1
|
Berro M, Odstrcil S, Frassa M, Rivas MM, Trucco JI, Paganini I, Kusminsky GD, Couriel D. Impact of tacrolimus time in therapeutic range (TTR) on early post transplantation outcomes. Transpl Immunol 2025; 89:102181. [PMID: 39892766 DOI: 10.1016/j.trim.2025.102181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2024] [Revised: 01/15/2025] [Accepted: 01/29/2025] [Indexed: 02/04/2025]
Abstract
Tacrolimus is a backbone for immunosuppression after allogeneic stem cell transplantation (AlloSCT). There is no sufficient kinetic data demonstrating the consistency of maintaining therapeutic levels. Herein, we measured the kinetic of therapeutic range (TTR) and its impact on outcomes of AlloSCT. Our local observational cohort included 186 adult AlloSCT performed at Hospital Austral between January 2012 and December 2019. An additional external cohort included 307 adult patients with AlloSCT from the University of Utah. We defined adequate TTR as >75 % of the measurements between 5.0 and 15.0 ng/mL during the first 30 days post-transplantation. In our local cohort, 55 % of patients had adequate TTR values. Primary graft failure was significantly lower in patients with adequate TTR (2 %, 95 % CI 0.5-7.7 % vs. 10 %, 95 % CI 5-18 %, p = 0.01). Non relapse mortality (NRM) was significantly lower with adequate TTR (17 %, 95 % CI 11-26 % vs. 33 %, 95 % CI 24-43 %; p < 0.01). Similarly, the external cohort had an NRM value significantly reduced in patients with adequate TTR values. In the pooled data analysis of local and external groups (n = 493), the TTR value below minimal range (≥25 % of measurements <5 ng/mL) was an independent risk factor for graft failure, as well as for NRM rate (44 %, 95 % CI 30-57 % vs. 18 %, 95 % CI 15-22 %) (p < 0.001) and lower OS at 3 years (47 %, 95 % CI 26-55 % vs. 56 %, 95 % CI 49-59 %, p < 0.001). These findings showed the importance of adequate TTRs during the first month after AlloSCTs. Sub-therapeutic TTR values were associated with worse survival outcomes.
Collapse
Affiliation(s)
- Mariano Berro
- Hematopoietic Cell Transplant Unit, Hospital Universitario Austral, Derqui, Argentina.
| | - Silvina Odstrcil
- Hematopoietic Cell Transplant Unit, Hunstman Cancer Institute, University of Utah, USA
| | - Milagros Frassa
- Hematopoietic Cell Transplant Unit, Hospital Universitario Austral, Derqui, Argentina
| | - Maria M Rivas
- Hematopoietic Cell Transplant Unit, Hospital Universitario Austral, Derqui, Argentina
| | - Jose I Trucco
- Hematopoietic Cell Transplant Unit, Hospital Universitario Austral, Derqui, Argentina
| | - Ines Paganini
- Hematopoietic Cell Transplant Unit, Hospital Universitario Austral, Derqui, Argentina
| | - Gustavo D Kusminsky
- Hematopoietic Cell Transplant Unit, Hospital Universitario Austral, Derqui, Argentina
| | - Daniel Couriel
- Hematopoietic Cell Transplant Unit, Hunstman Cancer Institute, University of Utah, USA
| |
Collapse
|
2
|
Gao Y, Ma J. The impact of CYP3A5, NR1I2, and POR polymorphisms on tacrolimus dose-adjusted concentration and clinical outcomes in adult allogeneic haematopoietic stem cell transplantation. Xenobiotica 2025; 55:16-24. [PMID: 39754510 DOI: 10.1080/00498254.2024.2448967] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2024] [Revised: 12/23/2024] [Accepted: 12/24/2024] [Indexed: 01/06/2025]
Abstract
Polymorphisms in genes related to drug-metabolising enzymes may affect tacrolimus exposure. This study aimed to assess the influence of CYP3A5, NR1I2, and POR polymorphisms on tacrolimus pharmacokinetics and outcomes in allogeneic haematopoietic stem cell transplantation (HSCT).Forty-six adult patients receiving oral tacrolimus at an initial dose of 0.03 mg/kg/day for acute graft versus host disease (GVHD) prophylaxis after allogeneic HSCT were enrolled in this retrospective study. Genetic polymorphisms were detected in relation to concentration/dose (C/D) ratios of tacrolimus and the incidence of acute GVHD and acute kidney injury (AKI).The CYP3A5 *3/*3 genotype and co-administration of voriconazole were significantly associated with increased C/D ratios of tacrolimus (p < 0.05). NR1I2 8055CC presents a significantly higher tacrolimus C/D ratio compared with carriers of 8055CT and 8055TT genotypes in allogeneic HSCT recipients with the CYP3A5*1 allele (p = 0.033). Younger age and recipients with the CYP3A5*1 allele were significantly associated with higher incidence of II-IV acute GVHD post-transplantation.CYP3A5*3, NR1I2 8055C > T, and concomitant use of voriconazole are important determinants affecting tacrolimus pharmacokinetics. Moreover, CYP3A5*1 allele and younger age are independent risk factors for II-IV acute GVHD in HSCT recipients.
