1
|
Storck TN, Morsink LM, Biswana A, Hazenberg CLE, Huls G, Choi G. Donor lymphocyte infusions after HLA-identical hematopoietic stem cell transplantation with post-transplant cyclophosphamide in acute myeloid leukemia patients. Bone Marrow Transplant 2025:10.1038/s41409-025-02552-y. [PMID: 40108437 DOI: 10.1038/s41409-025-02552-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Revised: 02/18/2025] [Accepted: 03/11/2025] [Indexed: 03/22/2025]
Affiliation(s)
- Tatum N Storck
- Department of Hematology, University Medical Center Groningen, Groningen, The Netherlands; University of Groningen, Groningen, The Netherlands.
| | - Linde M Morsink
- Department of Hematology, University Medical Center Groningen, Groningen, The Netherlands; University of Groningen, Groningen, The Netherlands
| | - Anouschka Biswana
- Department of Hematology, University Medical Center Groningen, Groningen, The Netherlands; University of Groningen, Groningen, The Netherlands
| | - Carin L E Hazenberg
- Department of Hematology, University Medical Center Groningen, Groningen, The Netherlands; University of Groningen, Groningen, The Netherlands
| | - Gerwin Huls
- Department of Hematology, University Medical Center Groningen, Groningen, The Netherlands; University of Groningen, Groningen, The Netherlands
| | - Goda Choi
- Department of Hematology, University Medical Center Groningen, Groningen, The Netherlands; University of Groningen, Groningen, The Netherlands
| |
Collapse
|
2
|
Gang M, Othus M, Walter RB. Significance of Measurable Residual Disease in Patients Undergoing Allogeneic Hematopoietic Cell Transplantation for Acute Myeloid Leukemia. Cells 2025; 14:290. [PMID: 39996762 PMCID: PMC11853423 DOI: 10.3390/cells14040290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2025] [Accepted: 02/12/2025] [Indexed: 02/26/2025] Open
Abstract
Allogeneic hematopoietic cell transplantation (HCT) remains an important curative-intent treatment for many patients with acute myeloid leukemia (AML), but AML recurrence after allografting is common. Many factors associated with relapse after allogeneic HCT have been identified over the years. Central among these is measurable ("minimal") residual disease (MRD) as detected by multiparameter flow cytometry, quantitative polymerase chain reaction, and/or next-generation sequencing. Demonstration of a strong, independent prognostic role of pre- and early post-HCT MRD has raised hopes MRD could also serve as a predictive biomarker to inform treatment decision-making, with emerging data indicating the potential value to guide candidacy assessment for allografting as a post-remission treatment strategy, the selection of conditioning intensity, use of small molecule inhibitors as post-HCT maintenance therapy, and preemptive infusion of donor lymphocytes. Monitoring for leukemia recurrence after HCT and surrogacy for treatment response are other considerations for the clinical use of MRD data. In this review, we will outline the current landscape of MRD as a biomarker for patients with AML undergoing HCT and discuss areas of uncertainty and ongoing research.
Collapse
Affiliation(s)
- Margery Gang
- Hematology and Oncology Fellowship Program, Fred Hutchinson Cancer Center, University of Washington, Seattle, WA 98109, USA;
| | - Megan Othus
- Public Health Sciences Division, Fred Hutchinson Cancer Center, Seattle, WA 98109, USA;
| | - Roland B. Walter
- Translational Science and Therapeutics Division, Fred Hutchinson Cancer Center, Seattle, WA 98109, USA
- Division of Hematology and Oncology, Department of Medicine, University of Washington, Seattle, WA 98195, USA
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA 98195, USA
| |
Collapse
|
3
|
Liu FT, Wan CL, Huang YH, Cao HY, Lyu XY, Wang ZH, Huang SM, Tan KW, Ge SS, Zhang Y, Xue SL. Chidamide combined with azacitidine as a novel double epigenetic preemptive treatment for a myelodysplastic syndrome patient showing molecular relapse after allogeneic hematopoietic stem cell transplantation. Ann Hematol 2024; 103:6003-6006. [PMID: 39668198 DOI: 10.1007/s00277-024-06137-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2024] [Accepted: 12/05/2024] [Indexed: 12/14/2024]
Abstract
Allogeneic hematopoietic stem cell transplantation (allo-HSCT) is theoretically the only curative option for high-risk myelodysplastic syndrome (HR MDS) patients. However, the management of patients with relapsed disease post allo-HSCT remains a challenge with few standard treatments. Chidamide, a new selective histone deacetylase, has shown synergistic anti-leukemia effect combined with azacitidine in acute myeloid leukemia patients. Herein, we reported a 50-year-old HR MDS patient who experienced molecular relapse post allo-HSCT and was successfully salvaged by preemptive treatment of chidamide combined with azacitidine (CHI-AZA). This patient maintained a deep remission lasting over 2 years by regular maintenance treatment of CHI-AZA, without sever treatment-related adverse events or increased risk of graft versus host disease. This case report demonstrated that double epigenetic regimen of CHI-AZA was effective and tolerable. Formally evaluating this regimen in HR MDS patients post allo-HSCT may be meaningful.
Collapse
Affiliation(s)
- Fang-Tong Liu
- National Clinical Research Center for Hematologic Diseases, Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, Shizi Street 188, Suzhou, 215006, P. R. China
- Institute of Blood and Marrow Transplantation, Collaborative Innovation Center of Hematology, Soochow University, Suzhou, China
| | - Chao-Ling Wan
- National Clinical Research Center for Hematologic Diseases, Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, Shizi Street 188, Suzhou, 215006, P. R. China
- Institute of Blood and Marrow Transplantation, Collaborative Innovation Center of Hematology, Soochow University, Suzhou, China
| | - Yuan-Hong Huang
- National Clinical Research Center for Hematologic Diseases, Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, Shizi Street 188, Suzhou, 215006, P. R. China
- Institute of Blood and Marrow Transplantation, Collaborative Innovation Center of Hematology, Soochow University, Suzhou, China
| | - Han-Yu Cao
- National Clinical Research Center for Hematologic Diseases, Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, Shizi Street 188, Suzhou, 215006, P. R. China
- Institute of Blood and Marrow Transplantation, Collaborative Innovation Center of Hematology, Soochow University, Suzhou, China
| | - Xiao-Yu Lyu
- National Clinical Research Center for Hematologic Diseases, Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, Shizi Street 188, Suzhou, 215006, P. R. China
- Institute of Blood and Marrow Transplantation, Collaborative Innovation Center of Hematology, Soochow University, Suzhou, China
| | - Zi-Hao Wang
- National Clinical Research Center for Hematologic Diseases, Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, Shizi Street 188, Suzhou, 215006, P. R. China
- Institute of Blood and Marrow Transplantation, Collaborative Innovation Center of Hematology, Soochow University, Suzhou, China
| | - Si-Man Huang
- National Clinical Research Center for Hematologic Diseases, Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, Shizi Street 188, Suzhou, 215006, P. R. China
- Institute of Blood and Marrow Transplantation, Collaborative Innovation Center of Hematology, Soochow University, Suzhou, China
| | - Kai-Wen Tan
- National Clinical Research Center for Hematologic Diseases, Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, Shizi Street 188, Suzhou, 215006, P. R. China
- Institute of Blood and Marrow Transplantation, Collaborative Innovation Center of Hematology, Soochow University, Suzhou, China
| | - Shuai-Shuai Ge
- National Clinical Research Center for Hematologic Diseases, Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, Shizi Street 188, Suzhou, 215006, P. R. China
- Institute of Blood and Marrow Transplantation, Collaborative Innovation Center of Hematology, Soochow University, Suzhou, China
| | - Yang Zhang
- Canglang Hospital of Suzhou, Suzhou, China.
| | - Sheng-Li Xue
- National Clinical Research Center for Hematologic Diseases, Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, Shizi Street 188, Suzhou, 215006, P. R. China.
- Institute of Blood and Marrow Transplantation, Collaborative Innovation Center of Hematology, Soochow University, Suzhou, China.
| |
Collapse
|
4
|
Gener-Ricos G, Rodriguez-Sevilla JJ, Urrutia S, Bataller A, Bazinet A, Garcia-Manero G. Advances in the management of higher-risk myelodysplastic syndromes: future prospects. Leuk Lymphoma 2024; 65:1233-1244. [PMID: 38712556 DOI: 10.1080/10428194.2024.2344061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 04/09/2024] [Accepted: 04/12/2024] [Indexed: 05/08/2024]
Abstract
Higher-risk myelodysplastic syndromes (HR-MDS) are defined using a number of prognostic scoring systems that include the degree of cytopenias, percentage of blasts, cytogenetic alterations, and more recently genomic data. HR-MDS encompasses characteristics such as progressive cytopenias, increased bone marrow blasts, unfavorable cytogenetics, and an adverse mutational profile. Survival is generally poor, and patients require therapy to improve outcomes. Hypomethylating agents (HMAs), such as azacitidine, decitabine, and more recently, oral decitabine/cedazuridine, are the only approved therapies for HR-MDS. These are often continued until loss of response, progression, or unacceptable toxicity. Combinations including an HMA plus other drugs have been investigated but have not demonstrated better outcomes compared to single-agent HMA. Moreover, in a disease of high genomic complexity such as HR-MDS, therapy targeting specific genomic abnormalities is of interest. This review will examine the biological underpinnings of HR-MDS, its therapeutic landscape in the frontline and relapsed settings, as well as the impact of hematopoietic stem cell transplantation, the only known curative intervention for this disease.
Collapse
Affiliation(s)
- Georgina Gener-Ricos
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | | | - Samuel Urrutia
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Alex Bataller
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Alexandre Bazinet
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | | |
Collapse
|
5
|
Yang F, Ren Q, Zu Y, Gui R, Li Z, Wang J, Zhang Y, Yu F, Fang B, Fu Y, Wang Y, Liu Y, Zhang L, Zuo W, Li Y, Lin Q, Zhao H, Wang P, Zhang B, Huang Z, Song Y, Zhou J. Multiple small-dose infusions of G-CSF-mobilized haploidentical lymphocytes after autologous haematopoietic stem cell transplantation for acute myeloid leukaemia. Br J Haematol 2024; 205:645-652. [PMID: 38972835 DOI: 10.1111/bjh.19597] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2023] [Accepted: 06/06/2024] [Indexed: 07/09/2024]
Abstract
This retrospective study analysed 106 acute myeloid leukaemia (AML) patients undergoing autologous haematopoietic stem cell transplantation (ASCT) to assess the impact of multiple small-dose infusions of granulocyte-colony-stimulating factor (G-CSF)-mobilized haploidentical lymphocytes as post-ASCT maintenance therapy. Among them, 50 patients received lymphocyte maintenance therapy, 21 received alternative maintenance therapy, and 35 received no maintenance therapy. Patients receiving lymphocyte maintenance therapy demonstrated significantly higher overall survival (OS) and disease-free survival (DFS) compared to those without maintenance therapy, with 4-year OS and DFS rates notably elevated. While there were no significant differences in recurrence rates among the three groups, lymphocyte maintenance therapy showcased particular benefits for intermediate-risk AML patients, yielding significantly higher OS and DFS rates and lower relapse rates compared to alternative maintenance therapy and no maintenance therapy. The study suggests that multiple small-dose infusions of G-CSF-mobilized haploidentical lymphocytes may offer promising outcomes for AML patients after ASCT, particularly for those classified as intermediate-risk. These findings underscore the potential efficacy of lymphocyte maintenance therapy in reducing disease relapse and improving long-term prognosis in this patient population.
Collapse
Affiliation(s)
- Fei Yang
- Department of Haematology, The Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, Zhengzhou, China
- Department of Oncology, Anyang People's Hospital, Anyang, China
| | - Quan Ren
- Department of Haematology, The Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, Zhengzhou, China
| | - Yingling Zu
- Department of Haematology, The Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, Zhengzhou, China
| | - Ruirui Gui
- Department of Haematology, The Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, Zhengzhou, China
| | - Zhen Li
- Department of Haematology, The Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, Zhengzhou, China
| | - Juan Wang
- Department of Haematology, The Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, Zhengzhou, China
| | - Yanli Zhang
- Department of Haematology, The Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, Zhengzhou, China
| | - Fengkuan Yu
- Department of Haematology, The Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, Zhengzhou, China
| | - Baijun Fang
- Department of Haematology, The Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, Zhengzhou, China
| | - Yuewen Fu
- Department of Haematology, The Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, Zhengzhou, China
| | - Yongliang Wang
- Department of Oncology, Anyang People's Hospital, Anyang, China
| | - Yanyan Liu
- Department of Haematology, The Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, Zhengzhou, China
| | - Lina Zhang
- Department of Haematology, The Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, Zhengzhou, China
| | - Wenli Zuo
- Department of Haematology, The Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, Zhengzhou, China
| | - Yufu Li
- Department of Haematology, The Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, Zhengzhou, China
| | - Quande Lin
- Department of Haematology, The Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, Zhengzhou, China
| | - Huifang Zhao
- Department of Haematology, The Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, Zhengzhou, China
| | - Ping Wang
- Department of Haematology, The Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, Zhengzhou, China
| | - Binglei Zhang
- Department of Haematology, The Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, Zhengzhou, China
| | - Zhenghua Huang
- Department of Haematology, The Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, Zhengzhou, China
| | - Yongping Song
- Department of Haematology, The Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, Zhengzhou, China
- Department of Haematology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Jian Zhou
- Department of Haematology, The Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, Zhengzhou, China
| |
Collapse
|
6
|
Kaito S, Najima Y, Sadato D, Hirama C, Kishida Y, Nagata A, Konishi T, Yamada Y, Kurosawa S, Yoshifuji K, Shirane S, Shingai N, Toya T, Shimizu H, Haraguchi K, Kobayashi T, Harada H, Okuyama Y, Harada Y, Doki N. Azacitidine and gemtuzumab ozogamicin as post-transplant maintenance therapy for high-risk hematologic malignancies. Bone Marrow Transplant 2024; 59:1169-1175. [PMID: 38783125 DOI: 10.1038/s41409-024-02311-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2023] [Revised: 05/03/2024] [Accepted: 05/13/2024] [Indexed: 05/25/2024]
Abstract
Disease recurrence remains the principal cause of treatment failure after allogeneic hematopoietic stem cell transplantation. Post-transplant maintenance therapy with azacitidine (AZA) is promising to prevent relapse but the outcomes are unsatisfactory in patients at high risk of recurrence. Herein, we evaluated the outcome in patients who received AZA and gemtuzumab ozogamicin (GO), anti-CD33 antibody-calicheamicin conjugate, as post-transplant maintenance therapy. Twenty-eight patients with high-risk hematologic malignancies harboring CD33-positive leukemic blasts received the maintenance therapy. AZA (30 mg/m2) was administered for 7 days, followed by GO (3 mg/m2) on day 8. The maximum number of cycles was 4. At transplant, 21 patients (75.0%) had active disease. Their 2-year overall survival, disease-free survival, relapse, and non-relapse mortality rates were 53.6%, 39.3%, 50.0%, and 10.7%, respectively. Of these patients, those with minimal residual disease at the start of maintenance therapy (n = 9) had a higher recurrence rate (66.7% vs. 42.1% at 2 years, P = 0.069) and shorter disease-free survival (11.1% vs. 52.6% at 2 years, P = 0.003). Post-transplant maintenance therapy with AZA and GO was generally tolerable but more than half of the patients eventually relapsed. Further improvements are needed to prevent relapse after transplantation in patients with high-risk hematologic malignancies.
