1
|
Barreras H, Copsel SN, Bader CS, Ding Y, Wolf D, Cash C, Stacey CJ, Benjamin C, Seavey MM, Wolf J, Jasuja RR, Pfeiffer B, Hill GR, Komanduri KV, Jurecic R, Malek TR, Levy RB. Regulatory T Cell Amelioration of Graft-versus-Host Disease following Allogeneic/Xenogeneic Hematopoietic Stem Cell Transplantation Using Mobilized Mouse and Human Peripheral Blood Donors. Transplant Cell Ther 2023; 29:341.e1-341.e9. [PMID: 36804930 PMCID: PMC10149591 DOI: 10.1016/j.jtct.2023.02.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 01/30/2023] [Accepted: 02/13/2023] [Indexed: 02/19/2023]
Abstract
The present studies examined experimental transplant outcomes using mobilized peripheral blood from mice and humans together with FoxP3+Treg cells. Donor mice were treated with filgrastim and / or plerixafor and their peripheral blood (PB) displayed significant elevations in hematopoietic stem and progenitor populations. Some of these PB donors were concurrently administered a Treg expansion strategy consisting of a TL1A-Ig fusion protein low dose rIL-2. A significant increase (4-5x) in the frequency Tregs occurred during mobilization. C3H.SW PB was collected from mobilized and Treg unexpanded ("TrUM") or mobilized and Treg expanded ("TrEM") donors and transplanted into MHC-matched B6 (H2b) recipients. Recipients of TrEM, exhibited significantly reduced weight loss and clinical GVHD scores compared to recipients of TrUM. Notably, recipients of TrEM exhibited comparable GVL activity to TrUM recipients against leukemia levels. Next, huTregs (CD4+CD25+CD127lo) from a healthy human PB mobilized donor were expanded ex-vivo prior to transplant into NSG/ NOD-scid IL2Rgammanull mice. We found that treatment with ex-vivo expanded huTregs resulted in significant reduction of lethality and clinical xGVHD scores. Notably, post-transplant, PB huTregs levels remained elevated and the frequency of huCD4+Tconv and CD8+ cells was diminished supporting the improved xGVHD outcomes. These findings demonstrated that the use of mPB containing elevated Treg levels significantly reduced GVHD following "MUD" and MHC-mismatched mouse HSCT without loss of GVL activity. Moreover, utilizing ex-vivo expanded huTregs from a mobilized PB donor and added back to donor PB ameliorated xGVHD. In total, these studies support the notion that in vivo or ex-vivo manipulation of donor Tregs together with mobilized peripheral blood could provide therapeutic approaches to improve aHSCT outcomes.
Collapse
Affiliation(s)
- Henry Barreras
- Department of Microbiology and Immunology, University of Miami School of Medicine, Miami, Florida
| | - Sabrina N Copsel
- Department of Microbiology and Immunology, University of Miami School of Medicine, Miami, Florida
| | - Cameron S Bader
- Department of Microbiology and Immunology, University of Miami School of Medicine, Miami, Florida
| | - Ying Ding
- Department of Microbiology and Immunology, University of Miami School of Medicine, Miami, Florida
| | - Dietlinde Wolf
- Sylvester Comprehensive Cancer Center, University of Miami School of Medicine, Miami, Florida
| | - Charles Cash
- Department of Microbiology and Immunology, University of Miami School of Medicine, Miami, Florida
| | - Caleb J Stacey
- Department of Microbiology and Immunology, University of Miami School of Medicine, Miami, Florida
| | - Cara Benjamin
- Sylvester Comprehensive Cancer Center, University of Miami School of Medicine, Miami, Florida
| | - Mathew M Seavey
- NightHawk Biosciences Inc/Pelican Therapeutics, Inc, Morrisville, North Carolina
| | - Jeffrey Wolf
- NightHawk Biosciences Inc/Pelican Therapeutics, Inc, Morrisville, North Carolina
| | - Rahul R Jasuja
- NightHawk Biosciences Inc/Pelican Therapeutics, Inc, Morrisville, North Carolina
| | - Brent Pfeiffer
- Department of Pediatrics, University of Miami School of Medicine, Miami, Florida
| | | | - Krishna V Komanduri
- Department of Microbiology and Immunology, University of Miami School of Medicine, Miami, Florida; Sylvester Comprehensive Cancer Center, University of Miami School of Medicine, Miami, Florida; Division of Transplantation and Cellular Therapy, Department of Medicine, University of Miami School of Medicine, Miami, Florida
| | - Roland Jurecic
- Department of Microbiology and Immunology, University of Miami School of Medicine, Miami, Florida; Sylvester Comprehensive Cancer Center, University of Miami School of Medicine, Miami, Florida
| | - Thomas R Malek
- Department of Microbiology and Immunology, University of Miami School of Medicine, Miami, Florida
| | - Robert B Levy
- Department of Microbiology and Immunology, University of Miami School of Medicine, Miami, Florida; Sylvester Comprehensive Cancer Center, University of Miami School of Medicine, Miami, Florida; Department of Ophthalmology, University of Miami School of Medicine, Miami, Florida.
