1
|
Lucerne KE, Dean CR, Osman A, Meckel KR, Dave YA, Shipman AL, Cazarez DR, Cathomas F, Hofford RS, Kiraly DD. Colony-stimulating factor 2 (CSF2) as a gut microbiome dependent immune factor that alters molecular and behavioral responses to cocaine in male mice. Brain Behav Immun 2024; 122:137-149. [PMID: 39098439 DOI: 10.1016/j.bbi.2024.08.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 07/26/2024] [Accepted: 08/01/2024] [Indexed: 08/06/2024] Open
Abstract
Cocaine use disorder is a condition that leads to tremendous morbidity and mortality for which there are currently no FDA-approved pharmacotherapies. Previous research has demonstrated an important role for the resident population of bacteria of the large intestine, collectively dubbed the gut microbiome, in modulating brain and behavior in models of cocaine and other substance use disorders. Importantly, previous work has repeatedly shown that depletion of the gut microbiome leads to increased cocaine taking and seeking behaviors in multiple models. While the precise mechanism of these gut-brain signaling pathways in models of cocaine use is not fully clear, and intriguing possibility is through gut microbiome influences on innate immune system function. In this manuscript we identify the cytokine colony stimulating factor 2 (CSF2) as an immune factor that is increased by cocaine in a gut microbiome dependent manner. Peripherally injected CSF2 crosses the blood-brain barrier into the nucleus accumbens, a brain region central to behavioral responses to cocaine. Treatment with peripheral CSF2 reduces acute and sensitized locomotor responses to cocaine as well as reducing cocaine place preference at high doses. On a molecular level, we find that peripheral injections of CSF2 alter the transcriptional response to both acute and repeated cocaine in the nucleus accumbens. Finally, treatment of microbiome depleted mice with CSF2 reverses the behavioral effects of microbiome depletion on the conditioned place preference assay. Taken together, this work identifies an innate immune factor that represents a novel gut-brain signaling cascade in models of cocaine use and lays the foundations for further translational work targeting this pathway.
Collapse
Affiliation(s)
- Kelsey E Lucerne
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY 10029, United States; Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, United States
| | - Calista R Dean
- Department of Translational Neuroscience, Wake Forest University School of Medicine, Atrium Wake Forest Baptist Health, Winston-Salem, NC 27101, United States
| | - Aya Osman
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, United States; Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY 10029, United States
| | - Katherine R Meckel
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY 10029, United States; Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, United States
| | - Yesha A Dave
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY 10029, United States; Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, United States
| | - Ava L Shipman
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, United States; Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY 10029, United States
| | - Dannis R Cazarez
- Department of Translational Neuroscience, Wake Forest University School of Medicine, Atrium Wake Forest Baptist Health, Winston-Salem, NC 27101, United States
| | - Flurin Cathomas
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY 10029, United States; Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, United States
| | - Rebecca S Hofford
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, United States; Department of Translational Neuroscience, Wake Forest University School of Medicine, Atrium Wake Forest Baptist Health, Winston-Salem, NC 27101, United States; Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY 10029, United States
| | - Drew D Kiraly
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY 10029, United States; Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, United States; Department of Translational Neuroscience, Wake Forest University School of Medicine, Atrium Wake Forest Baptist Health, Winston-Salem, NC 27101, United States; Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY 10029, United States; Department of Psychiatry, Wake Forest University School of Medicine, Atrium Wake Forest Baptist Health, Winston-Salem, NC 27101, United States.
| |
Collapse
|
2
|
Tan X, Wang B, Zhou X, Liu C, Wang C, Bai J. Fecal fermentation behaviors of Konjac glucomannan and its impacts on human gut microbiota. Food Chem X 2024; 23:101610. [PMID: 39071938 PMCID: PMC11282934 DOI: 10.1016/j.fochx.2024.101610] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2024] [Revised: 06/24/2024] [Accepted: 07/01/2024] [Indexed: 07/30/2024] Open
Abstract
Dietary fiber targets the regulation of the intestinal flora and thus affects host health, however, the complex relationship between these factors lacks direct evidence. In this study, the regulatory effects of Konjac glucomannan (KGM) on key metabolites of host intestinal flora were examined by using in vitro fermentation. The results showed that KGM could be utilized by the intestinal flora, which inhibited the relative abundance of Paeniclostridium, Lachnoclostridium, Phascolarctobacterium, and Bacteroides and enriched the relative abundance of Desulfovibrio, Sutterella, etc. Fermentation is accompanied by the production of short-chain acids, including acetic and propionic acids. Metabolomics revealed that KGM significantly promoted amino acid metabolism, lipid metabolism, and the biosynthesis of other secondary metabolites. Correlation analysis results showed that the increase of panose and N-(1-carboxy-3-carboxanilidopropyl) alanylproline content was positively correlated with the relative abundance of Megamonas. These results provide evidence that KGM affects host health by regulating gut microbiota and its metabolites.
