expressed mRNA analysis. We found that miR-375 potentially promotes inflammation in the mammary gland through the MAPK signaling pathway.
Abstract
MicroRNAs (miRNAs) are a class of small non-coding RNAs that regulate post-transcriptional gene expression and several biological processes. Bovine mammary epithelial cells (bMECs) mediate critical immune responses in the mammary gland and the occurrence of mastitis. Current research focuses on miRNA regulation of bMECs, but the miR-375 regulatory mechanism in bMECs is unclear. This study explored the role of miR-375 by profiling the transcriptome of miR-375-silenced bMECs using RNA-seq and identifying differentially expressed mRNAs (DIE-mRNAs). There were 63 DIE-mRNAs, including 48 down-regulated and 15 up-regulated mRNAs between miR-375-silenced bMECs and the controls. The Kyoto encyclopedia of genes and genomes (KEGG) and Gene Ontology (GO) functional analysis showed that the DIE-mRNAs enriched nuclear receptor subfamily 4 group A member 1 (NR4A1) and protein tyrosine phosphatase non-receptor type 5 (PTPN5) anti-inflammatory genes of the mitogen-activated protein kinase (MAPK) signaling pathway. However, they showed an opposite trend to the expression of miR-375 silencing, suggesting that miR-375 promotes bMEC inflammation through the MAPK signaling pathway. The findings of this study provide a new reference for understanding the regulation of bMEC inflammation and cow mastitis.
Collapse