| |
Collapse
|
2
|
Copsel SN, Wolf D, Pfeiffer B, Barreras H, Perez VL, Levy RB. Recipient Tregs: Can They Be Exploited for Successful Hematopoietic Stem Cell Transplant Outcomes? Front Immunol 2022; 13:932527. [PMID: 35799783 PMCID: PMC9253768 DOI: 10.3389/fimmu.2022.932527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Accepted: 05/18/2022] [Indexed: 02/03/2023] Open
Abstract
Human and mouse CD4+FoxP3+ T cells (Tregs) comprise non-redundant regulatory compartments which maintain self-tolerance and have been found to be of potential therapeutic usefulness in autoimmune disorders and transplants including allogeneic hematopoietic stem cell transplantation (allo-HSCT). There is substantial literature interrogating the application of donor derived Tregs for the prevention of graft versus host disease (GVHD). This Mini-Review will focus on the recipient's Tregs which persist post-transplant. Although treatment in patients with low dose IL-2 months post-HSCT are encouraging, manipulating Tregs in recipients early post-transplant is challenging, in part likely an indirect consequence of damage to the microenvironment required to support Treg expansion of which little is understood. This review will discuss the potential for manipulating recipient Tregs in vivo prior to and after HSCT (fusion proteins, mAbs). Strategies that would circumvent donor/recipient peripheral blood harvest, cell culture and ex-vivo Treg expansion will be considered for the translational application of Tregs to improve HSCT outcomes.
Collapse
Affiliation(s)
- Sabrina N. Copsel
- Department of Microbiology and Immunology, University of Miami School of Medicine, Miami, FL, United States
| | - Dietlinde Wolf
- Sylvester Comprehensive Cancer Center, University of Miami School of Medicine, Miami, FL, United States
| | - Brent Pfeiffer
- Department of Pediatrics, University of Miami School of Medicine, Miami, FL, United States
| | - Henry Barreras
- Department of Microbiology and Immunology, University of Miami School of Medicine, Miami, FL, United States
| | - Victor L. Perez
- Foster Center for Ocular Immunology, Duke Eye Center, Duke University, Durham, NC, United States
| | - Robert B. Levy
- Department of Microbiology and Immunology, University of Miami School of Medicine, Miami, FL, United States,Sylvester Comprehensive Cancer Center, University of Miami School of Medicine, Miami, FL, United States,Department of Ophthalmology, University of Miami School of Medicine, Miami, FL, United States,*Correspondence: Robert B. Levy,
| |
Collapse
|
3
|
Hirai T, Ramos TL, Lin PY, Simonetta F, Su LL, Picton LK, Baker J, Lin JX, Li P, Seo K, Lohmeyer JK, Bolivar-Wagers S, Mavers M, Leonard WJ, Blazar BR, Garcia KC, Negrin RS. Selective expansion of regulatory T cells using an orthogonal IL-2/IL-2 receptor system facilitates transplantation tolerance. J Clin Invest 2021; 131:139991. [PMID: 33855972 DOI: 10.1172/jci139991] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Accepted: 02/23/2021] [Indexed: 12/14/2022] Open
Abstract
Adoptive transfer of Tregs has been shown to improve alloengraftment in animal models. However, it is technically challenging to expand Tregs ex vivo for the purpose of infusing large numbers of cells in the clinic. We demonstrate an innovative approach to engineering an orthogonal IL-2/IL-2 receptor (IL-2R) pair, the parts of which selectively interact with each other, transmitting native IL-2 signals, but do not interact with the natural IL-2 or IL-2R counterparts, thereby enabling selective stimulation of target cells in vivo. Here, we introduced this orthogonal IL-2R into Tregs. Upon adoptive transfer in a murine mixed hematopoietic chimerism model, orthogonal IL-2 injection significantly promoted orthogonal IL-2R+Foxp3GFP+CD4+ cell proliferation without increasing other T cell subsets and facilitated donor hematopoietic cell engraftment followed by acceptance of heart allografts. Our data indicate that selective target cell stimulation enabled by the engineered orthogonal cytokine receptor improves Treg potential for the induction of organ transplantation tolerance.