Collapse
Affiliation(s)
- Xiang Tan
- Citrus Research Institute, Southwest University, Chongqing, 400700, China
| | - Botao Wang
- Bloomage Biotechnology CO, LTD, Jinan, Shandong, 250000, China
| | - Xu Zhou
- College of Food Science, Southwest University, Chongqing, 400715, China
| | - Cuiping Liu
- Department of Radiology, Yuxi Children's Hospital, Yuxi, Yunnan 653100, China
| | - Chen Wang
- College of Food Science, Southwest University, Chongqing, 400715, China
| | - Junying Bai
- Citrus Research Institute, Southwest University, Chongqing, 400700, China
| |
Collapse
|
3
|
Alba C, Herranz C, Monroy MA, Aragón A, Jurado R, Díaz-Regañón D, Sánchez C, Tolín M, Miranda C, Gómez-Taylor B, Sempere F, Álvarez-Calatayud G, Rodríguez JM. Metataxonomic and Immunological Analysis of Feces from Children with or without Phelan-McDermid Syndrome. Microorganisms 2024; 12:2006. [PMID: 39458315 PMCID: PMC11509408 DOI: 10.3390/microorganisms12102006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Revised: 09/25/2024] [Accepted: 09/30/2024] [Indexed: 10/28/2024] Open
Abstract
Phelan-McDermid syndrome (PMS) is a neurodevelopmental disorder characterized by a developmental delay and autism spectrum disorder (ASD)-like behaviors. Emerging research suggests a link between gut microbiota and neuropsychiatric conditions, including PMS. This study aimed to investigate the fecal microbiota and immune profiles of children with PMS compared to healthy controls. Fecal samples were collected from children diagnosed with PMS and age-matched healthy controls. The bacterial composition was analyzed using 16S rRNA gene sequencing, while short-chain fatty acids (SCFAs) were quantified through gas chromatography. Immunological profiling was conducted using a multiplex cytokine assay. Significant differences were observed in the gut microbiota composition between PMS patients and controls, including a lower abundance of key bacterial genera such as Faecalibacterium and Agathobacter in PMS patients. SCFA levels were also reduced in PMS patients. Immunological analysis revealed higher levels of several pro-inflammatory cytokines in the PMS group, although these differences were not statistically significant. The findings indicate that children with PMS have distinct gut microbiota and SCFA profiles, which may contribute to the gastrointestinal and neurodevelopmental symptoms observed in this syndrome. These results suggest potential avenues for microbiota-targeted therapies in PMS.
Collapse
Affiliation(s)
- Claudio Alba
- Department Nutrition and Food Science, Complutense University of Madrid, 28040 Madrid, Spain; (D.D.-R.); (J.M.R.)
- Instituto Pluridisciplinar, Complutense University of Madrid, 28040 Madrid, Spain; (A.A.); (R.J.)
| | - Carmen Herranz
- Department Nutrition and Food Science, Complutense University of Madrid, 28040 Madrid, Spain; (D.D.-R.); (J.M.R.)
- Instituto Pluridisciplinar, Complutense University of Madrid, 28040 Madrid, Spain; (A.A.); (R.J.)
| | | | - Alberto Aragón
- Instituto Pluridisciplinar, Complutense University of Madrid, 28040 Madrid, Spain; (A.A.); (R.J.)
- Department Galenic Pharmacy and Food Technology, Complutense University of Madrid, 28040 Madrid, Spain
| | - Rubén Jurado
- Instituto Pluridisciplinar, Complutense University of Madrid, 28040 Madrid, Spain; (A.A.); (R.J.)
- Department Galenic Pharmacy and Food Technology, Complutense University of Madrid, 28040 Madrid, Spain
| | - David Díaz-Regañón
- Department Nutrition and Food Science, Complutense University of Madrid, 28040 Madrid, Spain; (D.D.-R.); (J.M.R.)
| | - César Sánchez
- Departamento de Nutrición Humana, Universidad Católica de Valencia, 46001 Valencia, Spain; (C.S.); (M.T.); (C.M.); (B.G.-T.); (F.S.)
| | - Mar Tolín
- Departamento de Nutrición Humana, Universidad Católica de Valencia, 46001 Valencia, Spain; (C.S.); (M.T.); (C.M.); (B.G.-T.); (F.S.)
