1
|
Lipp HP, Krackow S, Turkes E, Benner S, Endo T, Russig H. IntelliCage: the development and perspectives of a mouse- and user-friendly automated behavioral test system. Front Behav Neurosci 2024; 17:1270538. [PMID: 38235003 PMCID: PMC10793385 DOI: 10.3389/fnbeh.2023.1270538] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Accepted: 10/18/2023] [Indexed: 01/19/2024] Open
Abstract
IntelliCage for mice is a rodent home-cage equipped with four corner structures harboring symmetrical double panels for operant conditioning at each of the two sides, either by reward (access to water) or by aversion (non-painful stimuli: air-puffs, LED lights). Corner visits, nose-pokes and actual licks at bottle-nipples are recorded individually using subcutaneously implanted transponders for RFID identification of up to 16 adult mice housed in the same home-cage. This allows for recording individual in-cage activity of mice and applying reward/punishment operant conditioning schemes in corners using workflows designed on a versatile graphic user interface. IntelliCage development had four roots: (i) dissatisfaction with standard approaches for analyzing mouse behavior, including standardization and reproducibility issues, (ii) response to handling and housing animal welfare issues, (iii) the increasing number of mouse models had produced a high work burden on classic manual behavioral phenotyping of single mice. and (iv), studies of transponder-chipped mice in outdoor settings revealed clear genetic behavioral differences in mouse models corresponding to those observed by classic testing in the laboratory. The latter observations were important for the development of home-cage testing in social groups, because they contradicted the traditional belief that animals must be tested under social isolation to prevent disturbance by other group members. The use of IntelliCages reduced indeed the amount of classic testing remarkably, while its flexibility was proved in a wide range of applications worldwide including transcontinental parallel testing. Essentially, two lines of testing emerged: sophisticated analysis of spontaneous behavior in the IntelliCage for screening of new genetic models, and hypothesis testing in many fields of behavioral neuroscience. Upcoming developments of the IntelliCage aim at improved stimulus presentation in the learning corners and videotracking of social interactions within the IntelliCage. Its main advantages are (i) that mice live in social context and are not stressfully handled for experiments, (ii) that studies are not restricted in time and can run in absence of humans, (iii) that it increases reproducibility of behavioral phenotyping worldwide, and (iv) that the industrial standardization of the cage permits retrospective data analysis with new statistical tools even after many years.
Collapse
Affiliation(s)
- Hans-Peter Lipp
- Faculty of Medicine, Institute of Evolutionary Medicine, University of Zürich, Zürich, Switzerland
| | - Sven Krackow
- Institute of Pathology and Molecular Pathology, University Hospital Zürich, Zürich, Switzerland
| | - Emir Turkes
- Queen Square Institute of Neurology, University College London, London, United Kingdom
| | - Seico Benner
- Center for Health and Environmental Risk Research, National Institute for Environmental Studies, Ibaraki, Japan
| | | | | |
Collapse
|
2
|
Liang LX, Liang J, Li QQ, Zeeshan M, Zhang Z, Jin N, Lin LZ, Wu LY, Sun MK, Tan WH, Zhou Y, Chu C, Hu LW, Liu RQ, Zeng XW, Yu Y, Dong GH. Early life exposure to F-53B induces neurobehavioral changes in developing children and disturbs dopamine-dependent synaptic signaling in weaning mice. ENVIRONMENT INTERNATIONAL 2023; 181:108272. [PMID: 37890264 DOI: 10.1016/j.envint.2023.108272] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 09/02/2023] [Accepted: 10/16/2023] [Indexed: 10/29/2023]
Abstract
BACKGROUND Previous studies have shown that F-53B exposure may be neurotoxic to animals, but there is a lack of epidemiological evidence, and its mechanism needs further investigation. METHODS Serum F-53B concentrations and Wisconsin Card Sorting Test (WCST) were evaluated in 314 growing children from Guangzhou, China, and the association between them were analyzed. To study the developmental neurotoxicity of F-53B, experiments on sucking mice exposed via placental transfer and breast milk was performed. Maternal mice were orally exposed to 4, 40, and 400 μg/L of F-53B from postnatal day 0 (GD0) to postnatal day 21 (PND 21). Several genes and proteins related to neurodevelopment, dopamine anabolism, and synaptic plasticity were examined by qPCR and western blot, respectively, while dopamine contents were detected by ELISA kit in weaning mice. RESULTS The result showed that F-53B was positively associated with poor WCST performance. For example, with an interquartile range increase in F-53B, the change with 95 % confidence interval (CI) of correct response (CR), and non-perseverative errors (NPE) was -2.47 (95 % CI: -3.89, -1.05, P = 0.001), 2.78 (95 % CI: 0.79, 4.76, P = 0.007), respectively. Compared with the control group, the highest exposure group of weaning mice had a longer escape latency (35.24 s vs. 51.18 s, P = 0.034) and a lesser distance movement (34.81 % vs. 21.02 %, P < 0.001) in the target quadrant, as observed from morris water maze (MWM) test. The protein expression of brain-derived neurotrophic factor (BDNF) and growth associated protein-43 (GAP-43) levels were decreased, as compared to control (0.367-fold, P < 0.001; 0.366-fold, P < 0.001; respectively). We also observed the upregulation of dopamine transporter (DAT) (2.940-fold, P < 0.001) consistent with the trend of dopamine content (1.313-fold, P < 0.001) in the hippocampus. CONCLUSION Early life exposure to F-53B is associated with adverse neurobehavioral changes in developing children and weaning mice which may be modulated by dopamine-dependent synaptic plasticity.