Collapse
Affiliation(s)
- Toshihito Hirai
- Division of Blood and Marrow Transplantation, Department of Medicine, Stanford University, Stanford, California, USA.,Department of Urology, Tokyo Women's Medical University, Tokyo, Japan
| | - Teresa L Ramos
- Division of Blood and Marrow Transplantation, Department of Medicine, Stanford University, Stanford, California, USA
| | - Po-Yu Lin
- Division of Blood and Marrow Transplantation, Department of Medicine, Stanford University, Stanford, California, USA
| | - Federico Simonetta
- Division of Blood and Marrow Transplantation, Department of Medicine, Stanford University, Stanford, California, USA
| | - Leon L Su
- Departments of Molecular and Cellular Physiology and Structural Biology, Stanford University School of Medicine, Stanford, California, USA
| | - Lora K Picton
- Departments of Molecular and Cellular Physiology and Structural Biology, Stanford University School of Medicine, Stanford, California, USA
| | - Jeanette Baker
- Division of Blood and Marrow Transplantation, Department of Medicine, Stanford University, Stanford, California, USA
| | - Jian-Xin Lin
- Laboratory of Molecular Immunology and the Immunology Center, National Heart, Lung, and Blood Institute, NIH, Bethesda, Maryland, USA
| | - Peng Li
- Laboratory of Molecular Immunology and the Immunology Center, National Heart, Lung, and Blood Institute, NIH, Bethesda, Maryland, USA
| | - Kinya Seo
- Division of Cardiovascular Medicine, Department of Medicine, Stanford University, Stanford, California, USA
| | - Juliane K Lohmeyer
- Division of Blood and Marrow Transplantation, Department of Medicine, Stanford University, Stanford, California, USA
| | - Sara Bolivar-Wagers
- Division of Blood and Marrow Transplantation, Department of Pediatrics and the Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota, USA
| | - Melissa Mavers
- Division of Blood and Marrow Transplantation, Department of Medicine, Stanford University, Stanford, California, USA.,Division of Pediatric Hematology, Oncology, Stem Cell Transplantation and Regenerative Medicine, Lucile Packard Children's Hospital, Stanford University, Stanford, California, USA
| | - Warren J Leonard
- Laboratory of Molecular Immunology and the Immunology Center, National Heart, Lung, and Blood Institute, NIH, Bethesda, Maryland, USA
| | - Bruce R Blazar
- Division of Blood and Marrow Transplantation, Department of Pediatrics and the Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota, USA
| | - K Christopher Garcia
- Departments of Molecular and Cellular Physiology and Structural Biology, Stanford University School of Medicine, Stanford, California, USA
| | - Robert S Negrin
- Division of Blood and Marrow Transplantation, Department of Medicine, Stanford University, Stanford, California, USA
| |
Collapse
|
4
|
Imamura M. Impaired Hematopoiesis after Allogeneic Hematopoietic Stem Cell Transplantation: Its Pathogenesis and Potential Treatments. HEMATO 2021. [DOI: 10.3390/hemato2010002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/11/2023]
Abstract
Impaired hematopoiesis is a serious complication after allogeneic hematopoietic stem cell transplantation (allo-HSCT). Bone marrow aplasia and peripheral cytopenias arise from primary and secondary graft failure or primary and secondary poor graft function. Chimerism analysis is useful to discriminate these conditions. By determining the pathogenesis of impaired hematopoiesis, a timely and appropriate treatment can be performed. Hematopoietic system principally consists of hematopoietic stem cells and bone marrow microenvironment termed niches. Abnormality in hematopoietic stem and progenitor cells and/or abnormality in the relevant niches give rise to hematological diseases. Allo-HSCT is intended to cure each hematological disease, replacing abnormal hematopoietic stem cells and bone marrow niches with hematopoietic stem cells and bone marrow niches derived from normal donors. Therefore, treatment for graft failure and poor graft function after allo-HSCT is required to proceed based on determining the pathogenesis of impaired hematopoiesis. Recent progress in this area suggests promising treatment manipulations for graft failure and poor graft function.
Collapse
|
5
|
Copsel S, Wolf D, Komanduri KV, Levy RB. The promise of CD4 +FoxP3 + regulatory T-cell manipulation in vivo: applications for allogeneic hematopoietic stem cell transplantation. Haematologica 2019; 104:1309-1321. [PMID: 31221786 PMCID: PMC6601084 DOI: 10.3324/haematol.2018.198838] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2019] [Accepted: 05/07/2019] [Indexed: 12/12/2022] Open
Abstract
CD4+FoxP3+ regulatory T cells (Tregs) are a non-redundant population critical for the maintenance of self-tolerance. Over the past decade, the use of these cells for therapeutic purposes in transplantation and autoimmune disease has emerged based on their capacity to inhibit immune activation. Basic science discoveries have led to identifying key receptors on Tregs that can regulate their proliferation and function. Notably, the understanding that IL-2 signaling is crucial for Treg homeostasis promoted the hypothesis that in vivo IL-2 treatment could provide a strategy to control the compartment. The use of low-dose IL-2 in vivo was shown to selectively expand Tregs versus other immune cells. Interestingly, a number of other Treg cell surface proteins, including CD28, CD45, IL-33R and TNFRSF members, have been identified which can also induce activation and proliferation of this population. Pre-clinical studies have exploited these observations to prevent and treat mice developing autoimmune diseases and graft-versus-host disease post-allogeneic hematopoietic stem cell transplantation. These findings support the development of translational strategies to expand Tregs in patients. Excitingly, the use of low-dose IL-2 for patients suffering from graft-versus-host disease and autoimmune disease has demonstrated increased Treg levels together with beneficial outcomes. To date, promising pre-clinical and clinical studies have directly targeted Tregs and clearly established the ability to increase their levels and augment their function in vivo. Here we review the evolving field of in vivo Treg manipulation and its application to allogeneic hematopoietic stem cell transplantation.
