1
|
Spilleboudt C, De Wilde V, Lewalle P, Cabanne L, Leclerc M, Beckerich F, Bories D, Cardoso S, Soares MP, Vokaer B, Hougardy JM, Flamand V, Racapé J, Abramowicz M, Maury S, Le Moine A. Donor-Derived Myeloid Heme Oxygenase-1 Controls the Development of Graft-Versus-Host Disease. Front Immunol 2021; 11:579151. [PMID: 33537027 PMCID: PMC7849683 DOI: 10.3389/fimmu.2020.579151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Accepted: 11/30/2020] [Indexed: 11/13/2022] Open
Abstract
Graft-versus-host disease (GVHD) remains a major clinical drawback of allogeneic hematopoietic stem cell transplantation (HSCT). Here, we investigated how the stress responsive heme catabolizing enzyme heme oxygenase-1 (HO-1, encoded by HMOX1) regulates GVHD in response to allogeneic hematopoietic stem cell transplantation in mice and humans. We found that deletion of the Hmox1 allele, specifically in the myeloid compartment of mouse donor bone marrow, promotes the development of aggressive GVHD after allogeneic transplantation. The mechanism driving GVHD in mice transplanted with allogeneic bone marrow lacking HO-1 expression in the myeloid compartment involves enhanced T cell alloreactivity. The clinical relevance of these observations was validated in two independent cohorts of HSCT patients. Individuals transplanted with hematopoietic stem cells from donors carrying a long homozygous (GT)n repeat polymorphism (L/L) in the HMOX1 promoter, which is associated with lower HO-1 expression, were at higher risk of developing severe acute GVHD as compared to donors carrying a short (GT)n repeat (S/L or S/S) polymorphism associated with higher HO-1 expression. In this study, we showed the unique importance of donor-derived myeloid HO-1 in the prevention of lethal experimental GVHD and we corroborated this observation by demonstrating the association between human HMOX1 (GT)n microsatellite polymorphisms and the incidence of severe acute GVHD in two independent HSCT patient cohorts. Donor-derived myeloid HO-1 constitutes a potential therapeutic target for HSCT patients and large-scale prospective studies in HSCT patients are necessary to validate the HO-1 L/L genotype as an independent risk factor for developing severe acute GVHD.
Collapse
Affiliation(s)
- Chloé Spilleboudt
- Institute for Medical Immunology, Université Libre de Bruxelles, Gosselies, Belgium
| | - Virginie De Wilde
- Institute for Medical Immunology, Université Libre de Bruxelles, Gosselies, Belgium
- Erasme Hospital, Hematology Department, Université libre de Bruxelles, Brussels, Belgium
| | - Philippe Lewalle
- Jules Bordet Institute, Hematology Department, Université libre de Bruxelles, Brussels, Belgium
| | - Ludovic Cabanne
- AP-HP, Hôpital Henri Mondor, Department of Hematology, Créteil, France
- University Paris Est Créteil (UPEC), Créteil, France
| | - Mathieu Leclerc
- AP-HP, Hôpital Henri Mondor, Department of Hematology, Créteil, France
- University Paris Est Créteil (UPEC), Créteil, France
| | - Florence Beckerich
- AP-HP, Hôpital Henri Mondor, Department of Hematology, Créteil, France
- University Paris Est Créteil (UPEC), Créteil, France
| | - Dominique Bories
- AP-HP, Hôpital Henri Mondor, Department of Hematology, Créteil, France
- University Paris Est Créteil (UPEC), Créteil, France
| | | | | | - Benoît Vokaer
- Institute for Medical Immunology, Université Libre de Bruxelles, Gosselies, Belgium
| | - Jean-Michel Hougardy
- Erasme Hospital, Nephrology and Internal Medicine Department, Université libre de Bruxelles, Brussels, Belgium
| | - Véronique Flamand
- Institute for Medical Immunology, Université Libre de Bruxelles, Gosselies, Belgium
| | - Judith Racapé
- Erasme Hospital, Nephrology and Internal Medicine Department, Université libre de Bruxelles, Brussels, Belgium
- Centre de Recherche Épidémiologie, Biostatistique et Recherche clinique, École de Santé Publique, Université libre de Bruxelles, Brussels, Belgium
| | - Marc Abramowicz
- Department of Genetic Medicine and Development, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Sébastien Maury