Collapse
Affiliation(s)
- Satoshi Kaito
- Hematology Division, Tokyo Metropolitan Cancer and Infectious Diseases Center, Komagome Hospital, Tokyo, Japan
| | - Yuho Najima
- Hematology Division, Tokyo Metropolitan Cancer and Infectious Diseases Center, Komagome Hospital, Tokyo, Japan.
| | - Daichi Sadato
- Clinical Research Support Center, Tokyo Metropolitan Cancer and Infectious Diseases Center, Komagome Hospital, Tokyo, Japan
| | - Chizuko Hirama
- Clinical Research Support Center, Tokyo Metropolitan Cancer and Infectious Diseases Center, Komagome Hospital, Tokyo, Japan
| | - Yuya Kishida
- Hematology Division, Tokyo Metropolitan Cancer and Infectious Diseases Center, Komagome Hospital, Tokyo, Japan
| | - Akihito Nagata
- Hematology Division, Tokyo Metropolitan Cancer and Infectious Diseases Center, Komagome Hospital, Tokyo, Japan
| | - Tatsuya Konishi
- Hematology Division, Tokyo Metropolitan Cancer and Infectious Diseases Center, Komagome Hospital, Tokyo, Japan
| | - Yuta Yamada
- Hematology Division, Tokyo Metropolitan Cancer and Infectious Diseases Center, Komagome Hospital, Tokyo, Japan
| | - Shuhei Kurosawa
- Hematology Division, Tokyo Metropolitan Cancer and Infectious Diseases Center, Komagome Hospital, Tokyo, Japan
| | - Kota Yoshifuji
- Hematology Division, Tokyo Metropolitan Cancer and Infectious Diseases Center, Komagome Hospital, Tokyo, Japan
| | - Shuichi Shirane
- Hematology Division, Tokyo Metropolitan Cancer and Infectious Diseases Center, Komagome Hospital, Tokyo, Japan
| | - Naoki Shingai
- Hematology Division, Tokyo Metropolitan Cancer and Infectious Diseases Center, Komagome Hospital, Tokyo, Japan
| | - Takashi Toya
- Hematology Division, Tokyo Metropolitan Cancer and Infectious Diseases Center, Komagome Hospital, Tokyo, Japan
| | - Hiroaki Shimizu
- Hematology Division, Tokyo Metropolitan Cancer and Infectious Diseases Center, Komagome Hospital, Tokyo, Japan
| | - Kyoko Haraguchi
- Division of Transfusion and Cell Therapy, Tokyo Metropolitan Komagome Hospital, Tokyo, Japan
| | - Takeshi Kobayashi
- Hematology Division, Tokyo Metropolitan Cancer and Infectious Diseases Center, Komagome Hospital, Tokyo, Japan
| | - Hironori Harada
- Hematology Division, Tokyo Metropolitan Cancer and Infectious Diseases Center, Komagome Hospital, Tokyo, Japan
- Laboratory of Oncology, Tokyo University of Pharmacy and Life Sciences, Tokyo, Japan
| | - Yoshiki Okuyama
- Division of Transfusion and Cell Therapy, Tokyo Metropolitan Komagome Hospital, Tokyo, Japan
| | - Yuka Harada
- Clinical Research Support Center, Tokyo Metropolitan Cancer and Infectious Diseases Center, Komagome Hospital, Tokyo, Japan
| | - Noriko Doki
- Hematology Division, Tokyo Metropolitan Cancer and Infectious Diseases Center, Komagome Hospital, Tokyo, Japan
| |
Collapse
|
7
|
Graff Z, Wachter F, Eapen M, Lehmann L, Cooper T. Navigating Treatment Options and Communication in Relapsed Pediatric AML. Am Soc Clin Oncol Educ Book 2024; 44:e438690. [PMID: 38862135 DOI: 10.1200/edbk_438690] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/13/2024]
Abstract
Despite improved outcomes in newly diagnosed pediatric AML, relapsed disease remains a therapeutic challenge. Factors contributing to slow progress in improving outcomes include inherent challenges in pediatric clinical trial accrual and the scarcity of novel targeted/immunotherapy agents available for pediatric development. This paradigm is changing, however, as international collaboration grows in parallel with the development of promising targeted agents. In this review, we discuss the therapeutic landscape of relapsed pediatric AML, including conventional chemotherapy, targeted therapies, and the challenges of drug approvals in this patient population. We highlight current efforts to improve communication among academia, industry, and regulatory authorities and discuss the importance of international collaboration to improve access to new therapies. Among the therapeutic options, we highlight the approach to second hematopoietic stem cell transplant (HSCT) and discuss which patients are most likely to benefit from this potentially curative intervention. Importantly, we acknowledge the challenges in providing these high-risk interventions to our patients and their families and the importance of shared communication and decision making when considering early-phase clinical trials and second HSCT.
Collapse
Affiliation(s)
- Zachary Graff
- Department of Pediatrics, Division of Hematology, Oncology, and BMT, Medical College of Wisconsin, Milwaukee, WI
| | - Franziska Wachter
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Division of Hematology/Oncology, Boston Children's Hospital and Harvard Medical School, Boston, MA
| | - Mary Eapen
- Department of Medicine, Division of Hematology/Oncology, Medical College of Wisconsin, Milwaukee, WI
| | - Leslie Lehmann
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Division of Hematology/Oncology, Boston Children's Hospital and Harvard Medical School, Boston, MA
| | - Todd Cooper
- Department of Pediatrics, Division of Hematology and Oncology, Seattle Children's Hospital, Seattle, WA
| |
Collapse
|
8
|
Parks K, Aslam MF, Kumar V, Jamy O. Post-Transplant Maintenance Therapy in Acute Myeloid Leukemia. Cancers (Basel) 2024; 16:2015. [PMID: 38893135 PMCID: PMC11171221 DOI: 10.3390/cancers16112015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 05/24/2024] [Accepted: 05/24/2024] [Indexed: 06/21/2024] Open
Abstract
Allogeneic hematopoietic cell transplantation (allo-HCT) is potentially curative for patients with acute myeloid leukemia (AML). However, the post-transplant relapse rate ranges from 40 to 70%, particularly with reduced intensity conditioning, and remains a major cause of treatment failure for these patients due to the limited efficacy of salvage therapy options. Strategies to mitigate this risk are urgently needed. In the past few years, the basic framework of post-transplant maintenance has been shaped by several clinical trials investigating targeted therapy, chemotherapy, and immunomodulatory therapies. Although the practice of post-transplant maintenance in AML has become more common, there remain challenges regarding the feasibility and efficacy of this strategy. Here, we review major developments in post-transplant maintenance in AML, along with ongoing and future planned studies in this area, outlining the limitations of available data and our future goals.
Collapse
Affiliation(s)
- Katherine Parks
- Department of Medicine, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | | | - Vinod Kumar
- Department of Medicine, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Omer Jamy
- Department of Medicine, University of Alabama at Birmingham, Birmingham, AL 35294, USA
- Division of Hematology & Oncology, Department of Medicine, University of Alabama at Birmingham, 1720 2nd Avenue S, NP2540W, Birmingham, AL 35294, USA
| |
Collapse
|
9
|
Sackstein P, Williams A, Zemel R, Marks JA, Renteria AS, Rivero G. Transplant Eligible and Ineligible Elderly Patients with AML-A Genomic Approach and Next Generation Questions. Biomedicines 2024; 12:975. [PMID: 38790937 PMCID: PMC11117792 DOI: 10.3390/biomedicines12050975] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2024] [Revised: 04/15/2024] [Accepted: 04/16/2024] [Indexed: 05/26/2024] Open
Abstract
The management of elderly patients diagnosed with acute myelogenous leukemia (AML) is complicated by high relapse risk and comorbidities that often preclude access to allogeneic hematopoietic cellular transplantation (allo-HCT). In recent years, fast-paced FDA drug approval has reshaped the therapeutic landscape, with modest, albeit promising improvement in survival. Still, AML outcomes in elderly patients remain unacceptably unfavorable highlighting the need for better understanding of disease biology and tailored strategies. In this review, we discuss recent modifications suggested by European Leukemia Network 2022 (ELN-2022) risk stratification and review recent aging cell biology advances with the discussion of four AML cases. While an older age, >60 years, does not constitute an absolute contraindication for allo-HCT, the careful patient selection based on a detailed and multidisciplinary risk stratification cannot be overemphasized.
Collapse
Affiliation(s)
- Paul Sackstein
- Lombardi Cancer Institute, School of Medicine, Georgetown University, Washington, DC 20007, USA; (P.S.); (R.Z.); (J.A.M.)
| | - Alexis Williams
- Department of Medicine, New York University, New York, NY 10016, USA;
| | - Rachel Zemel
- Lombardi Cancer Institute, School of Medicine, Georgetown University, Washington, DC 20007, USA; (P.S.); (R.Z.); (J.A.M.)
| | - Jennifer A. Marks
- Lombardi Cancer Institute, School of Medicine, Georgetown University, Washington, DC 20007, USA; (P.S.); (R.Z.); (J.A.M.)
| | - Anne S. Renteria
- Lombardi Cancer Institute, School of Medicine, Georgetown University, Washington, DC 20007, USA; (P.S.); (R.Z.); (J.A.M.)
| | - Gustavo Rivero
- Lombardi Cancer Institute, School of Medicine, Georgetown University, Washington, DC 20007, USA; (P.S.); (R.Z.); (J.A.M.)
| |
Collapse
|
10
|
Pereira MP, Herrity E, Kim DDH. TP53-mutated acute myeloid leukemia and myelodysplastic syndrome: biology, treatment challenges, and upcoming approaches. Ann Hematol 2024; 103:1049-1067. [PMID: 37770618 DOI: 10.1007/s00277-023-05462-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Accepted: 09/17/2023] [Indexed: 09/30/2023]
Abstract
Improved understanding of TP53 biology and the clinicopathological features of TP53-mutated myeloid neoplasms has led to the recognition of TP53-mutated acute myeloid leukemia/myelodysplastic syndrome (TP53m AML/MDS) as a unique entity, characterized by dismal outcomes following conventional therapies. Several clinical trials have investigated combinations of emerging therapies for these patients with the poorest molecular prognosis among myeloid neoplasms. Although some emerging therapies have shown improvement in overall response rates, this has not translated into better overall survival, hence the notion that p53 remains an elusive target. New therapeutic strategies, including novel targeted therapies, immune checkpoint inhibitors, and monoclonal antibodies, represent a shift away from cytotoxic and hypomethylating-based therapies, towards approaches combining non-immune and novel immune therapeutic strategies. The triple combination of azacitidine and venetoclax with either magrolimab or eprenetapopt have demonstrated safety in early trials, with phase III trials currently underway, and promising interim clinical results. This review compiles background on TP53 biology, available and emerging therapies along with their mechanisms of action for the TP53m disease entity, current treatment challenges, and recently published data and status of ongoing clinical trials for TP53m AML/MDS.
Collapse
Affiliation(s)
- Mariana Pinto Pereira
- Hans Messner Allogeneic Blood and Marrow Transplantation Program, Department of Medical Oncology and Hematology, Princess Margaret Cancer Centre, M5G2M9, Toronto, ON, Canada
| | - Elizabeth Herrity
- Hans Messner Allogeneic Blood and Marrow Transplantation Program, Department of Medical Oncology and Hematology, Princess Margaret Cancer Centre, M5G2M9, Toronto, ON, Canada
| | - Dennis D H Kim
- Hans Messner Allogeneic Blood and Marrow Transplantation Program, Department of Medical Oncology and Hematology, Princess Margaret Cancer Centre, M5G2M9, Toronto, ON, Canada.
- Leukemia Program, Department of Medical Oncology and Hematology, Princess Margaret Cancer Centre, Toronto, ON, Canada.
- Department of Hematology, Faculty of Medicine, University of Toronto, Toronto, ON, Canada.
| |
Collapse
|
11
|
Murdock HM, Ho VT, Garcia JS. Innovations in conditioning and post-transplant maintenance in AML: genomically informed revelations on the graft-versus-leukemia effect. Front Immunol 2024; 15:1359113. [PMID: 38571944 PMCID: PMC10987864 DOI: 10.3389/fimmu.2024.1359113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Accepted: 02/20/2024] [Indexed: 04/05/2024] Open
Abstract
Acute Myeloid Leukemia (AML) is the prototype of cancer genomics as it was the first published cancer genome. Large-scale next generation/massively parallel sequencing efforts have identified recurrent alterations that inform prognosis and have guided the development of targeted therapies. Despite changes in the frontline and relapsed standard of care stemming from the success of small molecules targeting FLT3, IDH1/2, and apoptotic pathways, allogeneic stem cell transplantation (alloHSCT) and the resulting graft-versus-leukemia (GVL) effect remains the only curative path for most patients. Advances in conditioning regimens, graft-vs-host disease prophylaxis, anti-infective agents, and supportive care have made this modality feasible, reducing transplant related mortality even among patients with advanced age or medical comorbidities. As such, relapse has emerged now as the most common cause of transplant failure. Relapse may occur after alloHSCT because residual disease clones persist after transplant, and develop immune escape from GVL, or such clones may proliferate rapidly early after alloHSCT, and outpace donor immune reconstitution, leading to relapse before any GVL effect could set in. To address this issue, genomically informed therapies are increasingly being incorporated into pre-transplant conditioning, or as post-transplant maintenance or pre-emptive therapy in the setting of mixed/falling donor chimerism or persistent detectable measurable residual disease (MRD). There is an urgent need to better understand how these emerging therapies modulate the two sides of the GVHD vs. GVL coin: 1) how molecularly or immunologically targeted therapies affect engraftment, GVHD potential, and function of the donor graft and 2) how these therapies affect the immunogenicity and sensitivity of leukemic clones to the GVL effect. By maximizing the synergistic action of molecularly targeted agents, immunomodulating agents, conventional chemotherapy, and the GVL effect, there is hope for improving outcomes for patients with this often-devastating disease.
Collapse
Affiliation(s)
- H. Moses Murdock
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, United States
| | - Vincent T. Ho
- Bone Marrow Transplant Program, Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, United States
| | - Jacqueline S. Garcia
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, United States
| |
Collapse
|
12
|
Gholamzad A, Khakpour N, Gholamzad M, Roudaki Sarvandani MR, Khosroshahi EM, Asadi S, Rashidi M, Hashemi M. Stem cell therapy for HTLV-1 induced adult T-cell leukemia/lymphoma (ATLL): A comprehensive review. Pathol Res Pract 2024; 255:155172. [PMID: 38340584 DOI: 10.1016/j.prp.2024.155172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/05/2023] [Revised: 01/19/2024] [Accepted: 01/24/2024] [Indexed: 02/12/2024]
Abstract
Adult T-cell leukemia/lymphoma (ATLL) is a rare and aggressive form of cancer associated with human T-cell lymphotropic virus type 1 (HTLV-1) infection. The emerging field of stem cell therapies for ATLL is discussed, highlighting the potential of hematopoietic stem cell transplantation (HSCT) and genetically modified stem cells. HSCT aims to eradicate malignant T-cells and restore a functional immune system through the infusion of healthy donor stem cells. Genetically modified stem cells show promise in enhancing their ability to target and eliminate ATLL cells. The article presents insights from preclinical studies and limited clinical trials, emphasizing the need for further research to establish the safety, efficacy, and long-term outcomes of stem cell therapies for ATLL and challenges associated with these innovative approaches are also explored. Overall, stem cell therapies hold significant potential in revolutionizing ATLL treatment, and ongoing clinical trials aim to determine their benefits in larger patient populations.
