1
|
Ma N, Wang H, Lu Q, Liu J, Fan X, Li L, Wang Q, Li X, Yu B, Zhang Y, Gao J. Temporal changes of neurobehavior in rats following varied blast magnitudes and screening of serum biomarkers in early stage of brain injury. Sci Rep 2024; 14:30023. [PMID: 39627295 PMCID: PMC11615197 DOI: 10.1038/s41598-024-81656-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Accepted: 11/28/2024] [Indexed: 12/06/2024] Open
Abstract
Blast neurotrauma has been linked to impairments in higher-order cognitive functions, including memory, attention, and mood. Current literature is limited to a single overpressure exposure or repeated exposures at the same level of overpressure. In this study, a rodent model of primary blast neurotrauma was employed to determine the pressure at which acute and chronic neurological alterations occurred. Three pressure magnitudes (low, moderate and high) were used to evaluate injury thresholds. A biology shock tube (BST) was used to simulate shock waves with overpressures of 60 kPa, 90 kPa and 120 kPa respectively. Neurological behavior of the rats was assessed by the Multi-Conditioning System (MCS) at 1 d, 7 d, 28 d and 90 d after shock wave exposure. Serum dopamine (DA), 5-hydroxytryptamine (5-HT), brain-derived neurotrophic factor (BDNF) and gamma-aminobutyric acid (GABA) were measured at the same time points. The proteomic analysis was conducted to identify potentially vulnerable cellular and molecule targets of serum in the immediate post-exposure period. Results revealed that: (1) Anxiety-like behavior increased significantly at 1 d post-exposure in the medium and high overpressure (90 kPa, 120 kPa) groups, returned to baseline at 7 days, and anxiety-like behavior in the high overpressure groups re-emerged at 28 d and 90 d. (2) High overpressure (120 kPa) impaired learning and memory in the immediate post-exposure period. (3) The serum DA levels decreased significantly at 1 d post-exposure in the medium and high overpressure groups; The 5-HT levels decreased significantly at 1 d and 90 d in the high overpressure groups; The BDNF levels decreased significantly at 90 d in the high overpressure groups. (4) Proteomic analysis identified 38, 306, and 57 differentially expressed proteins in serum following low, medium and high overpressure exposures, respectively. Two co-expressed proteins were validated. Functional analysis revealed significant enrichment of 1121, 2096, and 1121 Gene Ontology (GO) items and 33, 47, and 26 Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways, indicating extensive molecular responses to overpressure in the early phase. These findings suggest that exposure, even at moderate levels, can induce persistent neurobehavioral and molecular alterations, highlighting the need for further research into the long-term consequences of blast neurotrauma.
Collapse
Affiliation(s)
- Ning Ma
- Xi'an Key Laboratory of Toxicology and Biological Effects, Research Center for Toxicological and Biological Effects, Institute for Hygiene of Ordnance Industry, Xi'an, 710065, China
| | - Hong Wang
- Xi'an Key Laboratory of Toxicology and Biological Effects, Research Center for Toxicological and Biological Effects, Institute for Hygiene of Ordnance Industry, Xi'an, 710065, China
| | - Qing Lu
- Xi'an Key Laboratory of Toxicology and Biological Effects, Research Center for Toxicological and Biological Effects, Institute for Hygiene of Ordnance Industry, Xi'an, 710065, China
| | - Jinren Liu
- School of Public Health, Xi'an Jiaotong University Health Science Center, Xi'an, 710061, China
| | - Xiaolin Fan
- Xi'an Key Laboratory of Toxicology and Biological Effects, Research Center for Toxicological and Biological Effects, Institute for Hygiene of Ordnance Industry, Xi'an, 710065, China
| | - Liang Li
- Xi'an Key Laboratory of Toxicology and Biological Effects, Research Center for Toxicological and Biological Effects, Institute for Hygiene of Ordnance Industry, Xi'an, 710065, China
| | - Qi Wang
- Xi'an Key Laboratory of Toxicology and Biological Effects, Research Center for Toxicological and Biological Effects, Institute for Hygiene of Ordnance Industry, Xi'an, 710065, China
| | - Xiao Li
- Xi'an Key Laboratory of Toxicology and Biological Effects, Research Center for Toxicological and Biological Effects, Institute for Hygiene of Ordnance Industry, Xi'an, 710065, China
| | - Boya Yu
- Xi'an Key Laboratory of Toxicology and Biological Effects, Research Center for Toxicological and Biological Effects, Institute for Hygiene of Ordnance Industry, Xi'an, 710065, China
| | - Yuhao Zhang
- Xi'an Key Laboratory of Toxicology and Biological Effects, Research Center for Toxicological and Biological Effects, Institute for Hygiene of Ordnance Industry, Xi'an, 710065, China
| | - Junhong Gao
- Xi'an Key Laboratory of Toxicology and Biological Effects, Research Center for Toxicological and Biological Effects, Institute for Hygiene of Ordnance Industry, Xi'an, 710065, China.