- AP-HP, Hôpital Henri Mondor, Department of Hematology, Créteil, France
- University Paris Est Créteil (UPEC), Créteil, France
| | - Alain Le Moine
- Institute for Medical Immunology, Université Libre de Bruxelles, Gosselies, Belgium
- Erasme Hospital, Nephrology and Internal Medicine Department, Université libre de Bruxelles, Brussels, Belgium
| |
Collapse
|
2
|
(GT)n Repeat Polymorphism in Heme Oxygenase-1 (HO-1) Correlates with Clinical Outcome after Myeloablative or Nonmyeloablative Allogeneic Hematopoietic Cell Transplantation. PLoS One 2016; 11:e0168210. [PMID: 27997582 PMCID: PMC5172582 DOI: 10.1371/journal.pone.0168210] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2016] [Accepted: 11/28/2016] [Indexed: 11/19/2022] Open
Abstract
Allogeneic hematopoietic cell transplantation (HCT) is a treatment for various hematologic diseases where efficacy of treatment is in part based on the graft versus tumour (GVT) activity of cells in the transplant. The cytoprotective enzyme heme oxygenase-1 (HO-1) is a rate-limiting enzyme in heme degradation and it has been shown to exert anti-inflammatory functions. In humans a (GT)n repeat polymorphism regulates the expression of HO-1. We conducted fragment length analyses of the (GT)n repeat in the promotor region of the gene for HO-1 in DNA from donors and recipients receiving allogeneic myeloablative- (MA) (n = 110) or nonmyeloablative- (NMA-) (n = 250) HCT. Subsequently, we compared the length of the (GT)n repeat with clinical outcome after HCT. We demonstrated that transplants from a HO-1high donor after MA-conditioning (n = 13) is associated with higher relapse incidence at 3 years (p = 0.01, n = 110). In the NMA-conditioning setting transplantation of HO-1low donor cells into HO-1low recipients correlated significantly with decreased relapse related mortality (RRM) and longer progression free survival (PFS) (p = 0.03 and p = 0.008, respectively). Overall, our findings suggest that HO-1 may play a role for the induction of GVT effect after allogeneic HCT.
Collapse
|
3
|
Katayama Y, Yokota T, Zhao H, Wong RJ, Stevenson DK, Taniguchi-Ikeda M, Nakamura H, Iijima K, Morioka I. Association of HMOX1 gene promoter polymorphisms with hyperbilirubinemia in the early neonatal period. Pediatr Int 2015; 57:645-9. [PMID: 25625535 DOI: 10.1111/ped.12591] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/15/2014] [Revised: 01/13/2015] [Accepted: 01/19/2015] [Indexed: 11/27/2022]
Abstract
BACKGROUND Heme oxygenase (HO) is the rate-limiting enzyme in the heme degradation pathway that produces bilirubin. The promoter region of human heme oxygenase-1 (HMOX1) contains a polymorphic (GT)n repeat that can regulate gene expression. Here, we investigated the association of (GT)n repeat length in the HMOX1 promoter region with neonatal hyperbilirubinemia in a population of Japanese term neonates. METHODS Using polymerase chain reaction and fragment analysis, we determined the number of (GT)n repeats in 149 Japanese neonates. To omit the effects of the G71R mutation in uridine diphosphoglucuronosyltransferase on hyperbilirubinemia, we excluded 41 neonates with the G71R mutation. As a result, 25 neonates with hyperbilirubinemia and 83 non-hyperbilirubinemic controls were included in this prospective case-control study. Allele and genotype frequencies of (GT)n repeats in the HMOX1 gene were compared between hyperbilirubinemic and non-hyperbilirubinemic control neonates. RESULTS The prevalence of short alleles (< 22 (GT)n repeats) was significantly higher in hyperbilirubinemic than in control neonates (18% vs 7%, P = 0.015). Hyperbilirubinemia was more frequent in homozygous or heterozygous short allele carriers than control neonates (28% vs 11%, respectively, P = 0.03). Possession of short alleles was significantly associated with the development of neonatal hyperbilirubinemia (OR, 3.1; 95%CI: 1.03-9.53). CONCLUSIONS Infants carrying short alleles (< 22 (GT)n repeats) in the HMOX1 gene promoter region appear to be at a higher risk for developing neonatal hyperbilirubinemia.