Collapse
Affiliation(s)
- Amir Gholamzad
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Niloofar Khakpour
- Department of Bacteriology and Virology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mehrdad Gholamzad
- Department of Microbiology and Immunology, Faculty of Medicine, Islamic Azad University of Medical Science, Tehran, Iran.
| | | | - Elaheh Mohandesi Khosroshahi
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Saba Asadi
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Mohsen Rashidi
- The Health of Plant and Livestock Products Research Center, Mazandaran University of Medical Sciences, Sari, Iran; Department Pharmacology, Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, Iran.
| | - Mehrdad Hashemi
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran; Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran.
| |
Collapse
|
13
|
He S, Li Y, Wang L, Li Y, Xu L, Cai D, Zhou J, Yu L. DNA methylation landscape reveals GNAS as a decitabine-responsive marker in patients with acute myeloid leukemia. Neoplasia 2024; 49:100965. [PMID: 38245923 PMCID: PMC10830847 DOI: 10.1016/j.neo.2024.100965] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 12/31/2023] [Accepted: 01/02/2024] [Indexed: 01/23/2024]
Abstract
BACKGROUND The demethylation agent decitabine (DAC) is a pivotal non-intensive alternative treatment for acute myeloid leukemia (AML). However, patient responses to DAC are highly variable, and predictive biomarkers are warranted. Herein, the DNA methylation landscape of patients treated with a DAC-based combination regimen was compared with that of patients treated with standard chemotherapy to develop a molecular approach for predicting clinical response to DAC. METHODS Twenty-five non-M3 AML patients were enrolled and subjected to DNA methylation sequencing and profiling to identify differentially methylated regions (DMRs) and genes of interest. Moreover, the effects of a DAC-based regimen on apoptosis and gene expression were explored using Kasumi-1 and K562 cells. RESULTS Overall, we identified 541 DMRs that were specifically responsive to DAC, among which 172 DMRs showed hypomethylation patterns upon treatment and were aligned with the promoter regions of 182 genes. In particular, GNAS was identified as a critical DAC-responsive gene, with in vitro GNAS downregulation leading to reduced cell apoptosis induced by DAC and cytarabine combo treatment. CONCLUSIONS We found that GNAS is a DAC-sensitive gene in AML and may serve as a prognostic biomarker to assess the responsiveness of patients with AML to DAC-based therapy.
Collapse
Affiliation(s)
- Shujiao He
- Department of Hematology and Oncology, International Cancer Center, Shenzhen Key Laboratory, Hematology Institution of Shenzhen University, Shenzhen University General Hospital, Shenzhen University Health Science Center, Shenzhen University, Xueyuan Ave 1098, Nanshan District, Shenzhen 518000, China
| | - Yan Li
- Department of Hematology, Peking Third Hospital, 49 North Garden Road, Beijing 100191, China; Department of Haematology, Chinese People's Liberation Army General Hospital, Beijing 100853, China
| | - Lei Wang
- Department of Hematology and Oncology, International Cancer Center, Shenzhen Key Laboratory, Hematology Institution of Shenzhen University, Shenzhen University General Hospital, Shenzhen University Health Science Center, Shenzhen University, Xueyuan Ave 1098, Nanshan District, Shenzhen 518000, China
| | - Yisheng Li
- Shenzhen Haoshi Biotechnology Co., Ltd, 155 Hong Tian Rd, Baoan District, Shenzhen 518125, China; Shenzhen University-Haoshi Cell Therapy Institute, 155 Hong Tian Rd, Baoan District, Shenzhen 518125, China
| | - Lu Xu
- Department of Hematology and Oncology, International Cancer Center, Shenzhen Key Laboratory, Hematology Institution of Shenzhen University, Shenzhen University General Hospital, Shenzhen University Health Science Center, Shenzhen University, Xueyuan Ave 1098, Nanshan District, Shenzhen 518000, China
| | - Diya Cai
- Department of Hematology and Oncology, International Cancer Center, Shenzhen Key Laboratory, Hematology Institution of Shenzhen University, Shenzhen University General Hospital, Shenzhen University Health Science Center, Shenzhen University, Xueyuan Ave 1098, Nanshan District, Shenzhen 518000, China
| | - Jingfeng Zhou
- Department of Hematology and Oncology, International Cancer Center, Shenzhen Key Laboratory, Hematology Institution of Shenzhen University, Shenzhen University General Hospital, Shenzhen University Health Science Center, Shenzhen University, Xueyuan Ave 1098, Nanshan District, Shenzhen 518000, China.
| | - Li Yu
- Department of Hematology and Oncology, International Cancer Center, Shenzhen Key Laboratory, Hematology Institution of Shenzhen University, Shenzhen University General Hospital, Shenzhen University Health Science Center, Shenzhen University, Xueyuan Ave 1098, Nanshan District, Shenzhen 518000, China.
| |
Collapse
|
14
|
Mishra A. Approaches to optimize outcomes in transplant recipients. HEMATOLOGY. AMERICAN SOCIETY OF HEMATOLOGY. EDUCATION PROGRAM 2023; 2023:723-730. [PMID: 38066935 PMCID: PMC10727018 DOI: 10.1182/hematology.2023000459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2023]
Abstract
Curative therapy with an allogeneic hematopoietic cell transplant (HCT) can now be offered to a wider patient population due to improvements in donor selection, transplant conditioning regimens, and supportive care measures. However, risk of transplant-related morbidity and mortality remains, and thus appropriate transplant candidate workup pre-HCT for risk stratification and a management plan after HCT is crucial for success of the procedure. These include understanding and identifying risk of underlying malignant disease relapse, graft-versus-host disease, and infectious complications a patient may be predisposed toward, irrespective of allogeneic donor type. Progress in these domains with new therapeutic paradigms allows for development of a treatment plan prior to HCT to mitigate these potential risks tailored to the patient's case. Herein, we present case studies to focus on factors that influence decision-making in HCT and the approaches and strategies used to optimize post-HCT outcomes based on the individual HCT recipient's clinical scenario to improve on these high-risk scenarios.
Collapse
Affiliation(s)
- Asmita Mishra
- H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL
| |
Collapse
|
15
|
Li L, Zhang R, Cao W, Bian Z, Qin Y, Guo R, Zhang S, Peng Y, Wan D, Ma W. Comparative analysis of hypomethylating agents as maintenance therapy after allogeneic hematopoietic stem cell transplantation for high-risk acute leukemia. Leuk Lymphoma 2023; 64:2113-2122. [PMID: 37732615 DOI: 10.1080/10428194.2023.2252948] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Accepted: 08/20/2023] [Indexed: 09/22/2023]
Abstract
We retrospectively analyzed the outcomes of 136 consecutive patients who received allogeneic hematopoietic stem cell transplantation (allo-HSCT) at our center. Among them, 76 cases used hypomethylating agents (decitabine, n = 40; azacitidine, n = 36) as post-transplant maintenance therapy, whereas 60 contemporaneous patients did not adopt maintenance therapy. The 3-year incidences of relapse in two groups were 16.6% and 39.2% (p = .001). The 3-year OS and DFS in maintenance group were 84.0% and 78.6%, which were remarkably improved than in control group (60.0% and 58.0%) (p = .004, p = .011). Moreover, the 3-year relapse rates for patients receiving decitabine and azacitidine therapy were 8.5% and 25.0%, respectively (p = .019). Patients utilizing decitabine had more common possibility of grade 3-4 neutropenia than azacitidine (20.0% vs. 2.8%, p = .031). These results indicate that maintenance therapies using hypomethylating agents could reduce the risk of post-transplant recurrence, resulting into remarkable superior survival. Decitabine might lower relapse after allo-HSCT with somewhat more severe myelosuppression when being compared to azacitidine.
Collapse
Affiliation(s)
- Li Li
- Department of Hematology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Ran Zhang
- Department of Hematology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Weijie Cao
- Department of Hematology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Zhilei Bian
- Department of Hematology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Yang Qin
- Department of Hematology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Rong Guo
- Department of Hematology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Suping Zhang
- Department of Hematology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Yingnan Peng
- Department of Hematology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Dingming Wan
- Department of Hematology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Wang Ma
- Department of Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| |
Collapse
|
16
|
Wachter F, Pikman Y, Bledsoe J, Kapadia M, Baumeister S, Rowe J, Shimamura A, Place AE, Prockop S, Whangbo J, Lehmann L, Horan J, Pollard J. Treatment of recurrent pediatric myelodysplastic syndrome post hematopoietic stem cell transplantation. Clin Case Rep 2023; 11:e8190. [PMID: 38028059 PMCID: PMC10665583 DOI: 10.1002/ccr3.8190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 10/26/2023] [Accepted: 11/01/2023] [Indexed: 12/01/2023] Open
Abstract
Treatment of recurrent myelodysplastic syndrome (MDS) after hematopoietic cell transplantation (HCT) remains challenging. We present a 4-year-old girl experiencing early MDS relapse post-HCT treated with a multimodal strategy encompassing a second HCT and innovative targeted therapies. We underscore the potential of a comprehensive treatment approach in managing recurrent pediatric MDS.
Collapse
Affiliation(s)
- Franziska Wachter
- Division of Hematology/Oncology, Department of Pediatric OncologyDana‐Farber Cancer Institute, Boston Children's Hospital and Harvard Medical SchoolBostonMassachusettsUSA
| | - Yana Pikman
- Division of Hematology/Oncology, Department of Pediatric OncologyDana‐Farber Cancer Institute, Boston Children's Hospital and Harvard Medical SchoolBostonMassachusettsUSA
| | - Jacob Bledsoe
- Department of PathologyBoston Children's Hospital, Harvard Medical SchoolBostonMassachusettsUSA
| | - Malika Kapadia
- Division of Hematology/Oncology, Department of Pediatric OncologyDana‐Farber Cancer Institute, Boston Children's Hospital and Harvard Medical SchoolBostonMassachusettsUSA
| | - Susanne Baumeister
- Division of Hematology/Oncology, Department of Pediatric OncologyDana‐Farber Cancer Institute, Boston Children's Hospital and Harvard Medical SchoolBostonMassachusettsUSA
| | - Jared Rowe
- Division of Hematology/Oncology, Department of Pediatric OncologyDana‐Farber Cancer Institute, Boston Children's Hospital and Harvard Medical SchoolBostonMassachusettsUSA
| | - Akiko Shimamura
- Division of Hematology/Oncology, Department of Pediatric OncologyDana‐Farber Cancer Institute, Boston Children's Hospital and Harvard Medical SchoolBostonMassachusettsUSA
| | - Andrew E. Place
- Division of Hematology/Oncology, Department of Pediatric OncologyDana‐Farber Cancer Institute, Boston Children's Hospital and Harvard Medical SchoolBostonMassachusettsUSA
| | - Susan Prockop
- Division of Hematology/Oncology, Department of Pediatric OncologyDana‐Farber Cancer Institute, Boston Children's Hospital and Harvard Medical SchoolBostonMassachusettsUSA
| | - Jennifer Whangbo
- Division of Hematology/Oncology, Department of Pediatric OncologyDana‐Farber Cancer Institute, Boston Children's Hospital and Harvard Medical SchoolBostonMassachusettsUSA
| | - Leslie Lehmann
- Division of Hematology/Oncology, Department of Pediatric OncologyDana‐Farber Cancer Institute, Boston Children's Hospital and Harvard Medical SchoolBostonMassachusettsUSA
| | - John Horan
- Division of Hematology/Oncology, Department of Pediatric OncologyDana‐Farber Cancer Institute, Boston Children's Hospital and Harvard Medical SchoolBostonMassachusettsUSA
| | - Jessica Pollard
- Division of Hematology/Oncology, Department of Pediatric OncologyDana‐Farber Cancer Institute, Boston Children's Hospital and Harvard Medical SchoolBostonMassachusettsUSA
| |
Collapse
|
17
|
Montoro J, Balaguer-Roselló A, Sanz J. Recent advances in allogeneic transplantation for acute myeloid leukemia. Curr Opin Oncol 2023; 35:564-573. [PMID: 37820092 DOI: 10.1097/cco.0000000000000992] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/13/2023]
Abstract
PURPOSE OF REVIEW This review highlights recent advancements in allogeneic hematopoietic stem cell transplantation (allo-HSCT) for patients with acute myeloid leukemia (AML). RECENT FINDINGS Important improvements have been observed throughout the allo-HSCT procedure and patient management. Universal donor availability and reduced risk of graft-versus-host disease (GVHD) have been achieved with the introduction of posttransplant cyclophosphamide for GVHD prophylaxis. It has contributed, together with advances in conditioning regimens, GVHD treatment and supportive care, to a reduced overall toxicity of the procedure. Relapse is now the most frequent cause of transplant failure. With increased knowledge of the biological characterization of AML, better prediction of transplant risks and more profound and standardized minimal residual disease (MRD) monitoring, pharmacological, and immunological strategies to prevent relapse are been developed. SUMMARY Allo-HSCT remains the standard of care for high-risk AML. Increased access to transplant, reduced toxicity and relapse are improving patient outcomes. Further research is needed to optimize MRD monitoring, refine conditioning regimens, and explore new GVHD management and relapse prevention therapies.
Collapse
Affiliation(s)
- Juan Montoro
- Hematology Department, Hospital Universitario y Politécnico La Fe
- Departamento de Medicina, Universidad Católica de Valencia
| | - Aitana Balaguer-Roselló
- Hematology Department, Hospital Universitario y Politécnico La Fe
- CIBERONC, Instituto Carlos III, Madrid
| | - Jaime Sanz
- Hematology Department, Hospital Universitario y Politécnico La Fe
- CIBERONC, Instituto Carlos III, Madrid
- Departamento de Medicina, Universidad de Valencia, Spain
| |
Collapse
|
18
|
Babakoohi S, Gu SL, Ehsan H, Markova A. Dermatologic complications in transplantation and cellular therapy for acute leukemia. Best Pract Res Clin Haematol 2023; 36:101464. [PMID: 37353285 PMCID: PMC10291442 DOI: 10.1016/j.beha.2023.101464] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Accepted: 03/30/2023] [Indexed: 04/09/2023]
Abstract
Adoptive cellular immunotherapy, mainly hematopoietic stem cell transplant and CAR-T cell therapy have revolutionized treatment of patients with acute leukemia. Indications and inclusion criteria for these treatments have expanded in recent years. While these therapies are associated with significant improvements in disease response and overall survival, patients may experience adverse events from associated chemotherapy conditioning, engraftment, cytokine storm, supportive medications, and post-transplant maintenance targeted therapies. Supportive oncodermatology is a growing specialty to manage cutaneous toxicities resulting from the anti-cancer therapies. In this review, we summarize diagnosis and management of the common cutaneous adverse events including drug eruptions, graft-versus-host disease, neoplastic and paraneoplastic complications in patients undergoing cellular therapies.
Collapse
Affiliation(s)
- Shahab Babakoohi
- Levine Cancer Institute, Atrium Health Wake Forest Baptist, Charlotte, NC, USA.
| | - Stephanie L Gu
- Memorial Sloan Kettering Cancer Center, Weill Cornell Medical College, New York, NY, USA
| | - Hamid Ehsan
- Levine Cancer Institute, Atrium Health Wake Forest Baptist, Charlotte, NC, USA
| | - Alina Markova
- Memorial Sloan Kettering Cancer Center, Weill Cornell Medical College, New York, NY, USA.
| |
Collapse
|
19
|
Pang Y, Holtzman NG. Immunopathogenic mechanisms and modulatory approaches to graft-versus-host disease prevention in acute myeloid leukaemia. Best Pract Res Clin Haematol 2023; 36:101475. [PMID: 37353287 PMCID: PMC10291443 DOI: 10.1016/j.beha.2023.101475] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2023] [Revised: 05/03/2023] [Accepted: 05/03/2023] [Indexed: 06/25/2023]
Abstract
Allogeneic haematopoietic stem cell transplantation (HSCT) remains the only potential cure for intermediate to high-risk acute myeloid leukaemia (AML). The therapeutic effect of HSCT is largely dependent on the powerful donor-derived immune response against recipient leukaemia cells, known as graft-versus-leukaemia effect (GvL). However, the donor-derived immune system can also cause acute or chronic damage to normal recipient organs and tissues, in a process known as graft-versus-host disease (GvHD). GvHD is a leading cause of non-relapse mortality in HSCT recipients. There are many similarities and cross talk between the immune pathways of GvL and GvHD. Studies have demonstrated that both processes require the presence of mismatched alloantigens between the donor and recipient, and activation of immune responses centered around donor T-cells, which can be further modulated by various recipient or donor factors. Dissecting GvL from GvHD to achieve more effective GvHD prevention and enhanced GvL has been the holy grail of HSCT research. In this review, we focused on the key factors that contribute to the immune responses of GvL and GvHD, the effect on GvL with different GvHD prophylactic strategies, and the potential impact of various AML relapse prevention therapy or treatments on GvHD.
