1
|
White TA, Miller SL, Sutherland AE, Allison BJ, Camm EJ. Perinatal compromise affects development, form, and function of the hippocampus part two; preclinical studies. Pediatr Res 2024; 95:1709-1719. [PMID: 38519795 PMCID: PMC11245392 DOI: 10.1038/s41390-024-03144-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 02/15/2024] [Accepted: 03/03/2024] [Indexed: 03/25/2024]
Abstract
The hippocampus is a vital brain structure deep in the medial temporal lobe that mediates a range of functions encompassing emotional regulation, learning, memory, and cognition. Hippocampal development is exquisitely sensitive to perturbations and adverse conditions during pregnancy and at birth, including preterm birth, fetal growth restriction (FGR), acute hypoxic-ischaemic encephalopathy (HIE), and intrauterine inflammation. Disruptions to hippocampal development due to these conditions can have long-lasting functional impacts. Here, we discuss a range of preclinical models of prematurity and FGR and conditions that induce hypoxia and inflammation, which have been critical in elucidating the underlying mechanisms and cellular and subcellular structures implicated in hippocampal dysfunction. Finally, we discuss potential therapeutic targets to reduce the burden of these perinatal insults on the developing hippocampus. IMPACT: The review explores the preclinical literature examining the association between pregnancy and birth complications, and hippocampal form and function. The developmental processes and cellular mechanisms that are disrupted within the hippocampus following perinatal compromise are described, and potential therapeutic targets are discussed.
Collapse
Affiliation(s)
- Tegan A White
- The Ritchie Centre, Hudson Institute of Medical Research, Clayton, VIC, Australia.
- Department of Obstetrics and Gynaecology, Monash University, Clayton, VIC, Australia.
| | - Suzanne L Miller
- The Ritchie Centre, Hudson Institute of Medical Research, Clayton, VIC, Australia
- Department of Obstetrics and Gynaecology, Monash University, Clayton, VIC, Australia
| | - Amy E Sutherland
- The Ritchie Centre, Hudson Institute of Medical Research, Clayton, VIC, Australia
- Department of Obstetrics and Gynaecology, Monash University, Clayton, VIC, Australia
| | - Beth J Allison
- The Ritchie Centre, Hudson Institute of Medical Research, Clayton, VIC, Australia
- Department of Obstetrics and Gynaecology, Monash University, Clayton, VIC, Australia
| | - Emily J Camm
- The Ritchie Centre, Hudson Institute of Medical Research, Clayton, VIC, Australia.
- Department of Obstetrics and Gynaecology, Monash University, Clayton, VIC, Australia.
| |
Collapse
|
2
|
Ni MZ, Zhang YM, Li Y, Wu QT, Zhang ZZ, Chen J, Luo BL, Li XW, Chen GH. Environmental enrichment improves declined cognition induced by prenatal inflammatory exposure in aged CD-1 mice: Role of NGPF2 and PSD-95. Front Aging Neurosci 2022; 14:1021237. [PMID: 36479357 PMCID: PMC9720164 DOI: 10.3389/fnagi.2022.1021237] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Accepted: 11/03/2022] [Indexed: 12/08/2023] Open
Abstract
INTRODUCTION Research suggests that prenatal inflammatory exposure could accelerate age-related cognitive decline that may be resulted from neuroinflammation and synaptic dysfunction during aging. Environmental enrichment (EE) may mitigate the cognitive and synaptic deficits. Neurite growth-promoting factor 2 (NGPF2) and postsynaptic density protein 95 (PSD-95) play critical roles in neuroinflammation and synaptic function, respectively. METHODS We examined whether this adversity and EE exposure can cause alterations in Ngpf2 and Psd-95 expression. In this study, CD-1 mice received intraperitoneal injection of lipopolysaccharide (50 μg/kg) or normal saline from gestational days 15-17. After weaning, half of the male offspring under each treatment were exposed to EE. The Morris water maze was used to assess spatial learning and memory at 3 and 15 months of age, whereas quantitative real-time polymerase chain reaction and Western blotting were used to measure hippocampal mRNA and protein levels of NGPF2 and PSD-95, respectively. Meanwhile, serum levels of IL-6, IL-1β, and TNF-α were determined by enzyme-linked immunosorbent assay. RESULTS The results showed that aged mice exhibited poor spatial learning and memory ability, elevated NGPF2 mRNA and protein levels, and decreased PSD-95 mRNA and protein levels relative to their young counterparts during natural aging. Embryonic inflammatory exposure