Collapse
Affiliation(s)
- Yoshinori Katayama
- Department of Pediatrics, Kobe University Graduate School of Medicine, Kobe, Japan.,Department of Pediatrics, Takatsuki General Hospital, Takatsuki, Japan
| | - Tomoyuki Yokota
- Department of Pediatrics, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Hui Zhao
- Department of Pediatrics, Division of Neonatal and Developmental Medicine, Stanford University School of Medicine, Stanford, California, USA
| | - Ronald J Wong
- Department of Pediatrics, Division of Neonatal and Developmental Medicine, Stanford University School of Medicine, Stanford, California, USA
| | - David K Stevenson
- Department of Pediatrics, Division of Neonatal and Developmental Medicine, Stanford University School of Medicine, Stanford, California, USA
| | | | - Hajime Nakamura
- Department of Pediatrics, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Kazumoto Iijima
- Department of Pediatrics, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Ichiro Morioka
- Department of Pediatrics, Kobe University Graduate School of Medicine, Kobe, Japan
| |
Collapse
|
4
|
Wong RJ, Stevenson DK. Neonatal hemolysis and risk of bilirubin-induced neurologic dysfunction. Semin Fetal Neonatal Med 2015; 20:26-30. [PMID: 25560401 DOI: 10.1016/j.siny.2014.12.005] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
The pathologic phenotype of severe hyperbilirubinemia in the newborn infant is primarily due to excessive bilirubin production and/or impaired conjugation, resulting in an increased bilirubin load. This may, in turn, increase an infant's risk for the development of bilirubin-induced neurologic dysfunction (BIND). The highest-risk infants are those with increased bilirubin production rates due to hemolysis. Several immune and non-immune conditions have been found to cause severe hemolysis, and these are often exacerbated in those infants with perinatal sepsis and genetic predispositions. Therefore, identification of these infants, with novel technologies, is paramount in reducing the incidence of BIND and the long-term neurologic sequelae for these at-risk infants.
Collapse
Affiliation(s)
- Ronald J Wong
- Department of Pediatrics, Stanford University School of Medicine, Stanford, CA, USA.
| | - David K Stevenson
- Department of Pediatrics, Stanford University School of Medicine, Stanford, CA, USA
| |
Collapse
|
5
|
Lundvig DMS, Immenschuh S, Wagener FADTG. Heme oxygenase, inflammation, and fibrosis: the good, the bad, and the ugly? Front Pharmacol 2012; 3:81. [PMID: 22586396 PMCID: PMC3345581 DOI: 10.3389/fphar.2012.00081] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2012] [Accepted: 04/13/2012] [Indexed: 12/13/2022] Open
Abstract
Upon injury, prolonged inflammation and oxidative stress may cause pathological wound healing and fibrosis, leading to formation of excessive scar tissue. Fibrogenesis can occur in most organs and tissues and may ultimately lead to organ dysfunction and failure. The underlying mechanisms of pathological wound healing still remain unclear, and are considered to be multifactorial, but so far, no efficient anti-fibrotic therapies exist. Extra- and intracellular levels of free heme may be increased in a variety of pathological conditions due to release from hemoproteins. Free heme possesses pro-inflammatory and oxidative properties, and may act as a danger signal. Effects of free heme may be counteracted by heme-binding proteins or by heme degradation. Heme is degraded by heme oxygenase (HO) that exists as two isoforms: inducible HO-1 and constitutively expressed HO-2. HO generates the effector molecules biliverdin/bilirubin, carbon monoxide, and free iron/ferritin. HO deficiency in mouse and man leads to exaggerated inflammation following mild insults, and accumulating epidemiological and preclinical studies support the widely recognized notion of the cytoprotective, anti-oxidative, and anti-inflammatory effects of the activity of the HO system and its effector molecules. In this review, we address the potential effects of targeted HO-1 induction or administration of HO-effector molecules as therapeutic targets in fibrotic conditions to counteract inflammatory and oxidative insults. This is exemplified by various clinically relevant conditions, such as hypertrophic scarring, chronic inflammatory liver disease, chronic pancreatitis, and chronic graft rejection in transplantation.