Collapse
Affiliation(s)
- Yifan Pang
- Department of Haematologic Oncology and Blood Disorders, Levine Cancer Institute, Charlotte, NC, USA.
| | - Noa G Holtzman
- Immune Deficiency Cellular Therapy Program, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
20
|
Al-Shaibani E, Novitzky-Basso I, Mattsson J, Kim DDH. Post-transplant maintenance therapy in acute myeloid leukemia after allogeneic hematopoietic stem cell transplantation harmonizing multiple therapeutic modalities including targeted therapy, immunotherapy and cellular therapy. Int J Hematol 2023:10.1007/s12185-023-03614-x. [PMID: 37212948 DOI: 10.1007/s12185-023-03614-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 04/11/2023] [Accepted: 04/28/2023] [Indexed: 05/23/2023]
Abstract
Allogeneic hematopoietic stem cell transplant (HCT) has improved survival for patients with acute myeloid leukemia (AML), especially for those at high risk of relapse. However, relapse remains the leading cause of treatment failure post-HCT, occurring in around 35-45% of patients, and leading to dismal outcomes. Strategies to reduce relapse risk are urgently needed, especially in the early post-transplant period before activation of the graft-versus-leukemia (GVL) effect. Maintenance therapy is a course of treatment given post-HCT with the expectation of reducing relapse risk. While there are currently no therapies approved for maintenance therapy for AML after HCT, there are a number of studies and ongoing investigations examining the role of maintenance therapies that include targeted agents against FLT3-ITD, BCL2, or IDH mutations, hypomethylating agents, immunomodulatory therapies and cellular therapies. In this review, we discuss the mechanistic and clinical data for post-transplant maintenance therapies in AML and strategies for maintenance therapy for AML after HCT.
Collapse
Affiliation(s)
- Eshrak Al-Shaibani
- Department of Medical Oncology and Hematology, Princess Margaret Cancer Centre, 610 University Ave, OPG Rm 6-222, Toronto, ON, Canada
| | - Igor Novitzky-Basso
- Department of Medical Oncology and Hematology, Princess Margaret Cancer Centre, 610 University Ave, OPG Rm 6-222, Toronto, ON, Canada
- Department of Medicine, University of Toronto, Toronto, ON, M5G 2M9, Canada
| | - Jonas Mattsson
- Department of Medical Oncology and Hematology, Princess Margaret Cancer Centre, 610 University Ave, OPG Rm 6-222, Toronto, ON, Canada
- Department of Medicine, University of Toronto, Toronto, ON, M5G 2M9, Canada
| | - Dennis Dong Hwan Kim
- Department of Medical Oncology and Hematology, Princess Margaret Cancer Centre, 610 University Ave, OPG Rm 6-222, Toronto, ON, Canada.
- Department of Medicine, University of Toronto, Toronto, ON, M5G 2M9, Canada.
| |
Collapse
|
21
|
Garcia JS, Flamand Y, Penter L, Keng M, Tomlinson BK, Mendez LM, Koller P, Cullen N, Arihara Y, Pfaff K, Wolff JO, Brunner AM, Galinsky I, Bashey A, Antin JH, Cutler C, Ho V, Jonas BA, Luskin MR, Wadleigh M, Winer ES, Savell A, Leonard R, Robertson T, Davids MS, Streicher H, Rodig SJ, Ritz J, Wu CJ, DeAngelo DJ, Neuberg D, Stone RM, Soiffer RJ. Ipilimumab plus decitabine for patients with MDS or AML in posttransplant or transplant-naïve settings. Blood 2023; 141:1884-1888. [PMID: 36332187 PMCID: PMC10122101 DOI: 10.1182/blood.2022017686] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 09/20/2022] [Accepted: 10/21/2022] [Indexed: 11/06/2022] Open
Abstract
Two articles in this week’s issue focus on the use of ipilimumab and decitabine for patients with myelodysplasia (MDS) and acute myeloid leukemia (AML) before and after hematopoietic stem cell transplantation (HSCT) for high-risk disease. In the first article, Garcia et al report on the results of a phase 1 trial of the combination in 54 patients, demonstrating overall response rate of 52% in patients who are HSCT-naïve and 20% in patients post-HSCT; responses are usually short-lived. In the second article, Penter and colleagues characterize gene expression responses to therapy and conclude that decitabine acts directly to clear leukemic cells while ipilimumab acts on infiltrating lymphocytes in marrow and extramedullary sites. Responses are determined by leukemic cell burden and by the frequency and phenotype of infiltrating lymphocytes. Increasing bone marrow regulatory T cells is identified as a potential contributor to checkpoint inhibitor escape.
Collapse
Affiliation(s)
| | - Yael Flamand
- Department of Data Science, Dana-Farber Cancer Institute, Boston, MA
| | - Livius Penter
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA
| | - Michael Keng
- Division of Hematology/Oncology, University of Virginia, Charlottesville, VA
| | | | - Lourdes M. Mendez
- Department of Medical Oncology, Beth Israel Deaconess Medical Center, Boston, MA
| | - Paul Koller
- Department of Hematology & Hematopoietic Cell Transplantation, City of Hope, Duarte, CA
| | - Nicole Cullen
- Center for Immuno-Oncology, Dana-Farber Cancer Institute, Boston, MA
| | - Yohei Arihara
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA
| | - Kathleen Pfaff
- Center for Immuno-Oncology, Dana-Farber Cancer Institute, Boston, MA
| | | | - Andrew M. Brunner
- Department of Medical Oncology, Massachusetts General Hospital, Boston, MA
| | - Ilene Galinsky
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA
| | - Asad Bashey
- The Blood and Marrow Transplant Program at Northside Hospital, Atlanta, GA
| | - Joseph H. Antin
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA
| | - Corey Cutler
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA
| | - Vincent Ho
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA
| | - Brian A. Jonas
- Division of Cellular Therapy, BMT and Malignant Hematology, University of California, Davis, Sacramento, CA
| | - Marlise R. Luskin
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA
| | - Martha Wadleigh
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA
| | - Eric S. Winer
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA
| | - Alexandra Savell
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA
| | - Rebecca Leonard
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA
| | - Taylor Robertson
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA
| | - Matthew S. Davids
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA
| | - Howard Streicher
- Cancer Therapy Evaluation Program, National Cancer Institute, Bethesda, MD
| | - Scott J. Rodig
- Department of Pathology, Brigham and Women’s Hospital, Boston, MA
| | - Jerome Ritz
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA
| | - Catherine J. Wu
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA
| | - Daniel J. DeAngelo
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA
| | - Donna Neuberg
- Department of Data Science, Dana-Farber Cancer Institute, Boston, MA
| | - Richard M. Stone
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA
| | - Robert J. Soiffer
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA
| |
Collapse
|
22
|
Shi YY, Su L, Liu ZY, Cao YG, Chen X, Zhang RL, Liu QZ, Yao JF, Zhai WH, Ma QL, Jiang EL, Han MZ. A 7-Day Decitabine-Included Conditioning Regimen Accelerated Donor Hematopoietic Engraftment while Reduced the Occurrence of Mucositis without Interfering with Prognosis. Chemotherapy 2023; 68:143-154. [PMID: 36990070 DOI: 10.1159/000530381] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Accepted: 03/20/2023] [Indexed: 03/31/2023]
Abstract
INTRODUCTION Allogeneic hematopoietic stem cell transplantation (allo-HSCT) is the standard and curative treatment strategy for patients with hematologic malignancies. Recently, decitabine-included regimens have been investigated by several studies including ours, which may prevent relapse of primary malignant diseases. METHODS This study was to retrospectively evaluate a 7-day decitabine-included regimen with reduced dose of idarubicin for patients with hematologic malignancies who underwent allo-HSCT. RESULTS A total of 84 patients were enrolled, including 24 cases in 7-day and 60 cases in 5-day decitabine groups, respectively. Patients conditioned with 7-day decitabine regimen showed accelerated neutrophil (12.05 ± 1.97 vs. 13.86 ± 3.15; u = 9.309, p < 0.001) and platelet (16.32 ± 6.27 vs. 21.37 ± 8.57; u = 8.887, p < 0.001) engraftment compared with those treated with 5-day decitabine regimen. Patients in the 7-day decitabine group showed a significantly lower incidence rate of total (50.00% [12/24] versus 78.33% [47/60]; χ2 = 6.583, p = 0.010) and grade III or above (4.17% [1/24] vs. 31.67% [19/60]; χ2 = 7.147, p = 0.008) oral mucositis compared to those in the 5-day decitabine group. However, the occurrence of other major complications post-allo-HSCT and outcomes of patients in these two groups were comparable. CONCLUSION These results demonstrate that this 7-day decitabine-contained new conditioning regimen seems to be feasible and safe for patients with myeloid neoplasms who receive allo-HSCT, and a large-scale prospective study is needed to confirm the findings of this study.
Collapse
Affiliation(s)
- Yuan Yuan Shi
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, China
| | - Long Su
- Department of Hematology, The First Hospital of Jilin University, Changchun, China,
| | - Zeng Yan Liu
- Department of Hematology, Binzhou Medical University Hospital, Binzhou, China
| | - Yi Geng Cao
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, China
| | - Xin Chen
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, China
| | - Rong Li Zhang
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, China
| | - Qing Zhen Liu
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, China
| | - Jian Feng Yao
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, China
| | - Wei Hua Zhai
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, China
| | - Qiao Ling Ma
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, China
| | - Er Lie Jiang
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, China
| | - Ming Zhe Han
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, China
| |
Collapse
|
23
|
Booth N, Mirea L, Huschart E, Miller H, Salzberg D, Campbell C, Beebe K, Schwalbach C, Adams RH, Ngwube A. Efficacy of Azacitidine and Prophylactic Donor Lymphocyte Infusion after HSCT in Pediatric Patients with Acute Myelogenous Leukemia: A Retrospective Pre-Post Study. Transplant Cell Ther 2023; 29:330.e1-330.e7. [PMID: 36804931 DOI: 10.1016/j.jtct.2023.02.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 02/08/2023] [Accepted: 02/09/2023] [Indexed: 02/22/2023]
Abstract
Pediatric patients with acute myeloid leukemia (AML) who undergo allogeneic hematopoietic stem cell transplantation (HSCT) continue to have high rates of relapse. In 2018, Phoenix Children's Hospital started using post-HSCT maintenance therapy in patients with AML in attempt to decrease the number of relapses after HSCT. This therapy consisted of the hypomethylating agent azacitidine (AZA; 6 cycles starting on day +60) and prophylactic donor lymphocyte infusion (DLI; 3 escalating doses beginning after day +120). We aimed to compare 2-year leukemia-free survival (LFS) post-HSCT between patients with AML who received post-HSCT maintenance therapy with AZA and prophylactic DLI and historical control patients who did not receive post-HSCT therapy. This retrospective pre-post study was conducted at Phoenix Children's Hospital and included patients with AML who underwent HSCT between January 1, 2008, and May 31, 2022. We compared LFS, overall survival (OS), and immune reconstitution patterns post-HSCT between patients with AML who received post-HSCT maintenance therapy with AZA and prophylactic DLI (postintervention group) and historical control patients who did not receive this post-HSCT maintenance therapy (preintervention group). Sixty-three patients were evaluable. After excluding 7 patients who died or relapsed prior to day +60, 56 patients remained, including 39 in the preintervention group and 17 in the postintervention group. The median age at transplantation was 9.1 years in the preintervention group and 11 years in the postintervention group (P = .33). The 2-year LFS was 61.5% in the preintervention group, compared to 88.2% in the postintervention group (P = .06). The 2-year OS was 69.2% in the preintervention group and 88.2% in the postintervention group (P = .15). The rates of CD3+CD4+ T cell and CD19+ B cell recovery were faster in the preintervention group compared to the postintervention group (P = .004 and .0006, respectively). In this limited retrospective study, post-HSCT maintenance therapy using AZA and prophylactic DLI was well tolerated; however, its efficacy is yet to be fully determined.
Collapse
Affiliation(s)
- Natalie Booth
- Center for Cancer and Blood Disorders, Phoenix Children's Hospital, Phoenix, Arizona; Division of Child Health, University of Arizona College of Medicine-Phoenix, Phoenix, Arizona.
| | - Lucia Mirea
- Center for Cancer and Blood Disorders, Phoenix Children's Hospital, Phoenix, Arizona
| | - Emily Huschart
- Pediatric Hematology/Oncology, Texas Tech University Health Sciences Campus El Paso, El Paso, Texas
| | - Holly Miller
- Center for Cancer and Blood Disorders, Phoenix Children's Hospital, Phoenix, Arizona; Division of Child Health, University of Arizona College of Medicine-Phoenix, Phoenix, Arizona
| | - Dana Salzberg
- Center for Cancer and Blood Disorders, Phoenix Children's Hospital, Phoenix, Arizona
| | - Courtney Campbell
- Center for Cancer and Blood Disorders, Phoenix Children's Hospital, Phoenix, Arizona
| | - Kristen Beebe
- Center for Cancer and Blood Disorders, Phoenix Children's Hospital, Phoenix, Arizona; Pediatric Hematology/Oncology, Texas Tech University Health Sciences Campus El Paso, El Paso, Texas
| | - Charlotte Schwalbach
- Center for Cancer and Blood Disorders, Phoenix Children's Hospital, Phoenix, Arizona
| | - Roberta H Adams
- Center for Cancer and Blood Disorders, Phoenix Children's Hospital, Phoenix, Arizona; Division of Hematology/Oncology, Department of Internal Medicine, Mayo Clinic Arizona, Phoenix, Arizona
| | - Alexander Ngwube
- Center for Cancer and Blood Disorders, Phoenix Children's Hospital, Phoenix, Arizona; Division of Child Health, University of Arizona College of Medicine-Phoenix, Phoenix, Arizona.
| |
Collapse
|
24
|
Vittayawacharin P, Kongtim P, Ciurea SO. Allogeneic stem cell transplantation for patients with myelodysplastic syndromes. Am J Hematol 2023; 98:322-337. [PMID: 36251347 DOI: 10.1002/ajh.26763] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 10/11/2022] [Accepted: 10/12/2022] [Indexed: 01/13/2023]
Abstract
Myelodysplastic syndromes (MDS) are a heterogenous group of clonal hematopoietic stem cell neoplasms primarily affecting older persons, associated with dysplastic changes of bone marrow cells, peripheral cytopenias, and various risk of leukemic transformation. Although treatment with several drugs has shown improved disease control, allogeneic hematopoietic stem cell transplantation (allo-HSCT) remains the only curative treatment for MDS. The number of patients receiving a transplant, as well as survival, have increased past years because of the use of reduce-intensity conditioning regimens (RIC) as well as the use of haploidentical donors for transplantation. With treatment-related mortality as main limitation, pre-transplant evaluation is essential to assess risks for this older group of patients. In a recent randomized study, allo-HSCT with RIC for patients >50 years old with higher-risk MDS demonstrated superiority in survival compared with hypomethylating agents. Genetic mutations have been shown to significantly impact treatment outcomes including after transplant. Recently, a transplant-specific risk score (which includes age, donor type, performance status, cytogenetic category, recipient's cytomegalovirus status, percentage of blasts, and platelet count) has shown superiority in transplantation outcome prediction, compared with previous scoring systems. Survival remains low for most patients with TP53 mutations and novel treatment strategies are needed, such as administration of natural killer cells post-transplant, as there is no clear evidence that maintenance therapy after transplantation can improve outcomes.