Collapse
Affiliation(s)
| | | | - Krishna V Komanduri
- Department of Microbiology and Immunology.,Sylvester Comprehensive Cancer Center.,Division of Transplantation and Cellular Therapy, Department of Medicine
| | - Robert B Levy
- Department of Microbiology and Immunology .,Division of Transplantation and Cellular Therapy, Department of Medicine.,Department of Ophthalmology, Miller School of Medicine, University of Miami, FL, USA
| |
Collapse
|
6
|
Wolf D, Barreras H, Bader CS, Copsel S, Lightbourn CO, Pfeiffer BJ, Altman NH, Podack ER, Komanduri KV, Levy RB. Marked in Vivo Donor Regulatory T Cell Expansion via Interleukin-2 and TL1A-Ig Stimulation Ameliorates Graft-versus-Host Disease but Preserves Graft-versus-Leukemia in Recipients after Hematopoietic Stem Cell Transplantation. Biol Blood Marrow Transplant 2017; 23:757-766. [PMID: 28219835 DOI: 10.1016/j.bbmt.2017.02.013] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2016] [Accepted: 02/16/2017] [Indexed: 01/23/2023]
Abstract
Regulatory T cells (Tregs) are critical for self-tolerance. Although adoptive transfer of expanded Tregs limits graft-versus-host disease (GVHD) after hematopoietic stem cell transplantation (HSCT), ex vivo generation of large numbers of functional Tregs remains difficult. Here, we demonstrate that in vivo targeting of the TNF superfamily receptor TNFRSF25 using the TL1A-Ig fusion protein, along with IL-2, resulted in transient but massive Treg expansion in donor mice, which peaked within days and was nontoxic. Tregs increased in multiple compartments, including blood, lymph nodes, spleen, and colon (GVHD target tissue). Tregs did not expand in bone marrow, a critical site for graft-versus-malignancy responses. Adoptive transfer of in vivo-expanded Tregs in the setting of MHC-mismatched or MHC-matched allogeneic HSCT significantly ameliorated GVHD. Critically, transplantation of Treg-expanded donor cells facilitated transplant tolerance without GVHD, with complete sparing of graft-versus-malignancy. This approach may prove valuable as a therapeutic strategy promoting transplantation tolerance.
Collapse
Affiliation(s)
- Dietlinde Wolf
- Sylvester Comprehensive Cancer Center, University of Miami, Miller School of Medicine, Miami, Florida
| | - Henry Barreras
- Department of Microbiology and Immunology, University of Miami, Miller School of Medicine, Miami, Florida
| | - Cameron S Bader
- Department of Microbiology and Immunology, University of Miami, Miller School of Medicine, Miami, Florida
| | - Sabrina Copsel
- Department of Microbiology and Immunology, University of Miami, Miller School of Medicine, Miami, Florida
| | - Casey O Lightbourn
- Department of Ophthalmology, University of Miami, Miller School of Medicine, Miami, Florida
| | - Brent J Pfeiffer
- Department of Pediatrics, University of Miami, Miller School of Medicine, Miami, Florida
| | - Norman H Altman
- Department of Pathology and Laboratory Medicine, University of Miami, Miller School of Medicine, Miami, Florida
| | - Eckhard R Podack
- Sylvester Comprehensive Cancer Center, University of Miami, Miller School of Medicine, Miami, Florida; Department of Microbiology and Immunology, University of Miami, Miller School of Medicine, Miami, Florida
| | - Krishna V Komanduri
- Sylvester Comprehensive Cancer Center, University of Miami, Miller School of Medicine, Miami, Florida; Department of Microbiology and Immunology, University of Miami, Miller School of Medicine, Miami, Florida
| | - Robert B Levy
- Sylvester Comprehensive Cancer Center, University of Miami, Miller School of Medicine, Miami, Florida; Department of Microbiology and Immunology, University of Miami, Miller School of Medicine, Miami, Florida; Department of Ophthalmology, University of Miami, Miller School of Medicine, Miami, Florida.