accelerated age-related changes in spatial cognition, and in Ngpf2 and Psd-95 expression. Additionally, the levels of Ngpf2 and Psd-95 products were significantly positively and negatively correlated with cognitive dysfunction, respectively, particularly in prenatal inflammation-exposed aged mice. Changes in serum levels of IL-6, IL-1β, and TNF-α reflective of systemic inflammation and their correlation with cognitive decline during accelerated aging were similar to those of hippocampal NGPF2. EE exposure could partially restore the accelerated decline in age-related cognitive function and in Psd-95 expression, especially in aged mice. DISCUSSION Overall, the aggravated cognitive disabilities in aged mice may be related to the alterations in Ngpf2 and Psd-95 expression and in systemic state of inflammation due to prenatal inflammatory exposure, and long-term EE exposure may ameliorate this cognitive impairment by upregulating Psd-95 expression.
Collapse
Affiliation(s)
- Ming-Zhu Ni
- Department of Neurology (Sleep Disorders), The Affiliated Chaohu Hospital of Anhui Medical University, Hefei, China
| | - Yue-Ming Zhang
- Department of Neurology (Sleep Disorders), The Affiliated Chaohu Hospital of Anhui Medical University, Hefei, China
| | - Yun Li
- Department of Neurology (Sleep Disorders), The Affiliated Chaohu Hospital of Anhui Medical University, Hefei, China
| | - Qi-Tao Wu
- Department of Neurology (Sleep Disorders), The Affiliated Chaohu Hospital of Anhui Medical University, Hefei, China
| | - Zhe-Zhe Zhang
- Department of Neurology (Sleep Disorders), The Affiliated Chaohu Hospital of Anhui Medical University, Hefei, China
| | - Jing Chen
- Department of Neurology (Sleep Disorders), The Affiliated Chaohu Hospital of Anhui Medical University, Hefei, China
| | - Bao-Ling Luo
- Department of Neurology (Sleep Disorders), The Affiliated Chaohu Hospital of Anhui Medical University, Hefei, China
| | - Xue-Wei Li
- Department of Neurology, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, China
| | - Gui-Hai Chen
- Department of Neurology (Sleep Disorders), The Affiliated Chaohu Hospital of Anhui Medical University, Hefei, China
| |
Collapse
|
3
|
Klein L, Van Steenwinckel J, Fleiss B, Scheuer T, Bührer C, Faivre V, Lemoine S, Blugeon C, Schwendimann L, Csaba Z, Bokobza C, Vousden DA, Lerch JP, Vernon AC, Gressens P, Schmitz T. A unique cerebellar pattern of microglia activation in a mouse model of encephalopathy of prematurity. Glia 2022; 70:1699-1719. [PMID: 35579329 PMCID: PMC9545095 DOI: 10.1002/glia.24190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2021] [Revised: 04/26/2022] [Accepted: 04/29/2022] [Indexed: 11/24/2022]
Abstract
Preterm infants often show pathologies of the cerebellum, which are associated with impaired motor performance, lower IQ and poor language skills at school ages. Using a mouse model of inflammation-induced encephalopathy of prematurity driven by systemic administration of pro-inflammatory IL-1β, we sought to uncover causes of cerebellar damage. In this model, IL-1β is administered between postnatal day (P) 1 to day 5, a timing equivalent to the last trimester for brain development in humans. Structural MRI analysis revealed that systemic IL-1β treatment induced specific reductions in gray and white matter volumes of the mouse cerebellar lobules I and II (5% false discovery rate [FDR]) from P15 onwards. Preceding these MRI-detectable cerebellar volume changes, we observed damage to oligodendroglia, with reduced proliferation of OLIG2+ cells at P10 and reduced levels of the myelin proteins myelin basic protein (MBP) and myelin-associated glycoprotein (MAG) at P10 and P15. Increased density of IBA1+ cerebellar microglia were observed both at P5 and P45, with evidence for increased microglial proliferation at P5 and P10. Comparison of the transcriptome of microglia isolated from P5 cerebellums and cerebrums revealed significant enrichment of pro-inflammatory markers in microglia from both regions, but cerebellar microglia displayed a unique type I interferon signaling dysregulation. Collectively, these data suggest that perinatal inflammation driven by systemic IL-1β leads to specific cerebellar volume deficits, which likely reflect oligodendrocyte pathology downstream of microglial activation. Further studies are now required to confirm the potential of protective strategies aimed at preventing sustained type I interferon signaling driven by cerebellar microglia as an important therapeutic target.