| |
Collapse
|
2
|
Hosseini R, Emadian S, Dogani M, Ghazanfari T, Askari N. Chronic stress modulates the expression level of leptin and leptin receptors in the hypothalamus of male rats with a history of maternal stress. Brain Behav Immun Health 2024; 42:100895. [PMID: 39559273 PMCID: PMC11570818 DOI: 10.1016/j.bbih.2024.100895] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 10/24/2024] [Accepted: 10/27/2024] [Indexed: 11/20/2024] Open
Abstract
The activity of different neurotransmitter pathways in the hypothalamus controls the stress response. Meanwhile, leptin is known as an effective mediator in the stress response, and its serum and brain levels change when exposed to stressful factors. In this study, the effect of chronic social instability stress (INS) and chronic unpredictable stress (CUS) on anxiety-like behavioral responses and the level of expression of leptin and its receptor in the brain of male Wistar rats that were under maternal stress (MS) were investigated. Grouping: control (n = 7), MS (n = 7), INS (n = 7), CUS (n = 7), MS + INS (n = 7), MS + CUS (n = 7). Forced swimming, elevated plus-maze, and open field tests were used to check anxiety-like behaviors. Next, the mRNA expression of leptin and its receptor in the hypothalamus was measured by Real-Time PCR. According to the results, adult rats with maternal stress showed an increase in their anxiety-like behaviors faced with the stress of chronic social instability and chronic unpredictable stress (compared to the groups that only received adult stresses). Also, the hypothalamic expression of leptin decreased, but we saw an increase in the expression of hypothalamic leptin receptors in INS, CUS, and MS groups and a decrease in MS + INS and MS + CUS groups. Results of this research suggest that leptin plays a role as an effective mediator in the occurrence of central and behavioral changes caused by maternal stress. In other words, it can be effective in changing resilience in the face of adult stress.
Collapse
Affiliation(s)
- Roya Hosseini
- Department of Biology, Faculty of Sciences, Shahid Bahonar University of Kerman, Kerman, Islamic Republic of Iran
| | - Sara Emadian
- Department of Biology, Faculty of Sciences, Shahid Bahonar University of Kerman, Kerman, Islamic Republic of Iran
| | - Manijeh Dogani
- Department of Biology, Faculty of Sciences, Shahid Bahonar University of Kerman, Kerman, Islamic Republic of Iran
| | - Touba Ghazanfari
- Immunoregulation Research Center, Shahed University, Tehran, Islamic Republic of Iran
| | - Nayere Askari
- Immunoregulation Research Center, Shahed University, Tehran, Islamic Republic of Iran
| |
Collapse
|
3
|
Zhang J, Xiong YW, Zhu HL, Tan LL, Zhou H, Zheng XM, Zhang YF, Chang W, Xu DX, Wei T, Guan SZ, Wang H. Adolescent co-exposure to environmental cadmium and high-fat diet induces cognitive decline via Larp7 m6A-mediated SIRT6 inhibition. JOURNAL OF HAZARDOUS MATERIALS 2024; 476:135159. [PMID: 39002485 DOI: 10.1016/j.jhazmat.2024.135159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Revised: 07/07/2024] [Accepted: 07/07/2024] [Indexed: 07/15/2024]
Abstract
The effects and underlying mechanisms of adolescent exposure to combined environmental hazards on cognitive function remain unclear. Here, using a combined exposure model, we found significant cognitive decline, hippocampal neuronal damage, and neuronal senescence in mice exposed to cadmium (Cd) and high-fat diet (HFD) during adolescence. Furthermore, we observed a significant downregulation of Sirtuin 6 (SIRT6) expression in the hippocampi of co-exposed mice. UBCS039, a specific SIRT6 activator, markedly reversed the above adverse effects. Further investigation revealed that co-exposure obviously reduced the levels of La ribonucleoprotein 7 (LARP7), disrupted the interaction between LARP7 and SIRT6, ultimately decreasing SIRT6 expression in mouse hippocampal neuronal cells. Overexpression of Larp7 reversed the combined exposure-induced SIRT6 decrease and senescence in mouse hippocampal neuronal cells. Additionally, the results showed notably elevated levels of Larp7 m6A and YTH domain family protein 2 (YTHDF2) in mouse hippocampal neuronal cells treated with the combined hazards. Ythdf2 short interfering RNA, RNA immunoprecipitation, and RNA stability assays further demonstrated that YTHDF2 mediated the degradation of Larp7 mRNA under combined exposure. Collectively, adolescent co-exposure to Cd and HFD causes hippocampal senescence and cognitive decline in mice by inhibiting LARP7-mediated SIRT6 expression in an m6A-dependent manner.