Collapse
Affiliation(s)
- Pongthep Vittayawacharin
- Hematopoietic Stem Cell Transplantation and Cellular Therapy Program, Division of Hematology/Oncology, Department of Medicine, University of California Irvine, Irvine, California, USA.,Division of Hematology, Department of Medicine, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Piyanuch Kongtim
- Hematopoietic Stem Cell Transplantation and Cellular Therapy Program, Division of Hematology/Oncology, Department of Medicine, University of California Irvine, Irvine, California, USA
| | - Stefan O Ciurea
- Hematopoietic Stem Cell Transplantation and Cellular Therapy Program, Division of Hematology/Oncology, Department of Medicine, University of California Irvine, Irvine, California, USA
| |
Collapse
|
25
|
DeFilipp Z, Ciurea SO, Cutler C, Robin M, Warlick ED, Nakamura R, Brunner AM, Dholaria B, Walker AR, Kröger N, Bejanyan N, Atallah E, Tamari R, Solh MM, Percival ME, de Lima M, Scott B, Oran B, Garcia-Manero G, Hamadani M, Carpenter P, DeZern AE. Hematopoietic Cell Transplantation in the Management of Myelodysplastic Syndrome: An Evidence-Based Review from the American Society for Transplantation and Cellular Therapy Committee on Practice Guidelines. Transplant Cell Ther 2023; 29:71-81. [PMID: 36436780 DOI: 10.1016/j.jtct.2022.11.014] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Accepted: 11/18/2022] [Indexed: 11/26/2022]
Abstract
The sole curative therapy for myelodysplastic syndrome (MDS) is allogeneic hematopoietic cell transplantation (HCT). Here this therapeutic modality is reviewed and critically evaluated in the context of the evidence. Specific criteria were used for searching the published literature and for grading the quality and strength of the evidence and the strength of the recommendations. A panel of MDS experts comprising transplantation and nontransplantation physicians developed consensus treatment recommendations. This review summarizes the standard MDS indications for HCT and addresses areas of controversy. Recent prospective trials have confirmed that allogeneic HCT confers survival benefits in patients with advanced or high-risk MDS compared with nontransplantation approaches, and the use of HCT is increasing in older patients with good performance status. However, patients with high-risk cytogenetic or molecular mutations remain at high risk for relapse. It is unknown whether administration of novel therapies before or after transplantation may decrease the risk of disease relapse in selected populations. Ongoing and future studies will investigate revised approaches to disease risk stratification, patient selection, and post-transplantation approaches to optimize allogeneic HCT outcomes for patients with MDS.
Collapse
Affiliation(s)
- Zachariah DeFilipp
- Hematopoieitic Cell Transplant and Cell Therapy Program, Massachusetts General Hospital, Boston, Massachusetts.
| | - Stefan O Ciurea
- Hematopoietic Stem Cell Transplantation and Cellular Therapy Program, Division of Hematology/Oncology, Department of Medicine, University of California Irvine, Orange, California
| | - Corey Cutler
- Division of Stem Cell Transplantation and Cellular Therapy, Dana Farber Cancer Institute, Boston, Massachusetts
| | - Marie Robin
- Service d'Hématologie-Greffe, Hôpital Saint-Louis, APHP, Université de Paris-Cité, Paris, France
| | - Erica D Warlick
- Division of Hematology, Oncology, and Transplantation, University of Minnesota, Minneapolis, Minnesota
| | - Ryotaro Nakamura
- Department of Hematology & Hematopoietic Cell Transplantation, City of Hope, Duarte, California
| | - Andrew M Brunner
- Center for Leukemia, Massachusetts General Hospital, Boston, Massachusetts
| | - Bhagirathbhai Dholaria
- Division of Hematology and Oncology, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Alison R Walker
- Department of Malignant Hematology, Moffitt Cancer Center, Tampa, Florida
| | - Nicolaus Kröger
- University Hospital Eppendorf, Bone Marrow Transplant Centre, Hamburg, Germany
| | - Nelli Bejanyan
- Department of Blood & Marrow Transplant and Cellular Immunotherapy, Moffitt Cancer Center, Tampa, Florida
| | - Ehab Atallah
- Division of Hematology and Oncology, Medical College of Wisconsin, Cancer Center-Froedtert Hospital, Milwaukee, Wisconsin
| | - Roni Tamari
- Adult Bone Marrow Transplant Service, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Melhem M Solh
- Blood and Marrow Transplant Program at Northside Hospital, Atlanta, Georgia
| | - Mary-Elizabeth Percival
- Fred Hutchinson Cancer Research Center, Clinical Research Division and University of Washington, Seattle, Washington
| | - Marcos de Lima
- The Ohio State University James Comprehensive Cancer Center, Columbus, Ohio
| | - Bart Scott
- Fred Hutchinson Cancer Research Center, Clinical Research Division and University of Washington, Seattle, Washington
| | - Betul Oran
- Department of Stem Cell Transplantation and Cellular Therapy, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | | | - Mehdi Hamadani
- Blood and Marrow Transplant and Cellular Therapy Program, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Paul Carpenter
- Fred Hutchinson Cancer Research Center, Clinical Research Division and University of Washington, Seattle, Washington
| | - Amy E DeZern
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University, Baltimore, Maryland
| |
Collapse
|
26
|
Mohty R, El Hamed R, Brissot E, Bazarbachi A, Mohty M. New drugs before, during, and after hematopoietic stem cell transplantation for patients with acute myeloid leukemia. Haematologica 2023; 108:321-341. [PMID: 36722403 PMCID: PMC9890036 DOI: 10.3324/haematol.2022.280798] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Accepted: 09/02/2022] [Indexed: 02/02/2023] Open
Abstract
The treatment of acute myeloid leukemia (AML) has evolved over the past few years with the advent of next-generation sequencing. Targeted therapies alone or in combination with low-dose or high-intensity chemotherapy have improved the outcome of patients with AML treated in the frontline and relapsed/refractory settings. Despite these advances, allogeneic stem cell transplantation (allo-HCT) remains essential as consolidation therapy following frontline treatment in intermediate-and adverse-risk and relapsed/refractory disease. However, many patients relapse, with limited treatment options, hence the need for post-transplant strategies to mitigate relapse risk. Maintenance therapy following allo-HCT was developed for this specific purpose and can exploit either a direct anti-leukemia effect and/or enhance the bona fide graft-versus-leukemia effect without increasing the risk of graft-versus-host disease. In this paper, we summarize novel therapies for AML before, during, and after allo-HCT and review ongoing studies.
Collapse
Affiliation(s)
- Razan Mohty
- Division of Hematology-Oncology and Blood and Marrow Transplantation Program, Mayo Clinic, Jacksonville, FL
| | - Rama El Hamed
- Department of Internal Medicine, Jacobi Medical Center/Albert Einstein College of Medicine, Bronx, NY
| | - Eolia Brissot
- Department of Clinical Hematology and Cellular Therapy, Saint-Antoine Hospital, AP-HP, Sorbonne University, Paris, France; INSERM, Saint-Antoine Research Center, Paris
| | - Ali Bazarbachi
- Bone Marrow Transplantation Program, Department of Internal Medicine, American University of Beirut Medical Center, Beirut, Lebanon
| | - Mohamad Mohty
- Department of Clinical Hematology and Cellular Therapy, Saint-Antoine Hospital, AP-HP, Sorbonne University, Paris, France; INSERM, Saint-Antoine Research Center, Paris.
| |
Collapse
|
27
|
A Pediatric Case of Treatment-related Myelodysplastic Syndrome While on Therapy for Pre-B Acute Lymphoblastic Leukemia. J Pediatr Hematol Oncol 2023; 45:e518-e521. [PMID: 36706304 DOI: 10.1097/mph.0000000000002613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Accepted: 12/01/2022] [Indexed: 01/29/2023]
Abstract
BACKGROUND Treatment-related myelodysplastic syndrome (t-MDS) is a rare late effect of cancer therapy. After alkylating agents, this typically occurs years after completion of therapy. Treatment of t-MDS in pediatrics is an allogeneic stem cell transplant, however, the prognosis remains poor. OBSERVATIONS This case demonstrates t-MDS developing in a patient receiving treatment for pre-B acute lymphoblastic leukemia. This patient was treated with a combination of hematopoietic stem cell transplant and hypomethylating agents. CONCLUSIONS These agents should be considered for use in patients with t-MDS, before transplant to limit additional chemotherapy and as maintenance therapy post-transplant to reduce the risk of relapse.
Collapse
|
28
|
How I treat with maintenance therapy after allogeneic HCT. Blood 2023; 141:39-48. [PMID: 35231083 DOI: 10.1182/blood.2021012412] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Revised: 02/03/2022] [Accepted: 02/03/2022] [Indexed: 01/10/2023] Open
Abstract
Disease relapse is the leading cause of failure for patients receiving allogeneic hematopoietic cell transplantation (allo-HCT). Maintenance therapy administered after allo-HCT is a promising strategy to reduce the incidence of relapse and enhance the curative potential of allo-HCT. Research investigations and clinical applications of this approach have greatly increased in recent years, with an expanding number of available therapeutic agents to introduce in the posttransplant setting. However, many questions and challenges remain regarding the feasibility and clinical impact of maintenance. In this article, we present four common case scenarios addressing select available therapeutic agents as a framework to review published data and ongoing studies and describe our current standard practice in the rapidly evolving field of maintenance therapy after allo-HCT.
Collapse
|
29
|
Mishra A, Tamari R, DeZern AE, Byrne MT, Gooptu M, Chen YB, Deeg HJ, Sallman D, Gallacher P, Wennborg A, Hickman DK, Attar EC, Fernandez HF. Eprenetapopt Plus Azacitidine After Allogeneic Hematopoietic Stem-Cell Transplantation for TP53-Mutant Acute Myeloid Leukemia and Myelodysplastic Syndromes. J Clin Oncol 2022; 40:3985-3993. [PMID: 35816664 DOI: 10.1200/jco.22.00181] [Citation(s) in RCA: 77] [Impact Index Per Article: 25.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
PURPOSE Outcomes are poor in TP53-mutant (mTP53) acute myeloid leukemia (AML) and myelodysplastic syndromes (MDS), even after allogeneic hematopoietic stem-cell transplant (HCT). Eprenetapopt (APR-246) is a first-in-class, small-molecule p53 reactivator. PATIENTS AND METHODS We conducted a phase II, multicenter, open-label trial to assess efficacy and safety of eprenetapopt combined with azacitidine as maintenance therapy after HCT (ClinicalTrials.gov identifier: NCT03931291). Patients with mTP53 MDS or AML received up to 12 cycles of eprenetapopt 3.7 g once daily intravenously on days 1-4 and azacitidine 36 mg/m2 once daily intravenously/subcutaneously on days 1-5 in 28-day cycles. The primary outcomes were relapse-free survival (RFS) and safety. RESULTS Of the 84 patients screened for eligibility before HCT, 55 received a transplant. Thirty-three patients ultimately received maintenance treatment (14 AML and 19 MDS); the median age was 65 (range, 40-74) years. The median number of eprenetapopt cycles was 7 (range, 1-12). With a median follow-up of 14.5 months, the median RFS was 12.5 months (95% CI, 9.6 to not estimable) and the 1-year RFS probability was 59.9% (95% CI, 41 to 74). With a median follow-up of 17.0 months, the median overall survival (OS) was 20.6 months (95% CI, 14.2 to not estimable) and the 1-year OS probability was 78.8% (95% CI, 60.6 to 89.3). Thirty-day and 60-day mortalities from the first dose were 0% and 6% (n = 2), respectively. Acute and chronic (all grade) graft-versus-host disease adverse events were reported in 12% (n = 4) and 33% (n = 11) of patients, respectively. CONCLUSION In patients with mTP53 AML and MDS, post-HCT maintenance therapy with eprenetapopt combined with azacitidine was well tolerated. RFS and OS outcomes were encouraging in this high-risk population.
Collapse
Affiliation(s)
- Asmita Mishra
- Department of Blood and Marrow Transplant and Cellular Immunotherapy, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL
| | - Roni Tamari
- Adult Bone Marrow Transplant Service, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Amy E DeZern
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University, Baltimore, MD
| | - Michael T Byrne
- Division of Hematology and Oncology, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN
| | - Mahasweta Gooptu
- Division of Hematologic Malignancies, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA
| | - Yi-Bin Chen
- Hematopoietic Cell Transplant and Cell Therapy Program, Massachusetts General Hospital, Boston, MA
| | - H Joachim Deeg
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA
| | - David Sallman
- Malignant Hematology Department, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL
| | | | | | | | | | | |
Collapse
|
30
|
Maffini E, Ursi M, Barbato F, Dicataldo M, Roberto M, Campanini E, Dan E, De Felice F, De Matteis S, Storci G, Bonafè M, Arpinati M, Bonifazi F. The prevention of disease relapse after allogeneic hematopoietic cell transplantation in acute myeloid leukemia. Front Oncol 2022; 12:1066285. [DOI: 10.3389/fonc.2022.1066285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Accepted: 11/11/2022] [Indexed: 12/02/2022] Open
Abstract
Disease relapse represents by far the most frequent cause of hematopoietic cell transplantation (HCT) failure. Patients with acute leukemia suffering relapse after HCT have limited conventional treatment options with little possibility of cure and represent, de facto, suitable candidates for the evaluation of novel cellular and biological-based therapies. Donor lymphocyte infusions (DLI) has been one of the first cellular therapies adopted to treat post HCT relapse of acute leukemia patients and still now, it is widely adopted in preemptive and prophylactic settings, with renewed interest for manipulated cellular products such as NK-DLI. The acquisition of novel biological insights into pathobiology of leukemia relapse are translating into the clinic, with novel combinations of target therapies and novel agents, helping delineate new therapeutical landscapes. Hypomethylating agents alone or in combination with novel drugs demonstrated their efficacy in pre-clinical models and controlled trials. FLT3 inhibitors represent an essential therapeutical instrument incorporated in post-transplant maintenance strategies. The Holy grail of allogeneic transplantation lies in the separation of graft-vs.-host disease from graft vs. tumor effects and after more than five decades, is still the most ambitious goal to reach and many ways to accomplish are on their way.
Collapse
|
31
|
Yang G, Wang X, Huang S, Huang R, Wei J, Wang X, Zhang X. Generalist in allogeneic hematopoietic stem cell transplantation for MDS or AML: Epigenetic therapy. Front Immunol 2022; 13:1034438. [PMID: 36268012 PMCID: PMC9577610 DOI: 10.3389/fimmu.2022.1034438] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Accepted: 09/20/2022] [Indexed: 11/24/2022] Open
Abstract
Allogeneic hematopoietic stem cell transplantation (allo-HSCT) remains the only curative treatment for patients with myeloid malignancies such as myelodysplastic syndrome (MDS) and acute myeloid leukemia (AML). However, relapse and graft-versus-host disease (GvHD) still affect the survival of patients who receive allo-HSCT, and more appropriate therapeutic strategies should be applied at all stages of transplantation to prevent these adverse events. The use of epigenetics agents, such as hypomethylating agents (HMAs), has been explored to decrease the risk of relapse by epigenetic modulation, which is especially effective among AML patients with poor mutations in epigenetic regulators. Furthermore, epigenetic agents have also been regarded as prophylactic methods for GvHD management without abrogating graft versus leukemia (GvL) effects. Therefore, the combination of epigenetic therapy and HSCT may optimize the transplantation process and prevent treatment failure. Existing studies have investigated the feasibility and effectiveness of using HMAs in the pretransplant, transplant and posttransplant stages among MDS and AML patients. This review examines the application of HMAs as a bridge treatment to reduce the tumor burden and the determine appropriate dose during allo-HSCT. Within this review, we also examine the efficacy and safety of HMAs alone or HMA-based strategies in posttransplant settings for MDS and AML. Finally, we provide an overview of other epigenetic candidates, which have been discussed in the nontransplant setting.