Collapse
Affiliation(s)
- Luisa Klein
- Department of NeonatologyCharité University Medicine BerlinBerlinGermany
| | | | - Bobbi Fleiss
- NeuroDiderot, InsermUniversité de ParisParisFrance
- School of Health and Biomedical SciencesRMIT UniversityMelbourneVictoriaAustralia
| | - Till Scheuer
- Department of NeonatologyCharité University Medicine BerlinBerlinGermany
| | - Christoph Bührer
- Department of NeonatologyCharité University Medicine BerlinBerlinGermany
| | | | - Sophie Lemoine
- Genomics Core Facility, Département de Biologie, École Normale Supérieure, Institut de Biologie de l'ENS (IBENS), CNRS, INSERMUniversité PSLParisFrance
| | - Corinne Blugeon
- Genomics Core Facility, Département de Biologie, École Normale Supérieure, Institut de Biologie de l'ENS (IBENS), CNRS, INSERMUniversité PSLParisFrance
| | | | - Zsolt Csaba
- NeuroDiderot, InsermUniversité de ParisParisFrance
| | | | - Dulcie A. Vousden
- Mouse Imaging CentreThe Hospital for Sick ChildrenTorontoOntarioCanada
| | - Jason P. Lerch
- Mouse Imaging CentreThe Hospital for Sick ChildrenTorontoOntarioCanada
- Department of Medical BiophysicsUniversity of TorontoTorontoOntarioCanada
- Wellcome Trust Centre for Integrative NeuroimagingUniversity of OxfordOxfordUK
| | - Anthony C. Vernon
- Department of Basic and Clinical Neuroscience, Institute of Psychiatry, Psychology and NeuroscienceKing's College LondonLondonUK
- MRC Centre for Neurodevelopmental DisordersKing's College LondonLondonUK
| | | | - Thomas Schmitz
- Department of NeonatologyCharité University Medicine BerlinBerlinGermany
| |
Collapse
|
4
|
Early Life Events and Maturation of the Dentate Gyrus: Implications for Neurons and Glial Cells. Int J Mol Sci 2022; 23:ijms23084261. [PMID: 35457079 PMCID: PMC9031216 DOI: 10.3390/ijms23084261] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2022] [Revised: 04/08/2022] [Accepted: 04/11/2022] [Indexed: 12/15/2022] Open
Abstract
The dentate gyrus (DG), an important part of the hippocampus, plays a significant role in learning, memory, and emotional behavior. Factors potentially influencing normal development of neurons and glial cells in the DG during its maturation can exert long-lasting effects on brain functions. Early life stress may modify maturation of the DG and induce lifelong alterations in its structure and functioning, underlying brain pathologies in adults. In this paper, maturation of neurons and glial cells (microglia and astrocytes) and the effects of early life events on maturation processes in the DG have been comprehensively reviewed. Early postnatal interventions affecting the DG eventually result in an altered number of granule neurons in the DG, ectopic location of neurons and changes in adult neurogenesis. Adverse events in early life provoke proinflammatory changes in hippocampal glia at cellular and molecular levels immediately after stress exposure. Later, the cellular changes may disappear, though alterations in gene expression pattern persist. Additional stressful events later in life contribute to manifestation of glial changes and behavioral deficits. Alterations in the maturation of neuronal and glial cells induced by early life stress are interdependent and influence the development of neural nets, thus predisposing the brain to the development of cognitive and psychiatric disorders.
