1
|
Qin ZZ, Ruan J, Lee MR, Sun K, Chen P, Chen Y, Hong M, Xia LH, Fang J, Tang H. Mangiferin Promotes Bregs Level, Activates Nrf2 Antioxidant Signaling, and Inhibits Proinflammatory Cytokine Expression in Murine Splenic Mononuclear Cells In Vitro. Curr Med Sci 2021; 41:454-464. [PMID: 34129203 DOI: 10.1007/s11596-021-2371-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Accepted: 05/26/2021] [Indexed: 01/16/2023]
Abstract
Recent studies indicated that regulatory B cells (Bregs) and nuclear factor erythroid 2-related factor 2 (Nrf2) antioxidant signaling pathway play important roles in the pathogenesis of chronic graft-versus-host disease (cGVHD). Mangiferin (MA), a polyphenol compound, has been reported to activate Nrf2/antioxidant-responsive element (ARE) signaling pathway. This study was aimed to investigate the effects of MA on Bregs and Nrf2 antioxidant signaling in murine splenic mononuclear cells (MNCs) in vitro. Our results revealed that MA could increase the Bregs level in murine splenic MNCs. Moreover, MA up-regulated the expression of Bregs-associated immunosuppressive factor interleukin-10 (IL-10) by activating the Janus kinase 2 (JAK2)/signal transducer and activator of transcription 3 (STAT3) and extracellular signal-regulated kinase (ERK) signaling in murine splenic MNCs. Meanwhile, MA inhibited the proinflammatory cytokines IL-2 and interferon-γ (INF-γ) at both mRNA and protein levels. MA also enhanced the transcription and protein expression of Nrf2 and NADPH quinine oxidoreductase 1 (NQO1), whereas decreased that of Kelch-like ECH-associated protein 1 (Keap1) in murine splenic MNCs. Moreover, MA promoted the proliferation and inhibited the apoptosis of murine splenic MNCs. These results suggested that MA exerts immunosuppressive effects by upregulating the Bregs level, activating the Nrf2 antioxidant pathway, and inhibiting the expression of pro-immunoinflammatory factors. MA, as a natural immunomodulatory and anti-inflammatory agent, may have a potential role in the prophylaxis and treatment of cGVHD.
Collapse
Affiliation(s)
- Zhi-Zhi Qin
- Department of Hematology, Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.,Department of Hematology, Huaihe Hospital of Henan University, Kaifeng, 475000, China
| | - Jun Ruan
- Department of Hematology, Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.,Department of Gastroenterology, Wuhan Resources & Wisco General Hospital, Wuhan, 430080, China
| | - Meng-Ran Lee
- Department of Hematology, Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Kang Sun
- Department of Hematology, Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Ping Chen
- Department of Hematology, Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Yan Chen
- Department of Hematology, Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Mei Hong
- Department of Hematology, Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.,Collaborative Innovation Center of Hematology, Soochow University, Suzhou, 215000, China
| | - Ling-Hui Xia
- Department of Hematology, Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Jun Fang
- Department of Hematology, Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.
| | - Hao Tang
- Department of Cardiovascular Surgery, Zhongnan Hospital, Wuhan University, Wuhan, 430071, China.
| |
Collapse
|
2
|
OSU-T315 as an Interesting Lead Molecule for Novel B Cell-Specific Therapeutics. J Immunol Res 2018; 2018:2505818. [PMID: 30276218 PMCID: PMC6157143 DOI: 10.1155/2018/2505818] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2018] [Accepted: 08/09/2018] [Indexed: 11/17/2022] Open
Abstract
B cells are pathogenic in various disease processes and therefore represent an interesting target for the development of novel immunosuppressants. In the search for new therapeutic molecules, we utilized an in vitro B cell activation assay with ODN2006-stimulated Namalwa cells to screen a chemical library of small molecules for B cell modulating effects. OSU-T315, described as an inhibitor of integrin-linked kinase (ILK), was hereby identified as a hit. On human and murine primary B cells, OSU-T315 potently suppressed the proliferation and the production of antibodies and cytokines upon stimulation, suggesting that ILK could be a promising target in the modulation of B cell activity. Mice with B cell-specific knockout of ILK were generated. Surprisingly, knockout of ILK in murine B cells did not affect B cell function as assessed by several in vivo and ex vivo B cell assays and did not alter the B cell immunosuppressive activity of OSU-T315. In conclusion, OSU-T315 displays potency as B cell modulator, probably through a mechanism of action independent of ILK, and might serve as lead drug molecule for the development of novel B cell-selective drugs.