Collapse
Affiliation(s)
- Ditte M S Lundvig
- Department of Orthodontics and Craniofacial Biology, Nijmegen Centre for Molecular Life Sciences, Radboud University Nijmegen Medical Centre Nijmegen, Netherlands
| | | | | |
Collapse
|
6
|
Espinoza LJ, Takami A, Nakata K, Yamada K, Onizuka M, Kawase T, Sao H, Akiyama H, Miyamura K, Okamoto S, Inoue M, Fukuda T, Morishima Y, Kodera Y, Nakao S. Genetic variants of human granzyme B predict transplant outcomes after HLA matched unrelated bone marrow transplantation for myeloid malignancies. PLoS One 2011; 6:e23827. [PMID: 21886827 PMCID: PMC3160316 DOI: 10.1371/journal.pone.0023827] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2011] [Accepted: 07/25/2011] [Indexed: 12/04/2022] Open
Abstract
Serine protease granzyme B plays important roles in infections, autoimmunity, transplant rejection, and antitumor immunity. A triple-mutated granzyme B variant that encodes three amino substitutions (Q48R, P88A, and Y245H) has been reported to have altered biological functions. In the polymorphism rs8192917 (2364A>G), the A and G alleles represent wild type QPY and RAH mutant variants, respectively. In this study, we analyzed the impact of granzyme B polymorphisms on transplant outcomes in recipients undergoing unrelated HLA-fully matched T-cell-replete bone marrow transplantation (BMT) through the Japan Donor Marrow Program. The granzyme B genotypes were retrospectively analyzed in a cohort of 613 pairs of recipients with hematological malignancies and their unrelated donors. In patients with myeloid malignancies consisting of acute myeloid leukemia and myelodysplastic syndrome, the donor G/G or A/G genotype was associated with improved overall survival (OS; adjusted hazard ratio [HR], 0.60; 95% confidence interval [CI], 0.41–0.89; P = 0.01) as well as transplant related mortality (TRM; adjusted HR, 0.48; 95% CI, 0.27–0.86, P = 0.01). The recipient G/G or A/G genotype was associated with a better OS (adjusted HR, 0.68; 95% CI, 0.47–0.99; P = 0.05) and a trend toward a reduced TRM (adjusted HR, 0.61; 95% CI, 0.35–1.06; P = 0.08). Granzyme B polymorphism did not have any effect on the transplant outcomes in patients with lymphoid malignancies consisting of acute lymphoid leukemia and malignant lymphoma. These data suggest that there is an association between the granzyme B genotype and better clinical outcomes in patients with myeloid malignancies after unrelated BMT.
Collapse
Affiliation(s)
- Luis J. Espinoza
- Department of Hematology and Oncology, Kanazawa University Hospital, Kanazawa, Japan
| | - Akiyoshi Takami
- Department of Hematology and Oncology, Kanazawa University Hospital, Kanazawa, Japan
- * E-mail:
| | - Katsuya Nakata
- Department of Hematology and Oncology, Kanazawa University Hospital, Kanazawa, Japan
| | - Kayoko Yamada
- Department of Hematology and Oncology, Kanazawa University Hospital, Kanazawa, Japan
| | - Makoto Onizuka
- Department of Hematology and Oncology, Tokai University School of Medicine, Isehara, Japan
| | - Takakazu Kawase
- Division of Epidemiology, Aichi Cancer Center Hospital, Nagoya, Japan
| | - Hiroshi Sao
- Department of Hematology, Meitetsu Hospital, Nagoya, Japan
| | - Hideki Akiyama
- Department of Internal Medicine, Ebara Hospital, Tokyo, Japan
| | - Koichi Miyamura
- Department of Hematology, Japanese Red Cross Nagoya First Hospital, Nagoya, Japan
| | - Shinichiro Okamoto
- Division of Hematology, Department of Medicine, Keio University School of Medicine, Tokyo, Japan
| | - Masami Inoue
- Department of Hematology and Oncology, Osaka Medical Center and Research Institute for Maternal and Child Health, Osaka, Japan
| | - Takahiro Fukuda
- Hematopoietic Stem Cell Transplantation Unit, National Cancer Center Hospital, Tokyo, Japan
| | - Yasuo Morishima
- Department of Hematology and Cell Therapy, Aichi Cancer Center Hospital, Nagoya, Japan
| | - Yoshihisa Kodera
- Department of Promotion for Blood and Marrow Transplantation, Aichi Medical University, Nagoya, Japan
| | - Shinji Nakao
- Department of Hematology and Oncology, Kanazawa University Hospital, Kanazawa, Japan
| | | |
Collapse
|
7
|