Collapse
Affiliation(s)
- Guancui Yang
- Medical Center of Hematology, Xinqiao Hospital, Third Military Medical University (Army Medical University), Chongqing, China
- State Key Laboratory of Trauma, Burns and Combined Injury, Third Military Medical University (Army Medical University), Chongqing, China
- Department of Hematology, Affiliated Hospital of North Sichuan Medical College, Nanchong, China
| | - Xiang Wang
- Medical Center of Hematology, Xinqiao Hospital, Third Military Medical University (Army Medical University), Chongqing, China
- State Key Laboratory of Trauma, Burns and Combined Injury, Third Military Medical University (Army Medical University), Chongqing, China
| | - Shiqin Huang
- Medical Center of Hematology, Xinqiao Hospital, Third Military Medical University (Army Medical University), Chongqing, China
- State Key Laboratory of Trauma, Burns and Combined Injury, Third Military Medical University (Army Medical University), Chongqing, China
| | - Ruihao Huang
- Medical Center of Hematology, Xinqiao Hospital, Third Military Medical University (Army Medical University), Chongqing, China
- State Key Laboratory of Trauma, Burns and Combined Injury, Third Military Medical University (Army Medical University), Chongqing, China
| | - Jin Wei
- Department of Hematology, Affiliated Hospital of North Sichuan Medical College, Nanchong, China
| | - Xiaoqi Wang
- Medical Center of Hematology, Xinqiao Hospital, Third Military Medical University (Army Medical University), Chongqing, China
- State Key Laboratory of Trauma, Burns and Combined Injury, Third Military Medical University (Army Medical University), Chongqing, China
- *Correspondence: Xi Zhang, ; Xiaoqi Wang,
| | - Xi Zhang
- Medical Center of Hematology, Xinqiao Hospital, Third Military Medical University (Army Medical University), Chongqing, China
- State Key Laboratory of Trauma, Burns and Combined Injury, Third Military Medical University (Army Medical University), Chongqing, China
- Department of Hematology, Affiliated Hospital of North Sichuan Medical College, Nanchong, China
- *Correspondence: Xi Zhang, ; Xiaoqi Wang,
| |
Collapse
|
32
|
Zhang D, Chen J. Efficacy of decitabine combined with allogeneic hematopoietic stem cell transplantation in the treatment of recurrent and refractory acute myeloid leukemia (AML): A systematic review and meta-analysis. Medicine (Baltimore) 2022; 101:e30644. [PMID: 36123842 PMCID: PMC9478241 DOI: 10.1097/md.0000000000030644] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/13/2022] [Accepted: 08/18/2022] [Indexed: 11/29/2022] Open
Abstract
BACKGROUND This analysis aimed to assess the effect of decitabine combined with allogeneic hematopoietic stem cell transplantation (allo-HSCT) in treating recurrent and refractory acute myeloid leukemia. METHOD The present analysis was carried out according to the principles of Preferred Reporting Items for Systematic Reviews and Meta-Analyses guideline statement. Web of Science, Embase, PubMed, The Cochrane Library, CNKI, VIP, and WanFang Data databases were searched for trials published from their corresponding inception to September 13, 2021. Retrospective research or published randomized controlled trials in Chinese or English were ruled out. The methodological quality of the included studies was assessed using the Physiotherapy Evidence Database scale. Mean differences with 95% confidence intervals were used to analyze continuous data. The I2 test was used to determine heterogeneity, and the meta-analysis was conducted using Revman 5.4. RESULTS Eight studies including 795 participants in total were identified. Decitabine and allo-HSCT showed significant reductions in recurrence after transplantation (odds ratio [OR] = 0.29, 95% confidence interval [CI] (0.17, 0.50), P < .00001), leukemia-free survival (OR = 2.17, 95% CI (1.47, 3.21), P < .0001), graft related death (OR = 0.50, 95% CI (0.25, 0.98), P = .04), and significant improvements in complete remission (OR = 0.39, 95% CI = 0.23-0.68, P = .0007) and partial remission (OR = 0.46, 95%CI = 0.27-0.78, P = .004). The median follow-up time, acute graft-versus-host disease, and no remission had no significant difference between treatment and control groups (the median follow-up time: OR = -1.76, 95% CI (-6.28, 2.76), P = .45; acute graft-versus-host disease: OR = 0.72, 95% CI (0.50, 1.03), P = .08; no remission: OR = 3.19, 95%CI = 2.06-4.94, P = .05). Overall, the magnitude of the effect was found to be in the small to moderate range. CONCLUSION Decitabine combined with allo-HSCT can obtain lower recurrence risk and longer disease-free survival time, and improve the prognosis of patients. The safety is relatively stable. Due to the varying quality level of the included studies, the validation of multiple high-quality studies still needs improvement.
Collapse
Affiliation(s)
- Donghui Zhang
- Department of Pharmacy, Gansu Provincial Hospital, Lanzhou, Gansu, China
| | - Jiahui Chen
- Department of Clinical Skills Training Center, Clinical Academic Affairs Office, The First Hospital of Lanzhou University, Lanzhou, China
| |
Collapse
|
33
|
Hematopoietic Cell Transplantation in the Treatment of Pediatric Acute Myelogenous Leukemia and Myelodysplastic Syndromes: Guidelines from the American Society of Transplantation and Cellular Therapy. Transplant Cell Ther 2022; 28:530-545. [DOI: 10.1016/j.jtct.2022.06.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Accepted: 06/09/2022] [Indexed: 11/20/2022]
|
34
|
Qu C, Zou R, Wang P, Zhu Q, Kang L, Ping N, Xia F, Liu H, Kong D, Yu L, Wu D, Jin Z. Decitabine-primed tandem CD19/CD22 CAR-T therapy in relapsed/refractory diffuse large B-cell lymphoma patients. Front Immunol 2022; 13:969660. [PMID: 36059523 PMCID: PMC9429371 DOI: 10.3389/fimmu.2022.969660] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Accepted: 07/27/2022] [Indexed: 11/23/2022] Open
Abstract
Chimeric antigen receptor T cell (CAR-T) therapy has emerged as highly effective in relapsed/refractory (R/R) diffuse large B-cell lymphoma (DLBCL), but only about 40% patients have achieved sustained responses. Here, we conducted a phase II clinical trial testing efficacy and toxicities of CAR-T therapy in R/R non-Hodgkin’s lymphoma patients (NCT03196830). Among enrolled patients, 33 R/R DLBCL patients pretreated with DFC (decitabine, fludarabine plus cyclophosphamide) lymphodepletion chemotherapy and infused with tandem CD19-CD22 based CAR-T cells were drawn out for efficacy and toxicities of CAR-T therapy evaluation. With a median follow-up of 10.9(0.6-29.0) months, the best overall response and complete remission (CR) rates were 90.9% and 63.6%, respectively. The median progression-free survival (PFS) was 10.2 months and overall survival (OS) was undefined. The 2-year OS and PFS rates were 54.3% and 47.2%, respectively. No severe grade 4 cytokine release syndrome (CRS) was observed and grade 3 CRS was observed in only 7 patients; 3 patients developed mild immune effect or cell-associated neurotoxic syndrome. All toxicities were transient and reversible and no CAR-T-related mortality. Further subgroup analysis showed that achieving CR was an independent prognostic factor associated with favorable PFS and OS. The 2-year OS and PFS for patients who achieved CR within 3 months (undefined versus undefined P=0.021 and undefined versus undefined P=0.036) or during the follow-up period were significantly longer than those who did not (undefined versus 4.6 months P < 0.0001 and undefined versus 2.0months P<0.001). While severe CRS was also an independent prognostic factor but associated with inferior PFS and OS. The 2-year OS and PFS for patients with grade 3 CRS were significantly shorter than those with grade 0-2 CRS (4.1 months versus undefined P<0.0001 and 1.7 months versus undefined P=0.0002). This study indicated that CD19/CD22 dual-targeted CAR-T therapy under a decitabine-containing lymphodepletion regimen may be a safe, potent effective approach to R/R DLBCL patients.
Collapse
Affiliation(s)
- Changju Qu
- National Clinical Research Center for Hematologic Diseases, Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, Suzhou, China
- Institute of Blood and Marrow Transplantation, Collaborative Innovation Center of Hematology, Soochow University, Suzhou, China
- *Correspondence: Changju Qu, ; Depei Wu, ; Zhengming Jin,
| | - Rui Zou
- National Clinical Research Center for Hematologic Diseases, Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, Suzhou, China
- Institute of Blood and Marrow Transplantation, Collaborative Innovation Center of Hematology, Soochow University, Suzhou, China
- Department of Pharmacy, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Peng Wang
- National Clinical Research Center for Hematologic Diseases, Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, Suzhou, China
- Institute of Blood and Marrow Transplantation, Collaborative Innovation Center of Hematology, Soochow University, Suzhou, China
| | - Qian Zhu
- National Clinical Research Center for Hematologic Diseases, Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, Suzhou, China
- Institute of Blood and Marrow Transplantation, Collaborative Innovation Center of Hematology, Soochow University, Suzhou, China
| | - Liqing Kang
- School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, China
- Shanghai Unicar-Therapy Bio-medicine Technology Co., Ltd., Shanghai, China
| | - Nana Ping
- National Clinical Research Center for Hematologic Diseases, Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, Suzhou, China
- Institute of Blood and Marrow Transplantation, Collaborative Innovation Center of Hematology, Soochow University, Suzhou, China
| | - Fan Xia
- Department of Pharmacy, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Hailing Liu
- Department of Radiology, People’s Hospital of Binhai County, Binhai Cinlical College of Yangzhou University, Yancheng, China
| | - Danqing Kong
- National Clinical Research Center for Hematologic Diseases, Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, Suzhou, China
- Institute of Blood and Marrow Transplantation, Collaborative Innovation Center of Hematology, Soochow University, Suzhou, China
| | - Lei Yu
- School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, China
- Shanghai Unicar-Therapy Bio-medicine Technology Co., Ltd., Shanghai, China
| | - Depei Wu
- National Clinical Research Center for Hematologic Diseases, Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, Suzhou, China
- Institute of Blood and Marrow Transplantation, Collaborative Innovation Center of Hematology, Soochow University, Suzhou, China
- *Correspondence: Changju Qu, ; Depei Wu, ; Zhengming Jin,
| | - Zhengming Jin
- National Clinical Research Center for Hematologic Diseases, Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, Suzhou, China
- Institute of Blood and Marrow Transplantation, Collaborative Innovation Center of Hematology, Soochow University, Suzhou, China
- *Correspondence: Changju Qu, ; Depei Wu, ; Zhengming Jin,
| |
Collapse
|
35
|
Manobianco SA, Rakiewicz T, Wilde L, Palmisiano ND. Novel Mechanisms for Post-Transplant Maintenance Therapy in Acute Myeloid Leukemia. Front Oncol 2022; 12:892289. [PMID: 35912243 PMCID: PMC9336463 DOI: 10.3389/fonc.2022.892289] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Accepted: 06/08/2022] [Indexed: 11/13/2022] Open
Abstract
Allogeneic stem cell transplantation has improved survival for patients with acute myeloid leukemia (AML), especially for patients with disease at high risk of relapse. However, relapse remains the most common cause of treatment failure and death in the post-transplant period. Maintenance therapy, an extended course of treatment after achieving remission to reduce the rate of relapse, is an important component of the treatment of various hematologic malignancies; however, its role in the treatment of AML is far less well-defined. Recently, there has been significant interest in the use of novel therapeutic agents as maintenance therapy after allogeneic stem cell transplant, utilizing new mechanisms of treatment and more favorable toxicity profiles. In this review, we will discuss the mechanistic and clinical data for post-transplant maintenance therapies in AML. Then, we will review several emergent and current clinical trials which aim to incorporate novel agents into maintenance therapy regimens.
Collapse
Affiliation(s)
- Steven A. Manobianco
- Thomas Jefferson University Hospital, Jefferson University Hospitals, Philadelphia, PA, United States
| | - Tara Rakiewicz
- Thomas Jefferson University Hospital, Jefferson University Hospitals, Philadelphia, PA, United States
| | - Lindsay Wilde
- Department of Medical Oncology, Division of Hematologic Malignancy and Stem Cell Transplantation, Philadelphia, PA, United States
| | - Neil D. Palmisiano
- Department of Medical Oncology, Division of Hematologic Malignancy and Stem Cell Transplantation, Philadelphia, PA, United States
| |
Collapse
|
36
|
Wang QY, Liu HH, Dong YJ, Liang ZY, Yin Y, Liu W, Wang QY, Wang Q, Sun YH, Xu WL, Han N, Li Y, Ren HY. Low-Dose 5-Aza and DZnep Alleviate Acute Graft- Versus-Host Disease With Less Side Effects Through Altering T-Cell Differentiation. Front Immunol 2022; 13:780708. [PMID: 35281001 PMCID: PMC8907421 DOI: 10.3389/fimmu.2022.780708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Accepted: 01/26/2022] [Indexed: 11/29/2022] Open
Abstract
Objective Previous studies showed that hypomethylating agents (HMAs) could alleviate acute graft-versus-host disease (aGvHD), but affect engraftment after allogeneic hematopoietic stem cell transplantation (allo-HSCT). The combination of two different HMAs in lower doses might overcome this problem. This study aimed to evaluate the treatment effect of the combination of two HMAs—azacitidine (5-Aza) and histone H3K27 methyltransferase inhibitor 3-deazaneplanocin (DZNep)—for the prophylaxis of aGvHD after allo-HSCT and to explore the possible mechanisms. Methods We first optimized the concentrations of individual and combinational 5-Aza and DZNep treatments to ensure no obvious toxicities on activated T cells by evaluating T-cell proliferation, viability, and differentiation. A mouse model of aGvHD was then established to assess the prophylactic efficacy of 5-Aza, DZNep, and their combination on aGvHD. The immunomodulatory effect on T cells and the hematopoietic reconstruction were assessed. Additionally, RNA sequencing (RNA-seq) was performed to identify the underlying molecular mechanisms. Results Compared with single treatments, the in vitro application of 5-Aza with DZNep could more powerfully reduce the production of T helper type 1 (Th1)/T cytotoxic type 1 (Tc1) cells and increase the production of regulatory T cells (Tregs). In an allo-HSCT mouse model, in vivo administration of 5-Aza with DZNep could enhance the prophylactic effect for aGvHD compared with single agents. The mechanism study demonstrated that the combination of 5-Aza and DZNep in vivo had an enhanced effect to inhibit the production of Th1/Tc1, increase the proportions of Th2/Tc2, and induce the differentiation of Tregs as in vitro. RNA-seq analysis revealed the cytokine and chemokine pathways as one mechanism for the alleviation of aGvHD with the combination of 5-Aza and DZNep. Conclusion The combination of 5-Aza and DZNep could enhance the prophylactic effect for aGvHD by influencing donor T-cell differentiation through affecting cytokine and chemokine pathways. This study shed light on the effectively prophylactic measure for aGvHD using different epigenetic agent combinations.
Collapse
Affiliation(s)
- Qing Ya Wang
- Department of Hematology, Peking University First Hospital, Peking University, Beijing, China
| | - Hui Hui Liu
- Department of Hematology, Peking University First Hospital, Peking University, Beijing, China
| | - Yu Jun Dong
- Department of Hematology, Peking University First Hospital, Peking University, Beijing, China
| | - Ze Yin Liang
- Department of Hematology, Peking University First Hospital, Peking University, Beijing, China
| | - Yue Yin
- Department of Hematology, Peking University First Hospital, Peking University, Beijing, China
| | - Wei Liu
- Department of Hematology, Peking University First Hospital, Peking University, Beijing, China
| | - Qing Yun Wang
- Department of Hematology, Peking University First Hospital, Peking University, Beijing, China
| | - Qian Wang
- Department of Hematology, Peking University First Hospital, Peking University, Beijing, China
| | - Yu Hua Sun
- Department of Hematology, Peking University First Hospital, Peking University, Beijing, China
| | - Wei Lin Xu
- Department of Hematology, Peking University First Hospital, Peking University, Beijing, China
| | - Na Han
- Department of Hematology, Peking University First Hospital, Peking University, Beijing, China
| | - Yuan Li
- Department of Hematology, Peking University First Hospital, Peking University, Beijing, China
| | - Han Yun Ren
- Department of Hematology, Peking University First Hospital, Peking University, Beijing, China
| |
Collapse
|
37
|
Zhao H, Dong Z, Wan D, Cao W, Xing H, Liu Z, Fan J, Wang H, Lu R, Zhang Y, Cheng Q, Jiang Z, He F, Xie X, Guo R. Clinical characteristics, treatment, and prognosis of 118 cases of myeloid sarcoma. Sci Rep 2022; 12:6752. [PMID: 35474239 PMCID: PMC9042854 DOI: 10.1038/s41598-022-10831-7] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Accepted: 04/11/2022] [Indexed: 01/15/2023] Open
Abstract
Myeloid sarcoma is a rare manifestation of acute myeloid leukemia (AML) and is associated with poor overall survival (OS). The optimal treatment remains unclear. The study retrospectively evaluated 118 patients with myeloid sarcoma who were treated at the First Affiliated Hospital of Zhengzhou University from January 2010 to July 2021. All cases were diagnosed by tissue biopsy. 41 patients underwent genetic mutation analysis. The most frequent genetic mutations were KIT (16.6%), followed by TET2 (14.6%), and NRAS (14.6%). The median survival time of 118 patients was 4 months (range, 1–51 months), while the median survival time of 11 patients who received allogeneic hematopoietic stem cell transplantation (allo-HSCT) was 19 months (range, 8–51 months). 4 (36.4%) of the 11 patients experienced relapse within 1 year after transplantation. 1 patient died from a severe infection. Of the 6 surviving patients, 5 patients have received maintenance treatment with decitabine after transplantation, and all remained in a state of recurrence-free survival. Patients with myeloid sarcoma have a very unfavorable outcome. Allo-HSCT is an effective treatment option. Recurrence remains the main cause of transplant failure. Maintenance treatment with decitabine after transplantation can prolong the recurrence-free survival time, although these results must be verified in a study with expanded sample size.