| |
Collapse
|
7
|
Masouridi-Levrat S, Simonetta F, Chalandon Y. Immunological Basis of Bone Marrow Failure after Allogeneic Hematopoietic Stem Cell Transplantation. Front Immunol 2016; 7:362. [PMID: 27695456 PMCID: PMC5025429 DOI: 10.3389/fimmu.2016.00362] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2016] [Accepted: 09/02/2016] [Indexed: 12/12/2022] Open
Abstract
Bone marrow failure (BMF) syndromes are severe complications of allogeneic hematopoietic stem cell transplantation (allo-HSCT). In this paper, we distinguish two different entities, the graft failure (GF) and the poor graft function (PGF), and we review the current understanding of the interactions between the immune and hematopoietic compartments in these conditions. We first discuss how GF occurs as the result of classical alloreactive immune responses mediated by residual host cellular and humoral immunity persisting after conditioning and prevented by host and donor regulatory T cells. We next summarize the current knowledge about the contribution of inflammatory mediators to the development of PGF. In situations of chronic inflammation complicating allo-HSCT, such as graft-versus-host disease or infections, PGF seems to be essentially the result of a sustained impairment of hematopoietic stem cells (HSC) self-renewal and proliferation caused by inflammatory mediators, such as interferon-γ (IFN-γ) and tumor necrosis factor-α, and of induction of apoptosis through the Fas/Fas ligand pathway. Interestingly, the production of inflammatory molecules leads to a non-MHC restricted, bystander inhibition of hematopoiesis, therefore, representing a promising target for immunological interventions. Finally, we discuss immune-mediated impairment of bone marrow microenvironment as a potential mechanism hampering hematopoietic recovery. Better understanding of immunological mechanisms responsible for BMF syndromes after allo-HSCT may lead to the development of more efficient immunotherapeutic interventions.
Collapse
Affiliation(s)
- Stavroula Masouridi-Levrat
- Division of Hematology, Department of Medical Specialties, Faculty of Medicine, Geneva University Hospitals, University of Geneva , Geneva , Switzerland
| | - Federico Simonetta
- Division of Hematology, Department of Medical Specialties, Faculty of Medicine, Geneva University Hospitals, University of Geneva , Geneva , Switzerland
| | - Yves Chalandon
- Division of Hematology, Department of Medical Specialties, Faculty of Medicine, Geneva University Hospitals, University of Geneva , Geneva , Switzerland
| |
Collapse
|
8
|
Mahr B, Unger L, Hock K, Pilat N, Baranyi U, Schwarz C, Maschke S, Farkas AM, Wekerle T. IL-2/α-IL-2 Complex Treatment Cannot Be Substituted for the Adoptive Transfer of Regulatory T cells to Promote Bone Marrow Engraftment. PLoS One 2016; 11:e0146245. [PMID: 26731275 PMCID: PMC4701413 DOI: 10.1371/journal.pone.0146245] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2015] [Accepted: 12/15/2015] [Indexed: 12/16/2022] Open
Abstract
Cell therapy with recipient Tregs achieves engraftment of allogeneic bone marrow (BM) without the need for cytoreductive conditioning (i.e., without irradiation or cytotoxic drugs). Thereby mixed chimerism and transplantation tolerance are established in recipients conditioned solely with costimulation blockade and rapamycin. However, clinical translation would be substantially facilitated if Treg-stimulating pharmaceutical agents could be used instead of individualized cell therapy. Recently, it was shown that interleukin-2 (IL-2) complexed with a monoclonal antibody (mAb) (clone JES6-1A12) against IL-2 (IL-2 complexes) potently expands and activates Tregs in vivo. Therefore, we investigated whether IL-2 complexes can replace Treg therapy in a costimulation blockade-based and irradiation-free BM transplantation (BMT) model. Unexpectedly, the administration of IL-2 complexes at the time of BMT (instead of Tregs) failed to induce BM engraftment in non-irradiated recipients (0/6 with IL-2 complexes vs. 3/4 with Tregs, p<0.05). Adding IL-2 complexes to an otherwise effective regimen involving recipient irradiation (1Gy) but no Treg transfer indeed actively triggered donor BM rejection at higher doses (0/8 with IL-2 complexes vs. 9/11 without, p<0.01) and had no detectable effect at two lower doses (3/5 vs. 9/11, p>0.05). CD8 T cells and NK cells of IL-2 complex-treated naïve mice showed an enhanced proliferative response towards donor antigens in vitro despite the marked expansion of Tregs. However, IL-2 complexes also expanded conventional CD4 T cells, CD8 T cells, NK cells, NKT cells and notably even B cells, albeit to a lesser extent. Notably, IL-2 complex expanded Tregs featured less potent suppressive functions than in vitro activated Tregs in terms of T cell suppression in vitro and BM engraftment in vivo. In conclusion, these data suggest that IL-2 complexes are less effective than recipient Tregs in promoting BM engraftment and in contrast actually trigger BM rejection, as their effect is not sufficiently restricted to Tregs but rather extends to several other lymphocyte populations.