Tiercy JM. Immunogenetics of hematopoietic stem cell transplantation: the contribution of microsatellite polymorphism studies. Int J Immunogenet 2011; 38:365-72. [PMID: 21816003 DOI: 10.1111/j.1744-313x.2011.01026.x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Polymorphisms of short tandem repeats of <10 nucleotides, or microsatellites (Msat), are largely used for post-transplant chimerism analyses in clinical hematopoietic stem cell transplantation (HSCT). Compared to single nucleotide polymorphisms (SNP), they have the advantage of a higher degree of allelic polymorphism and thus a potentially larger degree of informativity. Msat markers contribute to approximately 3% of the human genome and have been highly informative in disease association studies, population genetics, forensic medicine and organ and HSC transplantation. They allowed to expand our knowledge of the haplotypic structure of the HLA complex, including the noncoding sequences in the MHC, and to reach a better characterization of immunological phenotypes. Among the different immunogenetic studies in HSCT patients reviewed here, four Msat loci linked to cytokine genes have been analysed by a number of laboratories as potential candidates markers for HSCT outcome: IFNG, TNFd, IL-10(-1064) and IL-1RN. The low patient numbers and high diversity of clinical parameters account for some heterogeneity of the results. Among the trends starting to emerge from these studies, specific TNFd Msat alleles seem to be associated with acute graft-versus-host disease and mortality. Patient/donor Msat incompatibilities have also been used as surrogate markers to map biologically relevant polymorphisms, with a main focus on MHC-resident genetic variation. High throughput SNP typing and next-generation sequencing technologies will allow acquisition of large-scale genomic data and should allow refined analyses of clinically relevant genotypes in the transplantation settting, although the heterogeneity of the study cohorts will remain an issue. The analysis of Msat polymorphisms may still have a place in functional studies on the impact of Msat diversity in the control of immune response gene expression.
Collapse
Affiliation(s)
- J-M Tiercy
- National Reference Laboratory for Histocompatibility, Department of Internal Medicine, University Hospital Geneva, Geneva, Switzerland.
| |
Collapse
|
8
|
Espinoza JL, Takami A, Onizuka M, Sao H, Akiyama H, Miyamura K, Okamoto S, Inoue M, Kanda Y, Ohtake S, Fukuda T, Morishima Y, Kodera Y, Nakao S. NKG2D gene polymorphism has a significant impact on transplant outcomes after HLA-fully-matched unrelated bone marrow transplantation for standard risk hematologic malignancies. Haematologica 2011; 94:1427-34. [PMID: 19794085 DOI: 10.3324/haematol.2009.008318] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
BACKGROUND NKG2D, an activating and co-stimulatory receptor expressed on natural killer cells and T cells, plays pivotal roles in immunity to microbial infections as well as in cancer immunosurveillance. This study examined the impact of donor and recipient polymorphisms in the NKG2D gene on the clinical outcomes of patients undergoing allogeneic T-cell-replete myeloablative bone marrow transplantation using an HLA-matched unrelated donor. DESIGN AND METHODS The NKG2D polymorphism was retrospectively analyzed in a total 145 recipients with hematologic malignancies and their unrelated donors. The patients underwent transplantation following myeloablative conditioning; the recipients and donors were matched through the Japan Marrow Donor Program. RESULTS In patients with standard-risk disease, the donor NKG2D-HNK1 haplotype, a haplotype expected to induce greater natural killer cell activity, was associated with significantly improved overall survival (adjusted hazard ratio, 0.44; 95% confidence interval, 0.23 to 0.85; p=0.01) as well as transplant related mortality (adjusted hazard ratio, 0.42; 95% confidence interval, 0.21 to 0.86; p=0.02), but had no impact on disease relapse or the development of grade II-IV acute graft-versus-host disease or chronic graft-versus-host disease. The NKG2D polymorphism did not significantly influence the transplant outcomes in patients with high-risk disease. CONCLUSIONS These data suggest an association between the donor HNK1 haplotype and better clinical outcome among recipients, with standard-risk disease, of bone marrow transplants from HLA-matched unrelated donors.