| | - Carmen Miranda
- Departamento de Nutrición Humana, Universidad Católica de Valencia, 46001 Valencia, Spain; (C.S.); (M.T.); (C.M.); (B.G.-T.); (F.S.)
| | - Bárbara Gómez-Taylor
- Departamento de Nutrición Humana, Universidad Católica de Valencia, 46001 Valencia, Spain; (C.S.); (M.T.); (C.M.); (B.G.-T.); (F.S.)
| | - Francisca Sempere
- Departamento de Nutrición Humana, Universidad Católica de Valencia, 46001 Valencia, Spain; (C.S.); (M.T.); (C.M.); (B.G.-T.); (F.S.)
| | | | - Juan M. Rodríguez
- Department Nutrition and Food Science, Complutense University of Madrid, 28040 Madrid, Spain; (D.D.-R.); (J.M.R.)
- Instituto Pluridisciplinar, Complutense University of Madrid, 28040 Madrid, Spain; (A.A.); (R.J.)
| |
Collapse
|
4
|
Zheng KY, Gao B, Wang HJ, He JG, Chen HS, Hu ZL, Long LH, Chen JG, Wang F. Melatonin Ameliorates Depressive-Like Behaviors in Ovariectomized Mice by Improving Tryptophan Metabolism via Inhibition of Gut Microbe Alistipes Inops. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2309473. [PMID: 38978348 PMCID: PMC11425877 DOI: 10.1002/advs.202309473] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 05/22/2024] [Indexed: 07/10/2024]
Abstract
Melatonin (N-acetyl-5-methoxytryptamine) is reported to improve mood disorders in perimenopausal women and gut microbiome composition is altered during menopausal period. The possible role of microbiome in the treatment effect of melatonin on menopausal depression remains unknown. Here, it is shown that melatonin treatment reverses the gut microbiota dysbiosis and depressive-like behaviors in ovariectomy (OVX) operated mice. This effect of melatonin is prevented by antibiotic cocktails (ABX) treatment. Transferring microbiota harvested from adolescent female mice to OVX-operated mice is sufficient to ameliorate depressive-like behaviors. Conversely, microbiota transplantation from OVX-operated mice or melatonin-treated OVX-operated mice to naïve recipient mice exhibits similar phenotypes to donors. The colonization of Alistipes Inops, which is abundant in OVX-operated mice, confers the recipient with depressive-like behaviors. Further investigation indicates that the expansion of Alistipes Inops induced by OVX leads to the degradation of intestinal tryptophan, which destroys systemic tryptophan availability. Melatonin supplementation restores systemic tryptophan metabolic disorders by suppressing the growth of Alistipes Inops, which ameliorates depressive-like behaviors. These results highlight the previously unrecognized role of Alistipes Inops in the modulation of OVX-induced behavioral disorders and suggest that the application of melatonin to inhibit Alistipes Inops may serve as a potential strategy for preventing menopausal depressive symptoms.
Collapse
Affiliation(s)
- Kai-Yu Zheng
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Department of Pharmacology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Bo Gao
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Department of Pharmacology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Hua-Jie Wang
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Department of Pharmacology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jin-Gang He
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Department of Pharmacology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- The Research Center for Depression, Tongji Medical College, Huazhong University of Science, Wuhan, 430030, China
- The Key Laboratory for Drug Target Researches and Pharmacodynamic Evaluation of Hubei Province, Wuhan, 430030, China
- Hubei Shizhen Laboratory, Wuhan, 430030, China
| | - Hong-Sheng Chen
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Department of Pharmacology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zhuang-Li Hu
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Department of Pharmacology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- The Research Center for Depression, Tongji Medical College, Huazhong University of Science, Wuhan, 430030, China
- The Key Laboratory for Drug Target Researches and Pharmacodynamic Evaluation of Hubei Province, Wuhan, 430030, China
- Hubei Shizhen Laboratory, Wuhan, 430030, China
| | - Li-Hong Long
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Department of Pharmacology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- The Research Center for Depression, Tongji Medical College, Huazhong University of Science, Wuhan, 430030, China
- The Key Laboratory for Drug Target Researches and Pharmacodynamic Evaluation of Hubei Province, Wuhan, 430030, China
- Hubei Shizhen Laboratory, Wuhan, 430030, China
| | - Jian-Guo Chen
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Department of Pharmacology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- The Research Center for Depression, Tongji Medical College, Huazhong University of Science, Wuhan, 430030, China
- The Key Laboratory for Drug Target Researches and Pharmacodynamic Evaluation of Hubei Province, Wuhan, 430030, China
- Hubei Shizhen Laboratory, Wuhan, 430030, China
- Laboratory of Neuropsychiatric Diseases, The Institute of Brain Research, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Fang Wang