Collapse
|
3
|
Pai CCS, Khuat LT, Chen M, Murphy WJ, Abedi M. Therapeutic Effects of a NEDD8-Activating Enzyme Inhibitor, Pevonedistat, on Sclerodermatous Graft-versus-Host Disease in Mice. Biol Blood Marrow Transplant 2017; 23:30-37. [PMID: 27815049 PMCID: PMC5469294 DOI: 10.1016/j.bbmt.2016.10.022] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2016] [Accepted: 10/26/2016] [Indexed: 01/23/2023]
Abstract
Allogeneic hematopoietic stem cell transplantation (allo-HSCT) is the sole treatment option for highly malignant hematologic disease; however, the major complication-graft-versus-host disease (GVHD)-still hinders its clinical application. In addition, chronic GVHD remains the major cause of long-term morbidity and mortality after allo-HSCT. Previously we showed that bortezomib, a proteasome inhibitor, can ameliorate the sclerodermatous GVHD response while maintaining graft-versus-tumor (GVT) effects. Here we report that pevonedistat (MLN4924), an inhibitor of the Nedd8-activating enzyme, which functions upstream of the proteasome in the ubiquitin-proteasome pathway, can also show similar protective effects. Recipient mice treated with pevonedistat demonstrated inhibitory effects on sclerodermatous GVHD pathogenesis. The beneficial effect of pevonedistat was observed to be temporally dependent. Whereas treatment given at the time of allo-HSCT administration or before the onset of symptoms worsened the scleroderma response, therapeutic administration starting at 20 days post-transplantation ameliorated the sclerodermatous GVHD. Flow cytometry analysis revealed differential effects on immune subsets, with inhibition of only antigen-presenting cells and not of donor T cells. Finally, pevonedistat preserved GVT effects in a sclerodermatous murine model of B cell lymphoma. Taken together, these data suggest that inhibition of neddylation with pevonedistat can serve as an alternative approach for the treatment of GVHD while maintaining GVT effects in a murine model of sclerodermatous GVHD.
Collapse
Affiliation(s)
- Chien-Chun Steven Pai
- Department of Dermatology, School of Medicine, University of California, Davis, Sacramento, California
| | - Lam T Khuat
- Department of Dermatology, School of Medicine, University of California, Davis, Sacramento, California
| | - Mingyi Chen
- Department of Pathology, School of Medicine, University of California, Davis, Sacramento, California
| | - William J Murphy
- Department of Dermatology, School of Medicine, University of California, Davis, Sacramento, California; Department of Internal Medicine, School of Medicine, University of California, Davis, Sacramento, California.
| | - Mehrdad Abedi
- Department of Internal Medicine, School of Medicine, University of California, Davis, Sacramento, California
| |
Collapse
|
4
|
Comparative In Vitro Immune Stimulation Analysis of Primary Human B Cells and B Cell Lines. J Immunol Res 2016; 2016:5281823. [PMID: 28116319 PMCID: PMC5220478 DOI: 10.1155/2016/5281823] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2016] [Revised: 11/10/2016] [Accepted: 11/22/2016] [Indexed: 11/17/2022] Open
Abstract
B cell specific immunomodulatory drugs still remain an unmet medical need. Utilisation of validated simplified in vitro models would allow readily obtaining new insights in the complexity of B cell regulation. For this purpose we investigated which human B lymphocyte stimulation assays may be ideally suited to investigate new B lymphocyte immunosuppressants. Primary polyclonal human B cells underwent in vitro stimulation and their proliferation, production of immunoglobulins (Igs) and of cytokines, and expression of cell surface molecules were analysed using various stimuli. ODN2006, a toll-like receptor 9 (TLR9) agonist, was the most potent general B cell stimulus. Subsequently, we investigated on which human B cell lines ODN2006 evoked the broadest immunostimulatory effects. The Namalwa cell line proved to be the most responsive upon TLR9 stimulation and hence may serve as a relevant, homogeneous, and stable B cell model in an in vitro phenotypic assay for the discovery of new targets and inhibitors of the B cell activation processes. As for the read-out for such screening assay, it is proposed that the expression of activation and costimulatory surface markers reliably reflects B lymphocyte activation.
Collapse
|