Collapse
Affiliation(s)
- Li-Xia Liang
- Guangdong Provincial Engineering Technology Research Center of Environmental Pollution and Health Risk Assessment, Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| | - Jingjing Liang
- Department of Child Health Care, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Qing-Qing Li
- Guangdong Provincial Engineering Technology Research Center of Environmental Pollution and Health Risk Assessment, Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| | - Mohammed Zeeshan
- Guangdong Provincial Engineering Technology Research Center of Environmental Pollution and Health Risk Assessment, Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China; Developmental Biology and Genetics, Indian Institute of Science, Bangalore, India
| | - Zheqing Zhang
- Department of Nutrition and Food Hygiene, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, China
| | - Nanxiang Jin
- A.I.Virtanen Institute for Molecular Science, University of Eastern Finland, Neulaniementie 2, 70210 Kuopio, Finland
| | - Li-Zi Lin
- Guangdong Provincial Engineering Technology Research Center of Environmental Pollution and Health Risk Assessment, Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| | - Lu-Yin Wu
- Guangdong Provincial Engineering Technology Research Center of Environmental Pollution and Health Risk Assessment, Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| | - Ming-Kun Sun
- Guangdong Provincial Engineering Technology Research Center of Environmental Pollution and Health Risk Assessment, Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| | - Wei-Hong Tan
- Department of Reproductive Medicine and Genetics Center, The People's Hospital of Guangxi Zhuang Autonomous Region, Nanning, China
| | - Yang Zhou
- State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou 510655, China
| | - Chu Chu
- Guangdong Provincial Engineering Technology Research Center of Environmental Pollution and Health Risk Assessment, Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| | - Li-Wen Hu
- Guangdong Provincial Engineering Technology Research Center of Environmental Pollution and Health Risk Assessment, Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| | - Ru-Qing Liu
- Guangdong Provincial Engineering Technology Research Center of Environmental Pollution and Health Risk Assessment, Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| | - Xiao-Wen Zeng
- Guangdong Provincial Engineering Technology Research Center of Environmental Pollution and Health Risk Assessment, Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China.
| | - Yunjiang Yu
- State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou 510655, China.
| | - Guang-Hui Dong
- Guangdong Provincial Engineering Technology Research Center of Environmental Pollution and Health Risk Assessment, Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China.
| |
Collapse
|
3
|
Fang Z, Shen G, Amin N, Lou C, Wang C, Fang M. Effects of Neuroinflammation and Autophagy on the Structure of the Blood-Brain Barrier in ADHD Model. Neuroscience 2023; 530:17-25. [PMID: 37625689 DOI: 10.1016/j.neuroscience.2023.08.025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 07/26/2023] [Accepted: 08/18/2023] [Indexed: 08/27/2023]
Abstract
Spontaneously hypertensive rats (SHR) are the most common animal model used to study attention deficit hyperactivity disorder (ADHD). The purpose of this study was to look at the impact of neuroinflammation and autophagy on blood-brain barrier function in the prefrontal cortex and hippocampus of ADHD rats. The rats were separated into three groups: juvenile SHR (6 weeks), mature SHR (12 weeks), and comparable age WKY groups. An open-field test was used to assess rats' ability to move on their own. Immunofluorescence was used to detect the Iba1-immunopositive microglia, ZO-1 and TNF-α. Meanwhile, the expression of p62, Beclin-1, LC3B, and MMP9, MMP2, TNF-α, ZO-1, and occludin were detected by Western blot. The results have shown that Iba1-immunopositive microglia and TNF-α protein in the brain of SHR rats were significantly increased. Moreover, autophagy of cells and the level of MMP2 and MPP9 in the prefrontal cortex and hippocampus increased in SHR rats. In addition, the expression of ZO-1 and occludin was decreased in SHR rats. To sum up, the increase of neuroinflammation and excessive autophagy were essential factors for the damage of blood-brain barrier structure and function.