Collapse
|
5
|
Loureiro-Campos E, Mateus-Pinheiro A, Patrício P, Soares-Cunha C, Silva J, Sardinha VM, Mendes-Pinheiro B, Silveira-Rosa T, Domingues AV, Rodrigues AJ, Oliveira J, Sousa N, Alves ND, Pinto L. Constitutive deficiency of the neurogenic hippocampal modulator AP2γ promotes anxiety-like behavior and cumulative memory deficits in mice from juvenile to adult periods. eLife 2021; 10:70685. [PMID: 34859784 PMCID: PMC8709574 DOI: 10.7554/elife.70685] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Accepted: 12/02/2021] [Indexed: 11/23/2022] Open
Abstract
The transcription factor activating protein two gamma (AP2γ) is an important regulator of neurogenesis both during embryonic development as well as in the postnatal brain, but its role for neurophysiology and behavior at distinct postnatal periods is still unclear. In this work, we explored the neurogenic, behavioral, and functional impact of a constitutive and heterozygous AP2γ deletion in mice from early postnatal development until adulthood. AP2γ deficiency promotes downregulation of hippocampal glutamatergic neurogenesis, altering the ontogeny of emotional and memory behaviors associated with hippocampus formation. The impairments induced by AP2γ constitutive deletion since early development leads to an anxious-like phenotype and memory impairments as early as the juvenile phase. These behavioral impairments either persist from the juvenile phase to adulthood or emerge in adult mice with deficits in behavioral flexibility and object location recognition. Collectively, we observed a progressive and cumulative impact of constitutive AP2γ deficiency on the hippocampal glutamatergic neurogenic process, as well as alterations on limbic-cortical connectivity, together with functional behavioral impairments. The results herein presented demonstrate the modulatory role exerted by the AP2γ transcription factor and the relevance of hippocampal neurogenesis in the development of emotional states and memory processes.
Collapse
Affiliation(s)
- Eduardo Loureiro-Campos
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal.,ICVS/3B's -PT Government Associate Laboratory, Guimarães, Portugal
| | - António Mateus-Pinheiro
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal.,ICVS/3B's -PT Government Associate Laboratory, Guimarães, Portugal
| | - Patrícia Patrício
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal.,ICVS/3B's -PT Government Associate Laboratory, Guimarães, Portugal
| | - Carina Soares-Cunha
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal.,ICVS/3B's -PT Government Associate Laboratory, Guimarães, Portugal
| | - Joana Silva
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal.,ICVS/3B's -PT Government Associate Laboratory, Guimarães, Portugal
| | - Vanessa Morais Sardinha
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal.,ICVS/3B's -PT Government Associate Laboratory, Guimarães, Portugal
| | - Bárbara Mendes-Pinheiro
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal.,ICVS/3B's -PT Government Associate Laboratory, Guimarães, Portugal
| | - Tiago Silveira-Rosa
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal.,ICVS/3B's -PT Government Associate Laboratory, Guimarães, Portugal
| | - Ana Verónica Domingues
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal.,ICVS/3B's -PT Government Associate Laboratory, Guimarães, Portugal
| | - Ana João Rodrigues
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal
| | - João Oliveira
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal.,ICVS/3B's -PT Government Associate Laboratory, Guimarães, Portugal.,IPCA-EST-2Ai, Polytechnic Institute of Cávado and Ave, Applied Artificial Intelligence Laboratory, Campus of IPCA, Barcelos, Portugal
| | - Nuno Sousa
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal.,ICVS/3B's -PT Government Associate Laboratory, Guimarães, Portugal
| | - Nuno Dinis Alves
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal.,ICVS/3B's -PT Government Associate Laboratory, Guimarães, Portugal
| | - Luísa Pinto
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal.,ICVS/3B's -PT Government Associate Laboratory, Guimarães, Portugal
| |
Collapse
|