Collapse
Affiliation(s)
- Jin Zhang
- Department of Toxicology, School of Public Health, Center for Big Data and Population Health of IHM, Anhui Medical University, China; Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, China
| | - Yong-Wei Xiong
- Department of Toxicology, School of Public Health, Center for Big Data and Population Health of IHM, Anhui Medical University, China; Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, China; Key Laboratory of Population Health Across Life Cycle (Anhui Medical University), Ministry of Education of the People's Republic of China, China
| | - Hua-Long Zhu
- Department of Toxicology, School of Public Health, Center for Big Data and Population Health of IHM, Anhui Medical University, China; Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, China; Key Laboratory of Population Health Across Life Cycle (Anhui Medical University), Ministry of Education of the People's Republic of China, China
| | - Lu-Lu Tan
- Department of Toxicology, School of Public Health, Center for Big Data and Population Health of IHM, Anhui Medical University, China; Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, China
| | - Huan Zhou
- Department of Toxicology, School of Public Health, Center for Big Data and Population Health of IHM, Anhui Medical University, China; Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, China
| | - Xin-Mei Zheng
- Department of Toxicology, School of Public Health, Center for Big Data and Population Health of IHM, Anhui Medical University, China; Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, China
| | - Yu-Feng Zhang
- Department of Toxicology, School of Public Health, Center for Big Data and Population Health of IHM, Anhui Medical University, China; Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, China
| | - Wei Chang
- Department of Toxicology, School of Public Health, Center for Big Data and Population Health of IHM, Anhui Medical University, China; Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, China
| | - De-Xiang Xu
- Department of Toxicology, School of Public Health, Center for Big Data and Population Health of IHM, Anhui Medical University, China; Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, China; Key Laboratory of Population Health Across Life Cycle (Anhui Medical University), Ministry of Education of the People's Republic of China, China
| | - Tian Wei
- Department of Toxicology, School of Public Health, Center for Big Data and Population Health of IHM, Anhui Medical University, China; Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, China; Key Laboratory of Population Health Across Life Cycle (Anhui Medical University), Ministry of Education of the People's Republic of China, China.
| | - Su-Zhen Guan
- School of Public Health, Ningxia Medical University, China.
| | - Hua Wang
- Department of Toxicology, School of Public Health, Center for Big Data and Population Health of IHM, Anhui Medical University, China; Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, China; Key Laboratory of Population Health Across Life Cycle (Anhui Medical University), Ministry of Education of the People's Republic of China, China.
| |
Collapse
|
4
|
Zhu X, Zhang C, Hu Y, Wang Y, Xiao S, Zhu Y, Sun H, Sun J, Xu C, Xu Y, Chen Y, He X, Liu B, Liu J, Du J, Liang Y, Liu B, Li X, Jiang Y, Shen Z, Shao X, Fang J. Modulation of Comorbid Chronic Neuropathic Pain and Anxiety-Like Behaviors by Glutamatergic Neurons in the Ventrolateral Periaqueductal Gray and the Analgesic and Anxiolytic Effects of Electroacupuncture. eNeuro 2024; 11:ENEURO.0454-23.2024. [PMID: 39084906 PMCID: PMC11360982 DOI: 10.1523/eneuro.0454-23.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 07/15/2024] [Accepted: 07/19/2024] [Indexed: 08/02/2024] Open
Abstract
Comorbid chronic neuropathic pain and anxiety is a common disease that represents a major clinical challenge. The underlying mechanisms of chronic neuropathic pain and anxiety are not entirely understood, which limits the exploration of effective treatment methods. Glutamatergic neurons in the ventrolateral periaqueductal gray (vlPAG) have been implicated in regulating pain, but the potential roles of the vlPAG in neuropathic pain-induced anxiety have not been investigated. Herein, whole-cell recording and immunofluorescence showed that the excitability of CamkIIα neurons in the vlPAG (vlPAGCamkIIα+ neurons) was decreased in mice with spared nerve injury (SNI), while electroacupuncture (EA) activated these neurons. We also showed that chemogenetic inhibition of vlPAGCamkIIα+ neurons resulted in allodynia and anxiety-like behaviors in naive mice. Furthermore, chemogenetic activation of vlPAGCamkIIα+ neurons reduced anxiety-like behaviors and allodynia in mice with SNI, and EA had a similar effect in alleviating these symptoms. Nevertheless, EA combined with chemogenetic activation failed to further relieve allodynia and anxiety-like behaviors. Artificial inhibition of vlPAGCamkIIα+ neurons abolished the analgesic and anxiolytic effects of EA. Overall, our study reveals a novel mechanism of neuropathic pain-induced anxiety and shows that EA may relieve comorbid chronic neuropathic pain and anxiety by activating vlPAGCamkIIα+ neurons.