Collapse
Affiliation(s)
- Zhanglu Fang
- The Second Clinical Medical College of Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
| | - Guanghong Shen
- School of Basic Medical Sciences and Forensic Medicine, Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Nashwa Amin
- Institute of System Medicine, Zhejiang University School of Medicine, Hangzhou, China; Department of Zoology, Faculty of Science, Aswan University, Egypt
| | - Chengjian Lou
- Department of Neurosurgery, Fourth Affiliated Hospital, Zhejiang University School of Medicine, Yiwu 322022, China
| | - Changxing Wang
- Department of Orthopedics, The Second Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China.
| | - Marong Fang
- Institute of System Medicine, Zhejiang University School of Medicine, Hangzhou, China; Department of Neurology, Children's Hospital of Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, China.
| |
Collapse
|
4
|
Cai C, Yin Z, Liu A, Wang H, Zeng S, Wang Z, Qiu H, Li S, Zhou J, Wang M. Identifying Rare Genetic Variants of Immune Mediators as Risk Factors for Autism Spectrum Disorder. Genes (Basel) 2022; 13:1098. [PMID: 35741860 PMCID: PMC9223212 DOI: 10.3390/genes13061098] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Revised: 06/16/2022] [Accepted: 06/17/2022] [Indexed: 12/30/2022] Open
Abstract
Autism spectrum disorder (ASD) affects more than 1% of children, and there is no viable pharmacotherapeutic agent to treat the core symptoms of ASD. Studies have shown that children with ASD show changes in their levels of immune response molecules. Our previous studies have shown that ASD is more common in children with folate receptor autoantibodies. We also found that children with ASD have abnormal gut immune function, which was characterized by a significant increase in the content of immunoglobulin A and an increase in gut-microbiota-associated epitope diversity. These studies suggest that the immune mechanism plays an important role in the occurrence of ASD. The present study aims to systematically assess gene mutations in immune mediators in patients with ASD. We collected genetic samples from 72 children with ASD (2−12 years old) and 107 healthy controls without ASD (20−78 years old). We used our previously-designed immune gene panel, which can capture cytokine and receptor genes, the coding regions of MHC genes, and genes of innate immunity. Target region sequencing (500×) and bioinformatics analytical methods were used to identify variants in immune response genes associated with patients with ASD. A total of 4 rare variants were found to be associated with ASD, including HLA-B: p.A93G, HLA-DQB1: p.S229N, LILRB2: p.R322H, and LILRB2: c.956-4C>T. These variants were present in 44.44% (32/72) of the ASD patients and were detected in 3.74% (4/107) of the healthy controls. We expect these genetic variants will serve as new targets for the clinical genetic assessment of ASD, and our findings suggest that immune abnormalities in children with ASD may have a genetic basis.
Collapse
Affiliation(s)
- Chunquan Cai
- Tianjin Pediatric Research Institute, Tianjin Key Laboratory of Birth Defects for Prevention and Treatment, Tianjin Children’s Hospital (Children’s Hospital of Tianjin University), No. 238 Longyan Road, Beichen District, Tianjin 300134, China;
| | - Zhaoqing Yin
- Division of Neonatology, The People’s Hospital of Dehong Autonomous Prefecture, Mangshi 678400, China;
| | - Aiping Liu
- The Department of Laboratory, Public Health Service Center of Bao’an District, Bao’an District, Shenzhen 518018, China;
| | - Hui Wang
- Xiamen Branch of Children’s Hospital of Fudan University (Xiamen Children’s Hospital), Xiamen 361006, China;
| | - Shujuan Zeng
- Division of Neonatology, Longgang Central Hospital of Shenzhen, Shenzhen 518116, China; (S.Z.); (H.Q.)
| | - Zhangxing Wang
- Division of Neonatology, Shenzhen Longhua People’s Hospital, Shenzhen 518109, China;
| | - Huixian Qiu
- Division of Neonatology, Longgang Central Hospital of Shenzhen, Shenzhen 518116, China; (S.Z.); (H.Q.)