Collapse
Affiliation(s)
- Haiqiu Zhao
- Department of Hematology, The First Affiliated Hospital of Zhengzhou University, No. 1 Jianshe East Road, Zhengzhou, 450052, Henan, China
| | - Zhenkun Dong
- Department of Hematology, The First Affiliated Hospital of Zhengzhou University, No. 1 Jianshe East Road, Zhengzhou, 450052, Henan, China.,State Key Laboratory of Experimental Hematology, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, 300020, China
| | - Dingming Wan
- Department of Hematology, The First Affiliated Hospital of Zhengzhou University, No. 1 Jianshe East Road, Zhengzhou, 450052, Henan, China
| | - Weijie Cao
- Department of Hematology, The First Affiliated Hospital of Zhengzhou University, No. 1 Jianshe East Road, Zhengzhou, 450052, Henan, China
| | - Haizhou Xing
- Department of Hematology, The First Affiliated Hospital of Zhengzhou University, No. 1 Jianshe East Road, Zhengzhou, 450052, Henan, China
| | - Zhenzhen Liu
- Department of Hematology, The First Affiliated Hospital of Zhengzhou University, No. 1 Jianshe East Road, Zhengzhou, 450052, Henan, China
| | - Jixin Fan
- Department of Hematology, The First Affiliated Hospital of Zhengzhou University, No. 1 Jianshe East Road, Zhengzhou, 450052, Henan, China
| | - Haiqiong Wang
- Department of Hematology, The First Affiliated Hospital of Zhengzhou University, No. 1 Jianshe East Road, Zhengzhou, 450052, Henan, China
| | - Runqing Lu
- Department of Hematology, The First Affiliated Hospital of Zhengzhou University, No. 1 Jianshe East Road, Zhengzhou, 450052, Henan, China
| | - Yinyin Zhang
- Department of Hematology, The First Affiliated Hospital of Zhengzhou University, No. 1 Jianshe East Road, Zhengzhou, 450052, Henan, China
| | - Qianqian Cheng
- Department of Hematology, The First Affiliated Hospital of Zhengzhou University, No. 1 Jianshe East Road, Zhengzhou, 450052, Henan, China
| | - Zhongxing Jiang
- Department of Hematology, The First Affiliated Hospital of Zhengzhou University, No. 1 Jianshe East Road, Zhengzhou, 450052, Henan, China
| | - Fei He
- Department of Cardiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China.
| | - Xinsheng Xie
- Department of Hematology, The First Affiliated Hospital of Zhengzhou University, No. 1 Jianshe East Road, Zhengzhou, 450052, Henan, China.
| | - Rong Guo
- Department of Hematology, The First Affiliated Hospital of Zhengzhou University, No. 1 Jianshe East Road, Zhengzhou, 450052, Henan, China.
| |
Collapse
|
38
|
Abou Dalle I, El Cheikh J, Bazarbachi A. Pharmacologic Strategies for Post-Transplant Maintenance in Acute Myeloid Leukemia: It Is Time to Consider! Cancers (Basel) 2022; 14:1490. [PMID: 35326641 PMCID: PMC8946578 DOI: 10.3390/cancers14061490] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Revised: 01/16/2022] [Accepted: 01/16/2022] [Indexed: 11/16/2022] Open
Abstract
Patients with high-risk acute myeloid leukemia are offered allogeneic hematopoietic cell transplantation (allo-HCT) in first remission to reduce risk of relapse. However, disease recurrence remains the major reason of allo-HCT failure, occurring in around 35-45% of patients, and leading to dismal outcomes. Strategies to reduce the risk of relapse are greatly needed, especially in the early post-transplant phase where the graft-versus-leukemia (GVL) effect is not yet activated. Some practices include the use of myeloablative conditioning regimens, close monitoring of measurable residual disease and donor chimerism, rapid tapering of immunosuppression, and implementation of pre-emptive strategies as the use of donor lymphocyte infusion. However, it's time to consider prophylactic pharmacologic interventions post allo-HCT that aim at maintaining leukemic clones under control by both direct cytotoxic activity and by enhancing the GVL effect. In this current review, available data on drugs targeting epigenetic pathways like azacitidine, or actionable mutations like FLT3 and IDH1/2 inhibitors used as maintenance post allo-HCT, will be discussed.
Collapse
Affiliation(s)
| | | | - Ali Bazarbachi
- Hematology-Oncology Division, Department of Internal Medicine, American University of Beirut Medical Center, Beirut 1107 2020, Lebanon; (I.A.D.); (J.E.C.)
| |
Collapse
|
39
|
Bewersdorf JP, Prebet T, Gowda L. Azacitidine maintenance in AML post induction and posttransplant. Curr Opin Hematol 2022; 29:84-91. [PMID: 35013047 DOI: 10.1097/moh.0000000000000700] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
PURPOSE OF REVIEW Disease relapse remains the most common cause of death among patients with acute myeloid leukemia (AML) following induction therapy and allogeneic hematopoietic cell transplant (allo-HCT). Prolonging the duration of remission with minimal nonrelapse mortality risk is an area of unmet need for AML patients. RECENT FINDINGS In QUAZAR AML-001 study, the oral azacitidine analogue CC-486 demonstrated an overall survival (OS) benefit when given as postremission therapy (PRT) for patients in CR1 that were ineligible to proceed to allo-HCT. Used as maintenance post allo-HCT, CC-486 has also shown safety with encouraging disease-free survival (DFS). Although a recent randomized trial of parenteral azacitidine vs. placebo post allo-HCT failed to show relapse reduction, a subsequent meta-analysis of maintenance studies posttransplant has shown good utility with this approach. Such conflicting results emphasize the need for robust study designs to identify subsets of patients that derive maximal benefits using latest tools to risk stratify relapse risk. SUMMARY PRT with hypomethylating agents is feasible and in select population, there is a survival advantage with CC-486. Better understanding of distinct epigenetic and immunomodulatory properties of azacitidine, holds significant promise to synergize pharmacologic and cellular drivers of disease control as PRT in future AML trials.
Collapse
Affiliation(s)
- Jan Philipp Bewersdorf
- Leukemia Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Thomas Prebet
- Section of Hematology, Department of Internal Medicine, Yale University School of Medicine, Yale University, New Haven, Connecticut, USA
| | - Lohith Gowda
- Section of Hematology, Department of Internal Medicine, Yale University School of Medicine, Yale University, New Haven, Connecticut, USA
| |
Collapse
|
40
|
Epigenetic Maintenance Strategies after Allogeneic Stem Cell Transplantation in Acute Myeloid Leukemia. Exp Hematol 2022; 109:1-10.e1. [DOI: 10.1016/j.exphem.2022.03.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Revised: 03/04/2022] [Accepted: 03/07/2022] [Indexed: 11/19/2022]
|
41
|
Leotta S, Condorelli A, Sciortino R, Milone GA, Bellofiore C, Garibaldi B, Schininà G, Spadaro A, Cupri A, Milone G. Prevention and Treatment of Acute Myeloid Leukemia Relapse after Hematopoietic Stem Cell Transplantation: The State of the Art and Future Perspectives. J Clin Med 2022; 11:253. [PMID: 35011994 PMCID: PMC8745746 DOI: 10.3390/jcm11010253] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 12/24/2021] [Accepted: 12/28/2021] [Indexed: 12/19/2022] Open
Abstract
Allogeneic hematopoietic stem cell transplantation (HSCT) for high-risk acute myeloid leukemia (AML) represents the only curative option. Progress has been made in the last two decades in the pre-transplant induction therapies, supportive care, selection of donors and conditioning regimens that allowed to extend the HSCT to a larger number of patients, including those aged over 65 years and/or lacking an HLA-identical donor. Furthermore, improvements in the prophylaxis of the graft-versus-host disease and of infection have dramatically reduced transplant-related mortality. The relapse of AML remains the major reason for transplant failure affecting almost 40-50% of the patients. From 10 to 15 years ago to date, treatment options for AML relapsing after HSCT were limited to conventional cytotoxic chemotherapy and donor leukocyte infusions (DLI). Nowadays, novel agents and targeted therapies have enriched the therapeutic landscape. Moreover, very recently, the therapeutic landscape has been enriched by manipulated cellular products (CAR-T, CAR-CIK, CAR-NK). In light of these new perspectives, careful monitoring of minimal-residual disease (MRD) and prompt application of pre-emptive strategies in the post-transplant setting have become imperative. Herein, we review the current state of the art on monitoring, prevention and treatment of relapse of AML after HSCT with particular attention on novel agents and future directions.
Collapse
Affiliation(s)
| | - Annalisa Condorelli
- Division of Hematology, AOU “Policlinico G. Rodolico-San Marco”, Via Santa Sofia 78, 95124 Catania, Italy; (S.L.); (R.S.); (G.A.M.); (C.B.); (B.G.); (G.S.); (A.S.); (A.C.); (G.M.)
| | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Webster JA, Luznik L, Gojo I. Treatment of AML Relapse After Allo-HCT. Front Oncol 2022; 11:812207. [PMID: 34976845 PMCID: PMC8716583 DOI: 10.3389/fonc.2021.812207] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Accepted: 11/25/2021] [Indexed: 01/02/2023] Open
Abstract
With advances in allogeneic hematopoietic stem cell transplant (allo-HCT), disease relapse has replaced transplant-related mortality as the primary cause of treatment failure for patients with acute myeloid leukemia (AML). The efficacy of allo-HCT in AML is a consequence of a graft-versus-leukemia (GVL) effect that is mediated by T lymphocytes, and unique mechanisms of immune evasion underlying post-allo-HCT AML relapses have recently been characterized. Relapsed AML following allo-HCT presents a particularly vexing clinical challenge because transplant-related toxicities, such as graft-versus-host (GVHD) and infections, increase the risk of treatment-related morbidity and mortality. In general, the prognosis of relapsed AML following allo-HCT is poor with most patients failing to achieve a subsequent remission and 2-year survival consistently <15%. The two factors that have been found to predict a better prognosis are a longer duration of post-transplant remission prior to relapse and a lower disease burden at the time of relapse. When considered in combination with a patient's age; co-morbidities; and performance status, these factors can help to inform the appropriate therapy for the treatment of post-transplant relapse. This review discusses the options for the treatment of post-transplant AML relapse with a focus on the options to achieve a subsequent remission and consolidation with cellular immunotherapy, such as a second transplant or donor lymphocyte infusion (DLI). While intensive reinduction therapy and less intensive approaches with hypomethylating agents have long represented the two primary options for the initial treatment of post-transplant relapse, molecularly targeted therapies and immunotherapy are emerging as potential alternative options to achieve remission. Herein, we highlight response and survival outcomes achieved specifically in the post-transplant setting using each of these approaches and discuss how some therapies may overcome the immunologic mechanisms that have been implicated in post-transplant relapse. As long-term survival in post-transplant relapse necessarily involves consolidation with cellular immunotherapy, we present data on the efficacy and toxicity of both DLI and second allo-HCT including when such therapies are integrated with reinduction. Finally, we provide our general approach to the treatment of post-transplant relapse, integrating both novel therapies and our improved understanding of the mechanisms underlying post-transplant relapse.
Collapse
Affiliation(s)
- Jonathan A Webster
- Hematologic Malignancies and Bone Marrow Transplantation Program, Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Leo Luznik
- Hematologic Malignancies and Bone Marrow Transplantation Program, Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Ivana Gojo
- Hematologic Malignancies and Bone Marrow Transplantation Program, Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| |
Collapse
|
43
|
What Are the Prospects for Treating TP53 Mutated Myelodysplastic Syndromes and Acute Myeloid Leukemia? Cancer J 2022; 28:51-61. [DOI: 10.1097/ppo.0000000000000569] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
44
|
The Evolving Role of Allogeneic Stem Cell Transplant in the Era of Molecularly Targeted Agents. Cancer J 2022; 28:78-84. [DOI: 10.1097/ppo.0000000000000575] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
45
|
Bewersdorf JP, Allen C, Mirza AS, Grimshaw AA, Giri S, Podoltsev NA, Gowda L, Cho C, Tallman MS, Zeidan AM, Stahl M. Hypomethylating Agents and FLT3 Inhibitors As Maintenance Treatment for Acute Myeloid Leukemia and Myelodysplastic Syndrome After Allogeneic Hematopoietic Stem Cell Transplantation-A Systematic Review and Meta-Analysis. Transplant Cell Ther 2021; 27:997.e1-997.e11. [PMID: 34551341 PMCID: PMC9533376 DOI: 10.1016/j.jtct.2021.09.005] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2021] [Revised: 08/19/2021] [Accepted: 09/08/2021] [Indexed: 10/20/2022]
Abstract
BACKGROUND Disease relapse remains the major cause of death among patients with acute myeloid leukemia (AML) and myelodysplastic syndrome (MDS) who receive an allogeneic hematopoietic cell transplant (allo-HCT). Maintenance treatment with FLT3 inhibitors and hypomethylating agents (HMA) has been studied in various clinical trials with mixed results. OBJECTIVE To synthesize the current evidence on the efficacy and safety of FLT3 inhibitors and HMA for maintenance therapy after allo-HCT in AML and MDS. METHODS For this systematic review and meta-analysis Cochrane Library, Google Scholar, Ovid Medline, Ovid Embase, PubMed, Scopus, and Web of Science Core Collection were searched from inception to March 2021 for studies on maintenance therapies after allo-HCT in AML and MDS. Studies were excluded if they were reviews, commentaries, case series with <5 patients, or basic research articles, not published in English, not on post-allo-HCT maintenance with FLT3 inhibitors or HMA in AML or MDS, or if they were clinical trials without published results or duplicate publications from the same patient cohort. Studies with insufficient reporting of the primary endpoint (2-year overall survival [OS]) and studies using FLT3 inhibitors or HMA for pre-emptive treatment of imminent relapse based on positive measurable residual disease testing were excluded. Random-effects models were used to pool response rates for the primary outcome of 2-year OS. Hazard ratios (HR) for death and relapse were calculated for studies that included a control group. Rates of relapse-free survival (RFS), non-relapse mortality, and acute and chronic graft-versus-host-disease (GVHD) were studied as secondary endpoints. Downs and Black checklist and risk of bias assessments were used to gauge the quality of individual studies. The study protocol has been registered on PROSPERO (CRD42020187298). RESULTS Our search strategy identified 5559 studies. Twenty-one studies with a total of 809 patients were included in the meta-analysis. The 2-year OS rates were 81.7% (95% confidence interval [CI], 73.8%-87.7%) and 65.7% (95% CI, 55.1%-74.9%) among patients treated with FLT3 inhibitors and HMA, respectively. In sensitivity analyses restricted to studies that included a control group, maintenance therapy with FLT3 inhibitors (HR for death = 0.41; 95% CI, 0.26-0.62) or HMA (HR = 0.45; 95% CI, 0.31-0.66) appeared superior to no maintenance therapy. The 2-year RFS rates were 79.8% (95% CI, 75.0%-83.9%) and 62.4% (95% CI, 50.6%-72.9%) among patients treated with FLT3 inhibitors and HMA, respectively. Rates of any grade acute and chronic GVHD were 33.1% (95% CI, 25.4%-41.8%; grade 3/4: 16.5%) and 42.5% (95% CI, 26.3%-60.4%) among FLT3 inhibitor and 42.7% (95% CI, 33.5%-52.4%; grade 3/4: 8.1%) and 41.5% (95% CI, 32.0%-51.6%) among HMA-treated patients, respectively. CONCLUSION Maintenance therapy with either FLT3 inhibitors or HMA after allo-HCT can lead to prolonged and improved OS and RFS with a favorable safety profile. Additional studies are needed to define the optimal duration of treatment, the role of measurable residual disease status, and transplant characteristics in patient selection.