Collapse
Affiliation(s)
- Xixiao Zhu
- Key Laboratory of Acupuncture and Neurology of Zhejiang Province, Department of Neurobiology and Acupuncture Research, The Third Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Chi Zhang
- Key Laboratory of Acupuncture and Neurology of Zhejiang Province, Department of Neurobiology and Acupuncture Research, The Third Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Yuxin Hu
- Key Laboratory of Acupuncture and Neurology of Zhejiang Province, Department of Neurobiology and Acupuncture Research, The Third Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Yifang Wang
- Key Laboratory of Acupuncture and Neurology of Zhejiang Province, Department of Neurobiology and Acupuncture Research, The Third Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Siqi Xiao
- Key Laboratory of Acupuncture and Neurology of Zhejiang Province, Department of Neurobiology and Acupuncture Research, The Third Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Yichen Zhu
- Key Laboratory of Acupuncture and Neurology of Zhejiang Province, Department of Neurobiology and Acupuncture Research, The Third Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Haiju Sun
- Key Laboratory of Acupuncture and Neurology of Zhejiang Province, Department of Neurobiology and Acupuncture Research, The Third Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Jing Sun
- Key Laboratory of Acupuncture and Neurology of Zhejiang Province, Department of Neurobiology and Acupuncture Research, The Third Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Chi Xu
- Key Laboratory of Acupuncture and Neurology of Zhejiang Province, Department of Neurobiology and Acupuncture Research, The Third Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Yunyun Xu
- Key Laboratory of Acupuncture and Neurology of Zhejiang Province, Department of Neurobiology and Acupuncture Research, The Third Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Yuerong Chen
- Key Laboratory of Acupuncture and Neurology of Zhejiang Province, Department of Neurobiology and Acupuncture Research, The Third Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Xiaofen He
- Key Laboratory of Acupuncture and Neurology of Zhejiang Province, Department of Neurobiology and Acupuncture Research, The Third Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Boyu Liu
- Key Laboratory of Acupuncture and Neurology of Zhejiang Province, Department of Neurobiology and Acupuncture Research, The Third Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Jinggen Liu
- Key Laboratory of Acupuncture and Neurology of Zhejiang Province, Department of Neurobiology and Acupuncture Research, The Third Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Junying Du
- Key Laboratory of Acupuncture and Neurology of Zhejiang Province, Department of Neurobiology and Acupuncture Research, The Third Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Yi Liang
- Key Laboratory of Acupuncture and Neurology of Zhejiang Province, Department of Neurobiology and Acupuncture Research, The Third Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Boyi Liu
- Key Laboratory of Acupuncture and Neurology of Zhejiang Province, Department of Neurobiology and Acupuncture Research, The Third Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Xiaoyu Li
- Key Laboratory of Acupuncture and Neurology of Zhejiang Province, Department of Neurobiology and Acupuncture Research, The Third Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Yongliang Jiang
- Key Laboratory of Acupuncture and Neurology of Zhejiang Province, Department of Neurobiology and Acupuncture Research, The Third Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Zui Shen
- Key Laboratory of Acupuncture and Neurology of Zhejiang Province, Department of Neurobiology and Acupuncture Research, The Third Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Xiaomei Shao
- Key Laboratory of Acupuncture and Neurology of Zhejiang Province, Department of Neurobiology and Acupuncture Research, The Third Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Jianqiao Fang
- Key Laboratory of Acupuncture and Neurology of Zhejiang Province, Department of Neurobiology and Acupuncture Research, The Third Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou 310053, China
| |
Collapse
|
5
|
Chang SH, Chang YM, Chen HY, Shaw FZ, Shyu BC. Time-course analysis of frontal gene expression profiles in the rat model of posttraumatic stress disorder and a comparison with the conditioned fear model. Neurobiol Stress 2023; 27:100569. [PMID: 37771408 PMCID: PMC10522909 DOI: 10.1016/j.ynstr.2023.100569] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Revised: 08/07/2023] [Accepted: 09/08/2023] [Indexed: 09/30/2023] Open
Abstract
Posttraumatic stress disorder (PTSD) is a complex disorder that involves physiological, emotional, and cognitive dysregulation that may occur after exposure to a life-threatening event. In contrast with the condition of learned fear with resilience to extinction, abnormal fear with impaired fear extinction and exaggeration are considered crucial factors for the pathological development of PTSD. The prefrontal cortex (mPFC) is considered a critical region of top-down control in fear regulation, which involves the modulation of fear expression and extinction. The pathological course of PTSD is usually chronic and persistent; a number of studies have indicated temporal progression in gene expression and phenotypes may be involved in PTSD pathology. In the current study, we use a well-established modified single-prolonged stress (SPS&FS) rat model to feature PTSD-like phenotypes and compared it with a footshock fear conditioning model (FS model); we collected the frontal tissue after extreme stress exposure or fear conditioning and extracted RNA for transcriptome-level gene sequencing. We compared the genetic profiling of the mPFC at early (<2 h after solely FS or SPS&FS exposure) and late (7 days after solely FS or SPS&FS exposure) stages in these two models. First, we identified temporal differences in the expressional patterns between these two models and found pathways such as protein synthesis factor eukaryotic initiation factor 2 (EIF2), transcription factor NF-E2-related factor 2 (NRF2)-mediated oxidative stress response, and acute phase responding signaling enriched in the early stage in both models with significant p-values. Furthermore, in the late stage, the sirtuin signaling pathway was enriched in both models; other pathways such as STAT3, cAMP, lipid metabolism, Gα signaling, and increased fear were especially enriched in the late stage of the SPS&FS model. However, pathways such as VDR/RXR, GP6, and PPAR signaling were activated significantly in the FS model's late stage. Last, the network analysis revealed the temporal dynamics of psychological disorder, the endocrine system, and also genes related to increased fear in the two models. This study could help elucidate the genetic temporal alteration and stage-specific pathways in these two models, as well as a better understanding of the transcriptome-level differences between them.