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Department of Pharmacology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- The Research Center for Depression, Tongji Medical College, Huazhong University of Science, Wuhan, 430030, China
- The Key Laboratory for Drug Target Researches and Pharmacodynamic Evaluation of Hubei Province, Wuhan, 430030, China
- Hubei Shizhen Laboratory, Wuhan, 430030, China
- Laboratory of Neuropsychiatric Diseases, The Institute of Brain Research, Huazhong University of Science and Technology, Wuhan, 430030, China
| |
Collapse
|
5
|
Periandri EM, Dodson KM, Vitorino FN, Garcia BA, Glastad KM, Egervari G. Acetate enhances spatial memory in females via sex- and brain region-specific epigenetic and transcriptional remodeling. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.08.26.609729. [PMID: 39253503 PMCID: PMC11382992 DOI: 10.1101/2024.08.26.609729] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/11/2024]
Abstract
Metabolic control of chromatin and gene expression is emerging as a key, but largely unexplored aspect of gene regulation. In the brain, metabolic-epigenetic interactions can influence critical neuronal functions. Here, we use a combination of behavioral, proteomic and genomic approaches to demonstrate that the intermediary metabolite acetate enhances memory in a brain region- and sex-specific manner. We show that acetate facilitates the formation of dorsal hippocampus-dependent spatial memories in female but not in male mice, while having no effect on cortex-dependent non-spatial memories in either sex. Acetate-enhanced spatial memory is driven by increased acetylation of histone variant H2A.Z, and upregulation of genes implicated in spatial learning in the dorsal hippocampus of female mice. In line with the sex-specific behavioral outcomes, the effect of acetate on dorsal hippocampal histone modifications and gene expression shows marked differences between the sexes during critical windows of memory formation (consolidation and recall). Overall, our findings elucidate a novel role for acetate, a ubiquitous and abundant metabolite, in regulating dorsal hippocampal chromatin, gene expression and learning, and outline acetate exposure as a promising new approach to enhance memory formation.
Collapse
|
6
|
Ma YZ, Zhang YS, Cao JX, Chen HC, Su XM, Li B, Kang YT, Gao LP, Jing YH. Aberration of social behavior and gut microbiota induced by cross-fostering implicating the gut-brain axis. Brain Behav Immun 2024; 120:499-512. [PMID: 38944162 DOI: 10.1016/j.bbi.2024.06.026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 04/21/2024] [Accepted: 06/23/2024] [Indexed: 07/01/2024] Open
Abstract
The gut microbiota and neurological development of neonatal mice are susceptible to environmental factors that may lead to altered behavior into adulthood. However, the role that changed gut microbiota and neurodevelopment early in life play in this needs to be clarified. In this study, by modeling early-life environmental changes by cross-fostering BALB/c mice, we revealed the effects of the environment during the critical period of postnatal development on adult social behavior and their relationship with the gut microbiota and the nervous system. The neural projections exist between the ascending colon and oxytocin neurons in the paraventricular nuclei (PVN), peripheral oxytocin levels and PVN neuron numbers decreased after cross-fostering, and sex-specific alteration in gut microbiota and its metabolites may be involved in social impairments and immune imbalances brought by cross-fostering via the gut-brain axis. Our findings also suggest that social cognitive impairment may result from a combination of PVN oxytocinergic neurons, gut microbiota, and metabolites.
Collapse
Affiliation(s)
- Yue-Zhang Ma
- Institute of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Lanzhou University, Lanzhou, Gansu, People's Republic of China; Institute of Anatomy and Histology & Embryology, Neuroscience, School of Basic Medical Sciences, Lanzhou University, Lanzhou, Gansu, People's Republic of China
| | - Yi-Shu Zhang
- Institute of Anatomy and Histology & Embryology, Neuroscience, School of Basic Medical Sciences, Lanzhou University, Lanzhou, Gansu, People's Republic of China
| | - Jia-Xin Cao
- Institute of Anatomy and Histology & Embryology, Neuroscience, School of Basic Medical Sciences, Lanzhou University, Lanzhou, Gansu, People's Republic of China
| | - Hai-Chao Chen
- Institute of Anatomy and Histology & Embryology, Neuroscience, School of Basic Medical Sciences, Lanzhou University, Lanzhou, Gansu, People's Republic of China
| | - Xiao-Mei Su
- Institute of Anatomy and Histology & Embryology, Neuroscience, School of Basic Medical Sciences, Lanzhou University, Lanzhou, Gansu, People's Republic of China
| | - Bing Li
- Institute of Anatomy and Histology & Embryology, Neuroscience, School of Basic Medical Sciences, Lanzhou University, Lanzhou, Gansu, People's Republic of China
| | - Yi-Ting Kang
- Institute of Anatomy and Histology & Embryology, Neuroscience, School of Basic Medical Sciences, Lanzhou University, Lanzhou, Gansu, People's Republic of China
| | - Li-Ping Gao
- Institute of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Lanzhou University, Lanzhou, Gansu, People's Republic of China.