Collapse
Affiliation(s)
- Jan Philipp Bewersdorf
- Department of Internal Medicine, Section of Hematology, Yale School of Medicine, New Haven, Connecticut; Leukemia Service, Memorial Sloan Kettering Cancer Center, New York, New York; Cancer Outcomes, Public Policy, and Effectiveness Research (COPPER) Center, Yale University, New Haven, Connecticut
| | - Cecily Allen
- Department of Internal Medicine, Section of Hematology, Yale School of Medicine, New Haven, Connecticut
| | - Abu-Sayeef Mirza
- Department of Internal Medicine, Section of Hematology, Yale School of Medicine, New Haven, Connecticut
| | - Alyssa A Grimshaw
- Harvey Cushing/John Hay Whitney Medical Library, Yale University, New Haven, Connecticut
| | - Smith Giri
- Division of Hematology and Oncology, University of Alabama School of Medicine, Birmingham, Alabama
| | - Nikolai A Podoltsev
- Department of Internal Medicine, Section of Hematology, Yale School of Medicine, New Haven, Connecticut; Cancer Outcomes, Public Policy, and Effectiveness Research (COPPER) Center, Yale University, New Haven, Connecticut
| | - Lohith Gowda
- Department of Internal Medicine, Section of Hematology, Yale School of Medicine, New Haven, Connecticut
| | - Christina Cho
- Bone Marrow Transplant Service, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Martin S Tallman
- Leukemia Service, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Amer M Zeidan
- Department of Internal Medicine, Section of Hematology, Yale School of Medicine, New Haven, Connecticut; Cancer Outcomes, Public Policy, and Effectiveness Research (COPPER) Center, Yale University, New Haven, Connecticut
| | - Maximilian Stahl
- Leukemia Service, Memorial Sloan Kettering Cancer Center, New York, New York; Department of Medical Oncology, Adult Leukemia Program, Dana-Farber Cancer Institute, Boston, Massachusetts.
| |
Collapse
|
46
|
Webster JA, Yogarajah M, Zahurak M, Symons H, Dezern AE, Gojo I, Prince GT, Morrow J, Jones RJ, Smith BD, Showel M. A phase II study of azacitidine in combination with granulocyte-macrophage colony-stimulating factor as maintenance treatment, after allogeneic blood or marrow transplantation in patients with poor-risk acute myeloid leukemia (AML) or myelodysplastic syndrome (MDS). Leuk Lymphoma 2021; 62:3181-3191. [PMID: 34284701 PMCID: PMC9195564 DOI: 10.1080/10428194.2021.1948029] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Revised: 05/14/2021] [Accepted: 06/17/2021] [Indexed: 10/20/2022]
Abstract
Relapse is the most common cause of treatment failure following allogeneic blood or marrow transplantation (alloBMT) for AML or MDS. Post-transplant maintenance therapies may prevent relapse. We conducted a phase II trial combining azacitidine (AZA) with GM-CSF in non-relapsed, post-transplant patients with AML or MDS. Patients received escalating doses of AZA to a maximum of 75 mg/m2 for 5 days per cycle for up to 12 cycles. GM-CSF was given on days 1-10 of each cycle. Eighteen patients were treated following non-myeloablative (17) and myeloablative (1) alloBMT for AML (61.1%), MDS (27.7%), or therapy-related myeloid neoplasm (11.1%). The majority of patients (72%) received their graft from an HLA-haploidentical donor. The treatment was well-tolerated with rare grade 3-4 hematologic toxicities. One patient suffered an exacerbation of GVHD. The 24-month relapse-free and overall survivals were 47 and 57%, respectively, with a median of 18.6 and 29 months.
Collapse
Affiliation(s)
- Jonathan A Webster
- Hematologic Malignancies and Bone Marrow Transplantation Program, Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | | | - Marianna Zahurak
- Division of Biostatistics and Bioinformatics, Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Heather Symons
- Hematologic Malignancies and Bone Marrow Transplantation Program, Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Amy E Dezern
- Hematologic Malignancies and Bone Marrow Transplantation Program, Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Ivana Gojo
- Hematologic Malignancies and Bone Marrow Transplantation Program, Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Gabrielle T Prince
- Hematologic Malignancies and Bone Marrow Transplantation Program, Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Jillian Morrow
- Hematologic Malignancies and Bone Marrow Transplantation Program, Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Richard J Jones
- Hematologic Malignancies and Bone Marrow Transplantation Program, Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - B Douglas Smith
- Hematologic Malignancies and Bone Marrow Transplantation Program, Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Margaret Showel
- Hematologic Malignancies and Bone Marrow Transplantation Program, Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| |
Collapse
|
47
|
Austin AE, Byrne M. Detecting and preventing post-hematopoietic cell transplant relapse in AML. Curr Opin Hematol 2021; 28:380-388. [PMID: 34534984 DOI: 10.1097/moh.0000000000000686] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
PURPOSE OF REVIEW Relapsed disease is the primary cause of mortality for acute myeloid leukemia (AML) patients after allogeneic hematopoietic cell transplantation (HCT). This review outlines the most recent advances in the detection and prevention of AML relapse following allogeneic HCT. RECENT FINDINGS Conventional methods for predicting post-HCT relapse rely on the molecular and cytogenetics features present at diagnosis. These methods are slow to reflect a growing understanding of the molecular heterogeneity of AML and impact of new therapies on post-HCT outcomes. The use of measurable residual disease (MRD) techniques, including multiparameter flow cytometry and molecular testing, may improve the prognostic ability of these models and should be incorporated into post-HCT surveillance whenever possible.In the post-HCT setting, FLT3 inhibitor maintenance data indicate that effective therapies can improve post-HCT outcomes. Maintenance data with DNA methyltransferase inhibitor monotherapy is less compelling and outcomes may improve with combinations. Early interventions directed at preemptive management of MRD may further improve post-HCT outcomes. SUMMARY Post-HCT AML relapse prevention has evolved to include more sensitive measures of disease detection and novel therapies that may improve outcomes of poor-risk AML patients. Additional work is needed to maintain this progress.
Collapse
Affiliation(s)
| | - Michael Byrne
- Vanderbilt University School of Medicine, Nashville, Tennessee, USA
| |
Collapse
|
48
|
Zhao G, Wang Q, Li S, Wang X. Resistance to Hypomethylating Agents in Myelodysplastic Syndrome and Acute Myeloid Leukemia From Clinical Data and Molecular Mechanism. Front Oncol 2021; 11:706030. [PMID: 34650913 PMCID: PMC8505973 DOI: 10.3389/fonc.2021.706030] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Accepted: 09/08/2021] [Indexed: 11/13/2022] Open
Abstract
The nucleoside analogs decitabine (5-AZA-dC) and azacitidine (5-AZA) have been developed as targeted therapies to reverse DNA methylation in different cancer types, and they significantly improve the survival of patients who are not suitable for traditional intensive chemotherapies or other treatment regimens. However, approximately 50% of patients have a response to hypomethylating agents (HMAs), and many patients have no response originally or in the process of treatment. Even though new combination regimens have been tested to overcome the resistance to 5-AZA-dC or 5-AZA, only a small proportion of patients benefited from these strategies, and the outcome was very poor. However, the mechanisms of the resistance remain unknown. Some studies only partially described management after failure and the mechanisms of resistance. Herein, we will review the clinical and molecular signatures of the HMA response, alternative treatment after failure, and the causes of resistance in hematological malignancies.
Collapse
Affiliation(s)
| | | | | | - Xiaoqin Wang
- Department of Hematology, Huashan Hospital, Fudan University, Shanghai, China
| |
Collapse
|
49
|
Liu J, Jiang ZX, Xie XS, Wan DM, Cao WJ, Wang M, Liu ZZ, Dong ZK, Wang HQ, Lu RQ, Zhang YY, Cheng QQ, Fan JX, Li W, He F, Guo R. Maintenance Treatment With Low-Dose Decitabine After Allogeneic Hematopoietic Cell Transplantation in Patients With Adult Acute Lymphoblastic Leukemia. Front Oncol 2021; 11:710545. [PMID: 34485147 PMCID: PMC8415411 DOI: 10.3389/fonc.2021.710545] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2021] [Accepted: 07/28/2021] [Indexed: 12/14/2022] Open
Abstract
Background Post-transplant relapse remains a principal leading cause of failure after allogeneic hematopoietic stem cell transplantation (allo-HSCT) in patients with adult acute lymphoblastic leukemia (ALL). The aim of this study was to investigate the efficacy and safety of low-dose decitabine on the prevention of adult ALL relapse after allo-HSCT. Methods In this prospective study, we enrolled 34 patients with ALL who underwent allo-HSCT from August 2016 to April 2020 and received low-dose decitabine maintenance treatment after transplantation. The primary objectives were cumulative incidence of relapse rate (CIR), overall survival (OS), and disease-free survival (DFS). The secondary objectives were graft-versus-host disease (GVHD) and safety. Results Among the enrolled 34 patients, 6 patients relapsed and 6 patients died. The 2-year CIR, OS, and DFS were 20.2, 77.5, and 73.6%, respectively. Subgroup analysis revealed the 2-year CIR, OS, and DFS rates of 12 patients with T-ALL/lymphoblastic lymphoma (LBL) were 8.3, 90, and 81.5%, respectively. None of the seven patients with T-ALL relapsed. During maintenance treatment, only one patient (2.9%) developed grade IV acute GVHD and four (11.8%) patients had severe chronic GVHD. Thirty-two patients (94.1%) developed only grade I to II myelosuppression, and two patients (5.8%) developed grade III to IV granulocytopenia. Conclusions Maintenance treatment with low-dose decitabine after allo-HSCT may be used as a therapeutic option to reduce relapse in patients with adult ALL, especially in patients with T-ALL. Our findings require confirmation in larger-scale controlled trials. Clinical Trial Registration Chinese Clinical Trials Registry, identifier ChiCTR1800014888.
Collapse
Affiliation(s)
- Jia Liu
- Department of Hematology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.,Hematopoietic Stem Cell Transplantation Center, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, China
| | - Zhong-Xing Jiang
- Department of Hematology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Xin-Sheng Xie
- Department of Hematology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Ding-Ming Wan
- Department of Hematology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Wei-Jie Cao
- Department of Hematology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Meng Wang
- Department of Hematology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Zhen-Zhen Liu
- Department of Hematology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Zhen-Kun Dong
- Department of Hematology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Hai-Qiong Wang
- Department of Hematology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Run-Qing Lu
- Department of Hematology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Yin-Yin Zhang
- Department of Hematology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Qian-Qian Cheng
- Department of Hematology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Ji-Xin Fan
- Department of Hematology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Wei Li
- Department of Hematology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Fei He
- Department of Cardiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Rong Guo
- Department of Hematology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| |
Collapse
|
50
|
Wei Y, Xiong X, Li X, Lu W, He X, Jin X, Sun R, Lyu H, Yuan T, Sun T, Zhao M. Low-dose decitabine plus venetoclax is safe and effective as post-transplant maintenance therapy for high-risk acute myeloid leukemia and myelodysplastic syndrome. Cancer Sci 2021; 112:3636-3644. [PMID: 34185931 PMCID: PMC8409404 DOI: 10.1111/cas.15048] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2021] [Revised: 06/22/2021] [Accepted: 06/24/2021] [Indexed: 12/25/2022] Open
Abstract
Acute myeloid leukemia (AML) and myelodysplastic syndrome (MDS) are usually associated with poor outcomes, especially in high-risk AML/MDS. Allogeneic hematopoietic stem cell transplantation (allo-HSCT) is the only curative option for patients suffering from high-risk AML/MDS. However, many patients relapse after allo-HSCT. Novel therapy to prevent relapse is urgently needed. Both the BCL-2 inhibitor venetoclax (VEN) and the hypomethylating agent decitabine (DEC) possess significant antitumor activity effects against AML/MDS. Administration of DEC has been shown to ameliorate graft-versus-host disease (GVHD) and boost the graft-versus-leukemia (GVL) effect post-transplantation. We therefore conducted a prospective study (ChiCTR1900025374) to examine the tolerability and efficacy of a maintenance therapy of low-dose decitabine (LDEC) plus VEN to prevent relapse after allo-HSCT for high-risk AML/MDS patients. Twenty patients with high-risk AML (n = 17) or high-risk MDS (n = 3) post-transplantation were recruited. Approximately day 100 post-transplantation, all patients received LDEC (15 mg/m2 for 3 d) followed by VEN (200 mg) on d 1-21. The cycle interval was 2 mo, and there was 10 cycles. The primary end points of this study were rates of overall survival (OS) and event-free survival (EFS). The secondary endpoints included adverse events (AEs), cumulative incidence of relapse (CIR), nonrelapse mortality (NRM), incidences of acute GVHD (aGVHD) and chronic GVHD (cGVHD), and incidences of viral infection after allo-HSCT. Survival outcomes were assessed using Kaplan-Meier analysis. The median follow-up was 598 (149-1072) d. Two patients relapsed, 1 died, and 1 is still alive after the second transplant. The 2-y OS and EFS rates were 85.2% and 84.7%, respectively. The median 2-y EFS time was 525 (149-1072) d, and 17 patients still had EFS and were alive at the time of this writing. The most common AEs were neutropenia, anemia, thrombocytopenia, neutropenic fever, and fatigue. Grade 2 or 3 AEs were observed in 35% (7/20) and 20% (4/20) of the patients, respectively. No grade >3 AEs were observed. aGVHD (any grade) and cGVHD (limited or extensive) occurred in 55% and 20% of patients, respectively. We conclude that LDEC + VEN can be administered safely after allo-HSCT with no evidence of an increased incidence of GVHD, and this combination decreases the relapse rate in high-risk AML/MDS patients. This novel maintenance therapy may be a promising way to prevent relapse in high-risk AML/MDS patients.
Collapse
Affiliation(s)
- Yunxiong Wei
- The First Central Clinical College of Tianjin Medical UniversityTianjinChina
| | - Xia Xiong
- The First Central Clinical College of Tianjin Medical UniversityTianjinChina
| | - Xin Li
- The First Central Clinical College of Tianjin Medical UniversityTianjinChina
| | - Wenyi Lu
- Department of HematologyTianjin First Central HospitalTianjinChina
| | - Xiaoyuan He
- Department of HematologyTianjin First Central HospitalTianjinChina
| | - Xin Jin
- Nankai University School of MedicineTianjinChina
| | - Rui Sun
- Nankai University School of MedicineTianjinChina
| | - Hairong Lyu
- Department of HematologyTianjin First Central HospitalTianjinChina
| | - Ting Yuan
- Department of HematologyTianjin First Central HospitalTianjinChina
| | - Tongtong Sun
- Department of RadiologyFirst Central Clinical CollegeTianjin Medical UniversityTianjinChina
| | - Mingfeng Zhao
- Department of HematologyTianjin First Central HospitalTianjinChina
| |
Collapse
|