Collapse
Affiliation(s)
- Benedikt Mahr
- Section of Transplantation Immunology, Department of Surgery, Medical University of Vienna, Währinger Gürtel 18–20, 1090, Vienna, Austria
| | - Lukas Unger
- Section of Transplantation Immunology, Department of Surgery, Medical University of Vienna, Währinger Gürtel 18–20, 1090, Vienna, Austria
| | - Karin Hock
- Section of Transplantation Immunology, Department of Surgery, Medical University of Vienna, Währinger Gürtel 18–20, 1090, Vienna, Austria
| | - Nina Pilat
- Section of Transplantation Immunology, Department of Surgery, Medical University of Vienna, Währinger Gürtel 18–20, 1090, Vienna, Austria
| | - Ulrike Baranyi
- Section of Transplantation Immunology, Department of Surgery, Medical University of Vienna, Währinger Gürtel 18–20, 1090, Vienna, Austria
| | - Christoph Schwarz
- Section of Transplantation Immunology, Department of Surgery, Medical University of Vienna, Währinger Gürtel 18–20, 1090, Vienna, Austria
| | - Svenja Maschke
- Section of Transplantation Immunology, Department of Surgery, Medical University of Vienna, Währinger Gürtel 18–20, 1090, Vienna, Austria
| | - Andreas Michael Farkas
- Section of Transplantation Immunology, Department of Surgery, Medical University of Vienna, Währinger Gürtel 18–20, 1090, Vienna, Austria
| | - Thomas Wekerle
- Section of Transplantation Immunology, Department of Surgery, Medical University of Vienna, Währinger Gürtel 18–20, 1090, Vienna, Austria
- * E-mail:
| |
Collapse
|
9
|
Pellerin L, Jenks JA, Bégin P, Bacchetta R, Nadeau KC. Regulatory T cells and their roles in immune dysregulation and allergy. Immunol Res 2014; 58:358-68. [PMID: 24781194 PMCID: PMC4161462 DOI: 10.1007/s12026-014-8512-5] [Citation(s) in RCA: 80] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The main function of the immune system is to fight off potential infections, but also to maintain its activity below a level that would trigger self-reactivity. Regulatory T cells (Tregs) such as forkhead box P3(+) (FOXP3) Tregs and type 1 regulatory T cells (Tr1) play an essential role in this active process, using several distinct suppressive mechanisms. A wide range of pathologies have been associated with altered Treg cell function. This is best exemplified by the impact of mutations of genes essential for Treg function and the associated autoimmune syndromes. This review summarizes the main features of different subtypes of Tregs and focuses on the clinical implications of their altered function in human studies. More specifically, we discuss abnormalities affecting FOXP3(+) Tregs and Tr1 cells that will lead to autoimmune manifestations and/or allergic reactions, and the potential therapeutic use of Tregs.
Collapse
Affiliation(s)
- Laurence Pellerin
- Division of Pediatric Immunology and Allergy, Stanford University, Stanford, CA 94305, USA
| | - Jennifer A. Jenks
- Division of Pediatric Immunology and Allergy, Stanford University, Stanford, CA 94305, USA
| | - Philippe Bégin
- Division of Pediatric Immunology and Allergy, Stanford University, Stanford, CA 94305, USA
| | - Rosa Bacchetta
- Division of Pediatric Immunology and Allergy, Stanford University, Stanford, CA 94305, USA
| | - Kari C. Nadeau
- Division of Pediatric Immunology and Allergy, Stanford University, Stanford, CA 94305, USA
| |
Collapse
|
10
|
Yolcu ES, Kaminitz A, Mizrahi K, Ash S, Yaniv I, Stein J, Shirwan H, Askenasy N. Immunomodulation with donor regulatory T cells armed with Fas-ligand alleviates graft-versus-host disease. Exp Hematol 2013; 41:903-11. [DOI: 10.1016/j.exphem.2013.04.016] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2013] [Revised: 03/22/2013] [Accepted: 04/27/2013] [Indexed: 10/26/2022]
|
11
|
IL-2–Targeted Therapy Ameliorates the Severity of Graft-versus-Host Disease: Ex Vivo Selective Depletion of Host-Reactive T Cells and In Vivo Therapy. Biol Blood Marrow Transplant 2012; 18:523-35. [DOI: 10.1016/j.bbmt.2011.11.016] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2011] [Accepted: 11/08/2011] [Indexed: 11/24/2022]