Collapse
Affiliation(s)
- Shao-Han Chang
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
- Inflammation Core Facility, Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
- Department of Psychology, National Cheng Kung University, Tainan, Taiwan
- Taiwan International Graduate Program in Interdisciplinary Neuroscience, National Cheng Kung University and Academia Sinica, Taipei, Taiwan
| | - Yao-Ming Chang
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| | - Huan-Yuan Chen
- Inflammation Core Facility, Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| | - Fu-Zen Shaw
- Department of Psychology, National Cheng Kung University, Tainan, Taiwan
| | - Bai-Chuang Shyu
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| |
Collapse
|
6
|
Tian YQ, Zhang SP, Zhang KL, Cao D, Zheng YJ, Liu P, Zhou HH, Wu YN, Xu QX, Liu XP, Tang XD, Zheng YQ, Wang FY. Paeoniflorin Ameliorates Colonic Fibrosis in Rats with Postinfectious Irritable Bowel Syndrome by Inhibiting the Leptin/LepRb Pathway. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE : ECAM 2022; 2022:6010858. [PMID: 36225193 PMCID: PMC9550452 DOI: 10.1155/2022/6010858] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Accepted: 08/01/2022] [Indexed: 11/17/2022]
Abstract
Postinfectious irritable bowel syndrome (PI-IBS) is a highly prevalent gastrointestinal disorder associated with immune dysregulation and depression- and anxiety-like behaviors. Through traditional medicine, the active ingredient of Paeoniae Radix called paeoniflorin (PF) was previously found to prevent the symptoms of PI-IBS. However, there is limited information on the effects of PF on intestinal function and depression- and anxiety-like symptoms in PI-IBS animal models. Here, we aimed to determine the effects of PF treatment on the symptoms of PI-IBS in a rat model. The PI-IBS rat model was established via early postnatal sibling deprivation (EPSD), trinitrobenzenesulfonic acid (TNBS), and chronic unpredictable mild stress (CUMS) stimulation and then treated with different dosages of PF (10, 20, and 40 mg/kg) and leptin (1 and 10 mg/kg). The fecal water content and body weight were measured to evaluate the intestinal function, while the two-bottle test for sucrose intake, open field test (OFT), and elevated plus maze test (EMT) were performed to assess behavioral changes. The serum leptin levels were also measured using an enzyme-linked immunosorbent assay. Furthermore, the expressions of leptin and its receptor, LepRb, were detected in colonic mucosal tissues through an immunohistochemical assay. The activation of the PI3K/AKT signaling pathway and the expression of brain-derived neurotrophic factor (BDNF) were also detected via western blotting. After the experimental period, the PI-IBS rats presented decreased body weight and increased fecal water content, which coincided with elevated leptin levels and heightened depression- and anxiety-like behaviors (e.g., low sucrose intake, less frequency in the center areas during OFT, and fewer activities in the open arms during EMT). However, the PF treatment ameliorated these observed symptoms. Furthermore, PF not only inhibited leptin/LepRb expression but also reduced the PI3K/AKT phosphorylation and BDNF expression in PI-IBS rats. Notably, cotreatment with leptin (10 mg/kg) reduced the effects of PF (20 mg/kg) on colonic fibrosis, leptin/LepRb expression, and PI3K/AKT activation. Therefore, our findings suggest that leptin is targeted by PF via the leptin/LepRb pathway, consequently ameliorating the symptoms of PI-IBS. Our study also contributes novel insights for elucidating the pharmacological action of PF on gastrointestinal disorders and may be used for the clinical treatment of PI-IBS in the future.