| | - Shijun Li
- Department of Radiology, Chinese People’s Liberation Army General Hospital, Beijing 100853, China
| | - Jiaxiu Zhou
- Division of Psychology, Shenzhen Children’s Hospital, Shenzhen 518038, China
| | - Mingbang Wang
- Microbiome Therapy Center, South China Hospital of Shenzhen University, Shenzhen 518111, China
- Shanghai Key Laboratory of Birth Defects, Division of Neonatology, Children’s Hospital of Fudan University, Shanghai 201102, China
| |
Collapse
|
5
|
Wu L, Dang Y, Liang LX, Gong YC, Zeeshan M, Qian Z, Geiger SD, Vaughn MG, Zhou Y, Li QQ, Chu C, Tan YW, Lin LZ, Liu RQ, Hu LW, Yang BY, Zeng XW, Yu Y, Dong GH. Perfluorooctane sulfonates induces neurobehavioral changes and increases dopamine neurotransmitter levels in zebrafish larvae. CHEMOSPHERE 2022; 297:134234. [PMID: 35259355 DOI: 10.1016/j.chemosphere.2022.134234] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2021] [Revised: 03/03/2022] [Accepted: 03/04/2022] [Indexed: 06/14/2023]
Abstract
It has been reported that exposure to perfluorooctane sulfonates (PFOS) causes behavioral abnormalities in zebrafish larvae, but the possible mechanisms underlying these changes remain unexplored. In this study, zebrafish embryos (2 h postfertilization, 2-hpf) were exposed to PFOS at different concentrations (0, 0.032, 0.32 and 3.2 mg/L) for 120 h. Developmental endpoints and the locomotion behavior of larvae were evaluated. Reactive oxygen species (ROS) levels, dopamine contents, several genes and proteins related to neurodevelopment and dopamine signaling were examined. Our results indicate that increased ROS levels in the zebrafish larvae heads may be causally associated with neurodevelopment damage. Meanwhile, brain-derived neurotrophic factor (BDNF) and alpha1-Tubulin (α1-Tubulin) protein contents were significantly increased, which may be a compensatory mechanism for the impaired central nervous system. PFOS-induced locomotor hyperactivity was observed in the first light phase and dark phase at the 0.32 and 3.2 mg/L of PFOS. Upregulation of dopamine-related genes tyrosine hydroxylase (th) and dopamine transporter (dat) associated with increased dopamine contents in the 3.2 mg/L of PFOS. In addition, protein expression of TH and DAT were noted at the 0.32 and 3.2 mg/L of PFOS concentrations. Our results suggested that PFOS induces neurobehavioral changes in zebrafish larvae, possibly by perturbing a dopamine signaling pathway. In addition, PFOS induced development damage, such as increased malformation rate and shorter body length.
Collapse
Affiliation(s)
- Luyin Wu
- Guangdong Provincial Engineering Technology Research Center of Environmental Pollution and Health Risk Assessment, Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Guangzhou, 510080, China
| | - Yao Dang
- State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou, 510655, China
| | - Li-Xia Liang
- Guangdong Provincial Engineering Technology Research Center of Environmental Pollution and Health Risk Assessment, Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Guangzhou, 510080, China
| | - Yan-Chen Gong
- Guangdong Provincial Engineering Technology Research Center of Environmental Pollution and Health Risk Assessment, Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Guangzhou, 510080, China
| | - Mohammed Zeeshan
- Guangdong Provincial Engineering Technology Research Center of Environmental Pollution and Health Risk Assessment, Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Guangzhou, 510080, China
| | - Zhengmin Qian
- Department of Epidemiology and Biostatistics, College for Public Health & Social Justice, Saint Louis University, Saint Louis, MO, 63104, USA
| | - Sarah Dee Geiger
- Department of Kinesiology and Community Health, University of Illinois at Urbana-Champaign, Champaign, IL, 61820, USA
| | - Michael G Vaughn
- School of Social Work, College for Public Health and Social Justice, Saint Louis University, Saint Louis, MO, 63103, USA
| | - Yang Zhou
- State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou, 510655, China
| | - Qing-Qing Li
- Guangdong Provincial Engineering Technology Research Center of Environmental Pollution and Health Risk Assessment, Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Guangzhou, 510080, China
| | - Chu Chu
- Guangdong Provincial Engineering Technology Research Center of Environmental Pollution and Health Risk Assessment, Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Guangzhou, 510080, China
| | - Ya-Wen Tan
- Guangdong Provincial Engineering Technology Research Center of Environmental Pollution and Health Risk Assessment, Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Guangzhou, 510080, China
| | - Li-Zi Lin
- Guangdong Provincial Engineering Technology Research Center of Environmental Pollution and Health Risk Assessment, Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Guangzhou, 510080, China
| | - Ru-Qing Liu
- Guangdong Provincial Engineering Technology Research Center of Environmental Pollution and Health Risk Assessment, Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Guangzhou, 510080, China
| | - Li-Wen Hu
- Guangdong Provincial Engineering Technology Research Center of Environmental Pollution and Health Risk Assessment, Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Guangzhou, 510080, China
| | - Bo-Yi Yang
- Guangdong Provincial Engineering Technology Research Center of Environmental Pollution and Health Risk Assessment, Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Guangzhou, 510080, China
| | - Xiao-Wen Zeng
- Guangdong Provincial Engineering Technology Research Center of Environmental Pollution and Health Risk Assessment, Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Guangzhou, 510080, China
| | - Yunjiang Yu
- State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou, 510655, China
| | - Guang-Hui Dong
- Guangdong Provincial Engineering Technology Research Center of Environmental Pollution and Health Risk Assessment, Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Guangzhou, 510080, China.
| |
Collapse
|