| | - Yu-Hong Jing
- Institute of Anatomy and Histology & Embryology, Neuroscience, School of Basic Medical Sciences, Lanzhou University, Lanzhou, Gansu, People's Republic of China; Key Laboratory of Preclinical Study for New Drugs of Gansu Province, Lanzhou University, Lanzhou, Gansu, People's Republic of China.
| |
Collapse
|
7
|
Schneider E, O'Riordan KJ, Clarke G, Cryan JF. Feeding gut microbes to nourish the brain: unravelling the diet-microbiota-gut-brain axis. Nat Metab 2024; 6:1454-1478. [PMID: 39174768 DOI: 10.1038/s42255-024-01108-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Accepted: 07/15/2024] [Indexed: 08/24/2024]
Abstract
The prevalence of brain disorders, including stress-related neuropsychiatric disorders and conditions with cognitive dysfunction, is rising. Poor dietary habits contribute substantially to this accelerating trend. Conversely, healthy dietary intake supports mood and cognitive performance. Recently, the communication between the microorganisms within the gastrointestinal tract and the brain along the gut-brain axis has gained prominence as a potential tractable target to modulate brain health. The composition and function of the gut microbiota is robustly influenced by dietary factors to alter gut-brain signalling. To reflect this interconnection between diet, gut microbiota and brain functioning, we propose that a diet-microbiota-gut-brain axis exists that underpins health and well-being. In this Review, we provide a comprehensive overview of the interplay between diet and gut microbiota composition and function and the implications for cognition and emotional functioning. Important diet-induced effects on the gut microbiota for the development, prevention and maintenance of neuropsychiatric disorders are described. The diet-microbiota-gut-brain axis represents an uncharted frontier for brain health diagnostics and therapeutics across the lifespan.
Collapse
Affiliation(s)
| | | | - Gerard Clarke
- APC Microbiome Ireland, University College Cork, Cork, Ireland
- Department of Psychiatry and Neurobehavioural Science, University College Cork, Cork, Ireland
| | - John F Cryan
- APC Microbiome Ireland, University College Cork, Cork, Ireland.
- Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland.
| |
Collapse
|
8
|
Aburto MR, Cryan JF. Gastrointestinal and brain barriers: unlocking gates of communication across the microbiota-gut-brain axis. Nat Rev Gastroenterol Hepatol 2024; 21:222-247. [PMID: 38355758 DOI: 10.1038/s41575-023-00890-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 12/20/2023] [Indexed: 02/16/2024]
Abstract
Crosstalk between gut and brain has long been appreciated in health and disease, and the gut microbiota is a key player in communication between these two distant organs. Yet, the mechanisms through which the microbiota influences development and function of the gut-brain axis remain largely unknown. Barriers present in the gut and brain are specialized cellular interfaces that maintain strict homeostasis of different compartments across this axis. These barriers include the gut epithelial barrier, the blood-brain barrier and the blood-cerebrospinal fluid barrier. Barriers are ideally positioned to receive and communicate gut microbial signals constituting a gateway for gut-microbiota-brain communication. In this Review, we focus on how modulation of these barriers by the gut microbiota can constitute an important channel of communication across the gut-brain axis. Moreover, barrier malfunction upon alterations in gut microbial composition could form the basis of various conditions, including often comorbid neurological and gastrointestinal disorders. Thus, we should focus on unravelling the molecular and cellular basis of this communication and move from simplistic framing as 'leaky gut'. A mechanistic understanding of gut microbiota modulation of barriers, especially during critical windows of development, could be key to understanding the aetiology of gastrointestinal and neurological disorders.
Collapse
Affiliation(s)
- María R Aburto
- APC Microbiome Ireland, University College Cork, Cork, Ireland.
- Department of Anatomy and Neuroscience, School of Medicine, University College Cork, Cork, Ireland.
| | - John F Cryan
- APC Microbiome Ireland, University College Cork, Cork, Ireland
- Department of Anatomy and Neuroscience, School of Medicine, University College Cork, Cork, Ireland
| |
Collapse
|