Collapse
Affiliation(s)
- Ya-Qing Tian
- Provincial Engineering Laboratory for Screening and Re-Evaluation of Active Compounds of Herbal Medicines in Southern Anhui, Teaching and Research Section of Traditional Chinese Medicine, School of Pharmacy, Wannan Medical College, Wuhu 241000, Anhui, China
| | - Sheng-Peng Zhang
- Provincial Engineering Laboratory for Screening and Re-Evaluation of Active Compounds of Herbal Medicines in Southern Anhui, Teaching and Research Section of Traditional Chinese Medicine, School of Pharmacy, Wannan Medical College, Wuhu 241000, Anhui, China
| | - Kun-Li Zhang
- China Academy of Chinese Medical Sciences, Beijing, China
| | - Di Cao
- Provincial Engineering Laboratory for Screening and Re-Evaluation of Active Compounds of Herbal Medicines in Southern Anhui, Teaching and Research Section of Traditional Chinese Medicine, School of Pharmacy, Wannan Medical College, Wuhu 241000, Anhui, China
| | - Yi-Jun Zheng
- China Academy of Chinese Medical Sciences, Beijing, China
| | - Ping Liu
- China Academy of Chinese Medical Sciences, Beijing, China
| | - Hui-Hui Zhou
- Provincial Engineering Laboratory for Screening and Re-Evaluation of Active Compounds of Herbal Medicines in Southern Anhui, Teaching and Research Section of Traditional Chinese Medicine, School of Pharmacy, Wannan Medical College, Wuhu 241000, Anhui, China
| | - Ya-Ning Wu
- Provincial Engineering Laboratory for Screening and Re-Evaluation of Active Compounds of Herbal Medicines in Southern Anhui, Teaching and Research Section of Traditional Chinese Medicine, School of Pharmacy, Wannan Medical College, Wuhu 241000, Anhui, China
| | - Qi-Xiang Xu
- Provincial Engineering Laboratory for Screening and Re-Evaluation of Active Compounds of Herbal Medicines in Southern Anhui, Teaching and Research Section of Traditional Chinese Medicine, School of Pharmacy, Wannan Medical College, Wuhu 241000, Anhui, China
| | - Xiao-Ping Liu
- Provincial Engineering Laboratory for Screening and Re-Evaluation of Active Compounds of Herbal Medicines in Southern Anhui, Teaching and Research Section of Traditional Chinese Medicine, School of Pharmacy, Wannan Medical College, Wuhu 241000, Anhui, China
| | - Xu-Dong Tang
- China Academy of Chinese Medical Sciences, Beijing, China
| | - Yong-Qiu Zheng
- Provincial Engineering Laboratory for Screening and Re-Evaluation of Active Compounds of Herbal Medicines in Southern Anhui, Teaching and Research Section of Traditional Chinese Medicine, School of Pharmacy, Wannan Medical College, Wuhu 241000, Anhui, China
| | - Feng-Yun Wang
- China Academy of Chinese Medical Sciences, Beijing, China
| |
Collapse
|
7
|
Wu M, Chen Y, Shen Z, Zhu Y, Xiao S, Zhu X, Wu Z, Liu J, Xu C, Yao P, Xu W, Liang Y, Liu B, Du J, He X, Liu B, Jin X, Fang J, Shao X. Electroacupuncture Alleviates Anxiety-Like Behaviors Induced by Chronic Neuropathic Pain via Regulating Different Dopamine Receptors of the Basolateral Amygdala. Mol Neurobiol 2022; 59:5299-5311. [PMID: 35696012 PMCID: PMC9395447 DOI: 10.1007/s12035-022-02911-6] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Accepted: 06/03/2022] [Indexed: 12/18/2022]
Abstract
Chronic pain, such as neuropathic pain, causes anxiety and other negative emotions, which aggravates the pain sensation and increases the risk of chronic pain over time. Dopamine receptor D1 (DRD1) and dopamine receptor D2 (DRD2) in the basolateral amygdala (BLA) have been implicated in mediating anxiety-related behaviors, but their potential roles in the BLA in neuropathic pain-induced anxiety have not been examined. Electroacupuncture (EA) is commonly used to treat chronic pain and emotional disorders, but it is still unclear whether EA plays a role in analgesia and anxiety relief through DRD1 and DRD2 in the BLA. Here, we used western blotting to examine the expression of DRD1 and DRD2 and pharmacological regulation combined with behavioral testing to detect anxiety-like behaviors. We observed that injection of the DRD1 antagonist SCH23390 or the DRD2 agonist quinpirole into the BLA contributed to anxiety-like behaviors in naive mice. EA also activated DRD1 or inhibited DRD2 in the BLA to alleviate anxiety-like behaviors. To further demonstrate the role of DRD1 and DRD2 in the BLA in spared nerve injury (SNI) model-induced anxiety-like behaviors, we injected the DRD1 agonist SKF38393 or the DRD2 antagonist sulpiride into the BLA. We found that both activation of DRD1 and inhibition of DRD2 could alleviate SNI-induced anxiety-like behaviors, and EA had a similar effect of alleviating anxiety. Additionally, neither DRD1 nor DRD2 in the BLA affected SNI-induced mechanical allodynia, but EA did. Overall, our work provides new insights into the mechanisms of neuropathic pain-induced anxiety and a possible explanation for the effect of EA treatment on anxiety caused by chronic pain.