|
12
|
Bayer AL, Chirinos J, Cabello C, Yang J, Matsutani T, Malek TR, Levy RB. Expansion of a restricted residual host T reg-cell repertoire is dependent on IL-2 following experimental autologous hematopoietic stem transplantation. Eur J Immunol 2011; 41:3467-78. [PMID: 21928285 DOI: 10.1002/eji.201141611] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2011] [Revised: 08/02/2011] [Accepted: 09/12/2011] [Indexed: 12/18/2022]
Abstract
We previously identified a population of residual T(reg) cells following autologous hematopoietic stem transplantation (HSCT), that rapidly undergoes significant expansion in lymphopenic transplant recipients prior to repopulation by donor de novo derived T(reg) cells. These CD4(+) Foxp3(+) T cells provide protection from the development of autoimmune disease. Although ablative conditioning results in excess IL-7 and IL-15, IL-2 is typically not found at high levels following autologous HSCT. We therefore examined the role of these three STAT-5 signaling cytokines in the expansion of residual T(reg) cells after autologous HSCT. The present study found that the residual T(reg) cell population included surviving peripheral host Foxp3(+) CD4(+) T cells whose expansion was critically dependent on IL-2, which could be solely provided by surviving host cells. IL-7 was found to contribute to T(reg) cell homeostasis, however, not as a growth factor but rather for their persistence. In conjunction with this expansion, TCR spectratype analyses revealed that the residual host T(reg) -cell compartment differed from that present in non-conditioned healthy mice since the residual host Treg cells exhibit a limited TCR diversity. Collectively, these data indicate that the proliferation of T(reg) and T effector (T(eff) ) cells post-HSCT utilize separate pools of cytokines which has important implications regarding the development of clinical strategies to elicit the desired immune responses in patients post-transplant.
Collapse
Affiliation(s)
- Allison L Bayer
- Department of Microbiology/Immunology, University of Miami Miller, School of Medicine Miami, FL 33101, USA
| | | | | | | | | | | | | |
Collapse
|
13
|
Schreiber TH, Wolf D, Tsai MS, Chirinos J, Deyev VV, Gonzalez L, Malek TR, Levy RB, Podack ER. Therapeutic Treg expansion in mice by TNFRSF25 prevents allergic lung inflammation. J Clin Invest 2010; 120:3629-40. [PMID: 20890040 DOI: 10.1172/jci42933] [Citation(s) in RCA: 126] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2010] [Accepted: 08/04/2010] [Indexed: 12/26/2022] Open
Abstract
TNF receptor superfamily member 25 (TNFRSF25; also known as DR3, and referred to herein as TNFR25) is constitutively and highly expressed by CD4(+)FoxP3(+) Tregs. However, its function on these cells has not been determined. Here we used a TNFR25-specific agonistic monoclonal antibody, 4C12, to study the effects of TNFR25 signaling on Tregs in vivo in mice. Signaling through TNFR25 induced rapid and selective expansion of preexisting Tregs in vivo such that they became 30%-35% of all CD4(+) T cells in the peripheral blood within 4 days. TNFR25-induced Treg proliferation was dependent upon TCR engagement with MHC class II, IL-2 receptor, and Akt signaling, but not upon costimulation by CD80 or CD86; it was unaffected by rapamycin. TNFR25-expanded Tregs remained highly suppressive ex vivo, and Tregs expanded by TNFR25 in vivo were protective against allergic lung inflammation, a mouse model for asthma, by reversing the ratio of effector T cells to Tregs in the lung, suppressing IL-13 and Th2 cytokine production, and blocking eosinophil exudation into bronchoalveolar fluid. Our studies define what we believe to be a novel mechanism for Treg control and important functions for TNFR25 in regulating autoaggression that balance its known role in enhancing autoimmunity.