Collapse
Affiliation(s)
- J Luis Espinoza
- Department of Hematology & Oncology, Kanazawa University Hospital, 13-1 Takaramachi, Kanazawa, 920-8641, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
9
|
Espinoza JL, Takami A, Onizuka M, Kawase T, Sao H, Akiyama H, Miyamura K, Okamoto S, Inoue M, Ohtake S, Fukuda T, Morishima Y, Kodera Y, Nakao S. A single nucleotide polymorphism of IL-17 gene in the recipient is associated with acute GVHD after HLA-matched unrelated BMT. Bone Marrow Transplant 2011; 46:1455-63. [DOI: 10.1038/bmt.2010.325] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
10
|
Taha H, Skrzypek K, Guevara I, Nigisch A, Mustafa S, Grochot-Przeczek A, Ferdek P, Was H, Kotlinowski J, Kozakowska M, Balcerczyk A, Muchova L, Vitek L, Weigel G, Dulak J, Jozkowicz A. Role of heme oxygenase-1 in human endothelial cells: lesson from the promoter allelic variants. Arterioscler Thromb Vasc Biol 2010; 30:1634-41. [PMID: 20508205 DOI: 10.1161/atvbaha.110.207316] [Citation(s) in RCA: 79] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
OBJECTIVE Heme oxygenase-1 (HO-1) is an antioxidative, antiinflammatory, and cytoprotective enzyme that is induced in response to cellular stress. The HO-1 promoter contains a (GT)n microsatellite DNA, and the number of GT repeats can influence the occurrence of cardiovascular diseases. We elucidated the effect of this polymorphism on endothelial cells isolated from newborns of different genotypes. METHODS AND RESULTS On the basis of HO-1 expression, we classified the HO-1 promoter alleles into 3 groups: short (S) (most active, GT < or = 23), medium (moderately active, GT=24 to 28), and long (least active, GT > or = 29). The presence of the S allele led to higher basal HO-1 expression and stronger induction in response to cobalt protoporphyrin, prostaglandin-J(2), hydrogen peroxide, and lipopolysaccharide. Cells carrying the S allele survived better under oxidative stress, a fact associated with the lower concentration of oxidized glutathione and more favorable oxidative status, as determined by measurement of the ratio of glutathione to oxidized glutathione. Moreover, they proliferated more efficiently in response to vascular endothelial growth factor A, although the vascular endothelial growth factor-induced migration and sprouting of capillaries were not influenced. Finally, the presence of the S allele was associated with lower production of some proinflammatory mediators, such as interleukin-1beta, interleukin-6, and soluble intercellular adhesion molecule-1. CONCLUSIONS The (GT)n promoter polymorphism significantly modulates a cytoprotective, proangiogenic, and antiinflammatory function of HO-1 in human endothelium.
Collapse
Affiliation(s)
- Hevidar Taha
- Department of Thoracic Surgery and Clinical Institute of Medical and Chemical Laboratory Diagnostics, University of Vienna, Austria
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
11
|
A single-nucleotide polymorphism of the Fcγ receptor type IIIA gene in the recipient predicts transplant outcomes after HLA fully matched unrelated BMT for myeloid malignancies. Bone Marrow Transplant 2010; 46:238-43. [DOI: 10.1038/bmt.2010.88] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
12
|
Garcia-Santos D, Chies JAB. HO-1 polymorphism as a genetic determinant behind the malaria resistance afforded by haemolytic disorders. Med Hypotheses 2010; 74:807-13. [PMID: 20106603 DOI: 10.1016/j.mehy.2009.12.010] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2009] [Accepted: 12/09/2009] [Indexed: 12/20/2022]
Abstract
Malaria affects thousands of people around the world representing a critical issue regarding health policies in tropical countries. Similarly, also haemolytic diseases such as sickle cell disease and thalassemias are a concern in different parts of the globe. It is well established that haemolytic diseases, such as sickle cell disease (SCD) and thalassemias, represent a resistance factor to malaria, which explains the high frequencies of such genetic variants in malaria endemic areas. In this context, it has been shown that the rate limiting enzyme heme oxygenase I (HO-1), responsible for the catabolism of the free heme in the body, is an important resistance factor in malaria and is also important in the physiopathology of haemolytic diseases. Here, we suggest that allelic variants of HO-1, which display significant differences in terms of protein expression, have been selected in endemic malaria areas since the HO-1 enzyme can enhance the protection against malaria conferred by haemolytic diseases This protection apply mainly in what concerns protection against severe malaria forms. Therefore, HO-1 genotyping would be fundamental to determine resistance of a given individual to lethal forms of malaria as well as to common clinical complications typical to haemolytic diseases and would be helpful in the establishment of public health politics.
Collapse
Affiliation(s)
- D Garcia-Santos
- Pós-Graduação em Genética e Biologia Molecular (PPGBM), Laboratório de Imunogenética, Departamento de Genética, Universidade Federal do Rio Grande do Sul (UFRGS), Brazil
| | | |
Collapse
|