Collapse
Affiliation(s)
- Mengwei Wu
- Key Laboratory of Acupuncture and Neurology of Zhejiang Province, Department of Neurobiology and Acupuncture Research, The Third Clinical Medical College, Zhejiang Chinese Medical University, No. 548, Binwen Road, Binjiang DistrictZhejiang Province, Hangzhou City, China
| | - Yeqing Chen
- Key Laboratory of Acupuncture and Neurology of Zhejiang Province, Department of Neurobiology and Acupuncture Research, The Third Clinical Medical College, Zhejiang Chinese Medical University, No. 548, Binwen Road, Binjiang DistrictZhejiang Province, Hangzhou City, China
| | - Zui Shen
- Key Laboratory of Acupuncture and Neurology of Zhejiang Province, Department of Neurobiology and Acupuncture Research, The Third Clinical Medical College, Zhejiang Chinese Medical University, No. 548, Binwen Road, Binjiang DistrictZhejiang Province, Hangzhou City, China
| | - Yichen Zhu
- Key Laboratory of Acupuncture and Neurology of Zhejiang Province, Department of Neurobiology and Acupuncture Research, The Third Clinical Medical College, Zhejiang Chinese Medical University, No. 548, Binwen Road, Binjiang DistrictZhejiang Province, Hangzhou City, China
| | - Siqi Xiao
- Key Laboratory of Acupuncture and Neurology of Zhejiang Province, Department of Neurobiology and Acupuncture Research, The Third Clinical Medical College, Zhejiang Chinese Medical University, No. 548, Binwen Road, Binjiang DistrictZhejiang Province, Hangzhou City, China
| | - Xixiao Zhu
- Key Laboratory of Acupuncture and Neurology of Zhejiang Province, Department of Neurobiology and Acupuncture Research, The Third Clinical Medical College, Zhejiang Chinese Medical University, No. 548, Binwen Road, Binjiang DistrictZhejiang Province, Hangzhou City, China
| | - Zemin Wu
- Key Laboratory of Acupuncture and Neurology of Zhejiang Province, Department of Neurobiology and Acupuncture Research, The Third Clinical Medical College, Zhejiang Chinese Medical University, No. 548, Binwen Road, Binjiang DistrictZhejiang Province, Hangzhou City, China
| | - Jinggen Liu
- Key Laboratory of Acupuncture and Neurology of Zhejiang Province, Department of Neurobiology and Acupuncture Research, The Third Clinical Medical College, Zhejiang Chinese Medical University, No. 548, Binwen Road, Binjiang DistrictZhejiang Province, Hangzhou City, China
| | - Chi Xu
- Key Laboratory of Acupuncture and Neurology of Zhejiang Province, Department of Neurobiology and Acupuncture Research, The Third Clinical Medical College, Zhejiang Chinese Medical University, No. 548, Binwen Road, Binjiang DistrictZhejiang Province, Hangzhou City, China
| | - Pingan Yao
- Key Laboratory of Acupuncture and Neurology of Zhejiang Province, Department of Neurobiology and Acupuncture Research, The Third Clinical Medical College, Zhejiang Chinese Medical University, No. 548, Binwen Road, Binjiang DistrictZhejiang Province, Hangzhou City, China
| | - Weiwei Xu
- Key Laboratory of Acupuncture and Neurology of Zhejiang Province, Department of Neurobiology and Acupuncture Research, The Third Clinical Medical College, Zhejiang Chinese Medical University, No. 548, Binwen Road, Binjiang DistrictZhejiang Province, Hangzhou City, China
| | - Yi Liang
- Key Laboratory of Acupuncture and Neurology of Zhejiang Province, Department of Neurobiology and Acupuncture Research, The Third Clinical Medical College, Zhejiang Chinese Medical University, No. 548, Binwen Road, Binjiang DistrictZhejiang Province, Hangzhou City, China
| | - Boyi Liu
- Key Laboratory of Acupuncture and Neurology of Zhejiang Province, Department of Neurobiology and Acupuncture Research, The Third Clinical Medical College, Zhejiang Chinese Medical University, No. 548, Binwen Road, Binjiang DistrictZhejiang Province, Hangzhou City, China
| | - Junying Du
- Key Laboratory of Acupuncture and Neurology of Zhejiang Province, Department of Neurobiology and Acupuncture Research, The Third Clinical Medical College, Zhejiang Chinese Medical University, No. 548, Binwen Road, Binjiang DistrictZhejiang Province, Hangzhou City, China
| | - Xiaofen He
- Key Laboratory of Acupuncture and Neurology of Zhejiang Province, Department of Neurobiology and Acupuncture Research, The Third Clinical Medical College, Zhejiang Chinese Medical University, No. 548, Binwen Road, Binjiang DistrictZhejiang Province, Hangzhou City, China
| | - Boyu Liu
- Key Laboratory of Acupuncture and Neurology of Zhejiang Province, Department of Neurobiology and Acupuncture Research, The Third Clinical Medical College, Zhejiang Chinese Medical University, No. 548, Binwen Road, Binjiang DistrictZhejiang Province, Hangzhou City, China
| | - Xiaoming Jin
- Department of Anatomy, Cell Biology and Physiology, Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Jianqiao Fang
- Key Laboratory of Acupuncture and Neurology of Zhejiang Province, Department of Neurobiology and Acupuncture Research, The Third Clinical Medical College, Zhejiang Chinese Medical University, No. 548, Binwen Road, Binjiang DistrictZhejiang Province, Hangzhou City, China.
| | - Xiaomei Shao
- Key Laboratory of Acupuncture and Neurology of Zhejiang Province, Department of Neurobiology and Acupuncture Research, The Third Clinical Medical College, Zhejiang Chinese Medical University, No. 548, Binwen Road, Binjiang DistrictZhejiang Province, Hangzhou City, China.