Collapse
Affiliation(s)
- Taylor H Schreiber
- Sheila and David Fuente Program in Cancer Biology, University of Miami Miller School of Medicine, Miami, Florida 33101, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
14
|
CD34+ cell dose and establishment of full donor chimerism at day +100 are important factors for survival with reduced-intensity conditioning with fludarabine and melphalan before allogeneic hematopoietic SCT for hematologic malignancies. Bone Marrow Transplant 2010; 45:1699-703. [PMID: 20208572 PMCID: PMC7091776 DOI: 10.1038/bmt.2010.49] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The combination of fludarabine and melphalan as a reduced-intensity conditioning (RIC) regimen extends allogeneic hematopoietic SCT (HSCT) as a therapeutic option for elderly or frail patients with relapsed, refractory or other high-risk hematologic malignancies. Whether any modifiable factors exist that could improve survival before or immediately after HSCT is unknown. We reviewed the medical records of the first 50 patients at our institution to undergo fludarabine/melphalan RIC from September 2000 to September 2007 to determine factors associated with survival. A total of 25 (50%) patients had undergone prior HSCT and as such was a high-risk group of patients. On multivariate analysis, CD34(+) cell dose greater than 5.5 × 10(6) per kg (risk ratio (RR) 0.44, 95% CI 0.19-0.98, P=0.02) and full donor chimerism at day +100 (RR 0.17, 95% CI 0.06-0.64, P=0.002) remained independent prognostic factors. In our series, achievement of full donor chimerism at day +100 was associated with an approximately 70% 2-year survival, a favorable outcome in this high-risk group of patients. Although the infused CD34(+) cell dose is a modifiable variable, whether donor lymphocyte infusions or other immunologic interventions should be performed to promote the establishment of full chimerism early post transplant remains unknown.
Collapse
|
15
|
Abstract
CD4(+)CD25(+)FoxP3(+) regulatory T cells (Tregs) possess the capacity to modulate both adaptive and innate immune responses. We hypothesized that Tregs could regulate hematopoiesis based on cytokine effector molecules they can produce. The studies here demonstrate that Tregs can affect the differentiation of myeloid progenitor cells. In vitro findings demonstrated the ability of Tregs to inhibit the differentiation of interleukin-3 (IL-3)/stem cell factor (colony-forming unit [CFU]-IL3)-driven progenitor cells. Inhibitory effects were mediated by a pathway requiring cell-cell contact, major histocompatibility complex class II expression on marrow cells, and transforming growth factor-beta. Importantly, depletion of Tregs in situ resulted in enhanced CFU-IL3 levels after bone marrow transplantation. Cotransplantation of CD4(+)FoxP3(+)(gfp) Tregs together with bone marrow was found to diminish CFU-IL3 responses after transplantation. To address the consequence of transplanted Tregs on differentiated progeny from these CFU 2 weeks after hematopoietic stem cell transplantation, peripheral blood complete blood counts were performed and examined for polymorphonuclear leukocyte content. Recipients of cotransplanted Tregs exhibited diminished neutrophil counts. Together, these findings illustrate that both recipient and donor Tregs can influence hematopoietic progenitor cell activity after transplantation and that these cells can alter responses outside the adaptive and innate immune systems.
Collapse
|
16
|
Shizuru JA, Bhattacharya D, Cavazzana-Calvo M. The biology of allogeneic hematopoietic cell resistance. Biol Blood Marrow Transplant 2009; 16:S2-7. [PMID: 19913629 DOI: 10.1016/j.bbmt.2009.11.005] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
At the most basic level, success of an allogeneic hematopoietic cell transplantation (HCT) procedure relies upon the engraftment of recipients with donor hematopoietic stem cells (HSCs) that will generate blood formation for the life of that individual. The formula to achieve durable HSC engraftment involves multiple factors including the recipient conditioning regimen, the nature of the genetic disparity between donor and recipient, and the content of the hematopoietic graft. Animal and clinical studies have shown that the biology of host resistance is complex, involving both immune and nonimmune elements. In this article, we review the factors that contribute to host resistance, describe emerging concepts on the basic biology of resistance, and discuss hematopoietic resistance as it relates specifically to patients with severe combined immunodeficiencies (SCID)- disorders that bring unique insights into the dynamics of cell replacement by allogeneic HSCs and progenitor cells.
Collapse
|
17
|
Targeting Treg cells in situ: emerging expansion strategies for (CD4(+)CD25(+)) regulatory T cells. Biol Blood Marrow Transplant 2009; 15:1239-43. [PMID: 19747630 DOI: 10.1016/j.bbmt.2009.06.009] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2009] [Accepted: 06/12/2009] [Indexed: 11/22/2022]
Abstract
Recognition of the ability of CD4(+)FoxP3(+) T cells (Treg) to influence the generation of peripheral immune responses has engendered enthusiasm for the development of strategies utilizing these cells to regulate immune responses in clinically important settings including transplantation, autoimmunity and cancer. A number of studies have reported effective regulation utilizing ex-vivo expansion approaches and subsequent transfer of Treg populations in experimental models. This commentary discusses recently emerging strategies to activate and expand Treg cells in situ which include antibodies, antigen presenting cells and the use of IL2 / anti-IL2 antibody complex. The development of reagents which can stimulate and / or remove Treg cells in situ would represent an important advance towards facilitating new opportunities to harness this compartment for the augmentation of 'wanted' or suppression of 'unwanted' immune responses. Simultaneous targeting of multiple molecules on Treg cells may ultimately enable more effective control of this regulatory sector.
Collapse
|