| |
Collapse
|
8
|
Wittekind DA, Kratzsch J, Biemann R, Mergl R, Riedel-Heller S, Witte V, Villringer A, Kluge M. Association Between Self-rating Depression Scores and Total Ghrelin and Adipokine Serum Levels in a Large Population-Based Sample. Front Psychiatry 2022; 13:891325. [PMID: 35633817 PMCID: PMC9130496 DOI: 10.3389/fpsyt.2022.891325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Accepted: 04/14/2022] [Indexed: 11/13/2022] Open
Abstract
Background Ghrelin and the adipokines leptin and adiponectin have been suggested to be involved in mood and anxiety regulation and to be altered in affective disorders. However, studies investigating the association between ghrelin, leptin and adiponectin and depressive symptomatology are scarce but might contribute to a better understanding of their involvement in mood regulation. We thus aimed investigating the association between depressive symptomatology and total ghrelin as well as leptin and adiponectin serum levels in a large population-based sample. Methods Total serum ghrelin, adiponectin and leptin levels were determined in 1666 subjects of a population-based cross-sectional study ("LIFE"). The Center for Epidemiological Studies Depression Scale (CES-D) and the Inventory of Depressive Symptoms - Self Rating (IDS-SR) were administered. Multiple linear regression analyses were conducted to examine the association between total serum ghrelin, leptin and adiponectin and the intensity of depressive symptoms. Results In the total sample (n = 1,092), neither ghrelin nor leptin or adiponectin serum levels showed a significant association with CES-D or IDS-SR sum scores (N = 1,092) or in depressed/non-depressed subjects. Leptin serum levels showed a significantly positive association with IDS-SR sum scores in elderly men (≥60 years; β = 0.122, 95% CI: 0.009; 0.236; p = 0.035). Conclusion Our study suggests that peripheral levels of ghrelin and adipokines in a cross-sectional study design might not be sufficient to measure their involvement in depression, suggesting that associations are more complex and multi-layered.
Collapse
Affiliation(s)
| | - Jürgen Kratzsch
- Institute of Laboratory Medicine, Clinical Chemistry and Molecular Diagnostics, University of Leipzig, Leipzig, Germany
| | - Ronald Biemann
- Institute of Laboratory Medicine, Clinical Chemistry and Molecular Diagnostics, University of Leipzig, Leipzig, Germany
| | - Roland Mergl
- Institute of Psychology, Universität der Bundeswehr München, Neubiberg, Germany
| | - Steffi Riedel-Heller
- Faculty of Medicine, Institute of Social Medicine, Occupational Health and Public Health, University of Leipzig, Leipzig, Germany
| | - Veronika Witte
- Department of Neurology, Max Planck Institute for Cognitive and Brain Sciences, Leipzig, Germany
| | - Arno Villringer
- Department of Neurology, Max Planck Institute for Cognitive and Brain Sciences, Leipzig, Germany
| | - Michael Kluge
- Department of Psychiatry and Psychotherapy, University of Leipzig, Leipzig, Germany
| |
Collapse
|
9
|
Calorie restriction changes the anxiety-like behaviour of ageing male Wistar rats in an onset- and duration-dependent manner. Mech Ageing Dev 2022; 204:111666. [DOI: 10.1016/j.mad.2022.111666] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Revised: 03/16/2022] [Accepted: 03/17/2022] [Indexed: 01/28/2023]
|
10
|
Fulton S, Décarie-Spain L, Fioramonti X, Guiard B, Nakajima S. The menace of obesity to depression and anxiety prevalence. Trends Endocrinol Metab 2022; 33:18-35. [PMID: 34750064 DOI: 10.1016/j.tem.2021.10.005] [Citation(s) in RCA: 145] [Impact Index Per Article: 48.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Revised: 10/14/2021] [Accepted: 10/16/2021] [Indexed: 02/07/2023]
Abstract
The incidence of depression and anxiety is amplified by obesity. Mounting evidence reveals that the psychiatric consequences of obesity stem from poor diet, inactivity, and visceral adipose accumulation. Resulting metabolic and vascular dysfunction, including inflammation, insulin and leptin resistance, and hypertension, have emerged as key risks to depression and anxiety development. Recent research advancements are exposing the important contribution of these different corollaries of obesity and their impact on neuroimmune status and the neural circuits controlling mood and emotional states. Along these lines, this review connects the clinical manifestations of depression and anxiety in obesity to our current understanding of the origins and biology of immunometabolic threats to central nervous system function and behavior.
Collapse
Affiliation(s)
- Stephanie Fulton
- Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), Department of Nutrition, Université de Montréal, Montréal, QC H3T1J4, Canada.
| | - Léa Décarie-Spain
- Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), Department of Neuroscience, Université de Montréal, Montréal, QC H3T1J4, Canada
| | - Xavier Fioramonti
- NutriNeuro, UMR 1286 INRAE, Bordeaux INP, Bordeaux University, Bordeaux, France
| | - Bruno Guiard
- Centre de Recherches sur la Cognition Animale (CRCA), Centre de Biologie Intégrative (CBI), CNRS UMR5169, UPS, Université de Toulouse, Toulouse, France
| | - Shingo Nakajima
- Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), Department of Nutrition, Université de Montréal, Montréal, QC H3T1J4, Canada
| |
Collapse
|