Collapse
Affiliation(s)
- Yuan Gao
- Department of Pharmacy, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Jingjing Ma
- Department of Pharmacy, The Fourth Affiliated Hospital of Soochow University, Suzhou Dushu Lake Hospital, Medical Center of Soochow University, Suzhou, China
| |
Collapse
|
3
|
Hirai T, Aoyama T, Tsuji Y, Ino K, Ikejiri M, Tawara I, Iwamoto T. Pharmacokinetic Model of Drug Interaction of Tacrolimus with Combined Administration of CYP3A4 Inhibitors Voriconazole and Clarithromycin After Bone Marrow Transplantation. Eur J Drug Metab Pharmacokinet 2024; 49:763-771. [PMID: 39313741 DOI: 10.1007/s13318-024-00915-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/13/2024] [Indexed: 09/25/2024]
Abstract
BACKGROUND AND OBJECTIVES A pharmacokinetic model has been developed to quantify the drug-drug interactions of tacrolimus with concentration-dependent inhibition of cytochrome P450 (CYP) 3A4 from voriconazole and clarithromycin based on the CYP3A5 and CYP2C19 genotypes. METHODS This retrospective study recruited unrelated bone marrow transplant recipients receiving oral tacrolimus concomitantly with voriconazole and clarithromycin. The published population pharmacokinetic model that implemented genotypes of CYP3A5 (tacrolimus) and CYP2C19 (voriconazole) was integrated. The tested CYP3A4 inhibition models (Sigmoid efficacy maximum [Emax], Emax, log-linear, and linear) were a function of competitive inhibition of voriconazole and mechanism-based inhibition of clarithromycin in a virtual enzyme compartment. RESULTS The total tacrolimus trough concentrations were 119 points, with a median of 4.3 (range: 2.0-9.9) ng/mL (n = 3). The final model comprised the Sigmoid Emax model for voriconazole and clarithromycin, which depicted time-course alterations in tacrolimus concentration and clearance when given voriconazole and clarithromycin. CONCLUSIONS These findings could facilitate the model-informed precision dosing of tacrolimus after unrelated bone marrow transplant.
Collapse
Affiliation(s)
- Toshinori Hirai
- Department of Pharmacy, Faculty of Medicine, Mie University Hospital, Mie University, 2-174 Edobashi, Tsu, Mie, 514-8507, Japan
- Department of Pharmacy, Tokyo Medical and Dental University Hospital, Tokyo Medical and Dental University (TMDU), 1-5-45 Yushima, Bunkyo-ku, Tokyo, 113-8519, Japan
| | - Takahiko Aoyama
- Laboratory of Clinical Pharmacometrics, School of Pharmacy, Nihon University, 7-7-1, Narashinodai, Funabashi, Chiba, 274-8555, Japan
| | - Yasuhiro Tsuji
- Laboratory of Clinical Pharmacometrics, School of Pharmacy, Nihon University, 7-7-1, Narashinodai, Funabashi, Chiba, 274-8555, Japan
| | - Kazuko Ino
- Department of Hematology and Oncology, Faculty of Medicine, Mie University Hospital, Mie University, 2-174 Edobashi, Tsu, Mie, 514-8507, Japan
| | - Makoto Ikejiri
- Department of Clinical Laboratory, Faculty of Medicine, Mie University Hospital, Mie University, 2-174 Edobashi, Tsu, Mie, 514-8507, Japan
| | - Isao Tawara
- Department of Hematology and Oncology, Faculty of Medicine, Mie University Hospital, Mie University, 2-174 Edobashi, Tsu, Mie, 514-8507, Japan
| | - Takuya Iwamoto
- Department of Pharmacy, Faculty of Medicine, Mie University Hospital, Mie University, 2-174 Edobashi, Tsu, Mie, 514-8507, Japan.
| |
Collapse
|
4
|
Jiang J, Luan J. Effect of CYP3A5 Gene Polymorphisms on Tacrolimus Blood Concentrations and Adverse Events in Allogeneic Hematopoietic Stem Cell Transplant Patients. Transplant Proc 2024; 56:1678-1682. [PMID: 39147616 DOI: 10.1016/j.transproceed.2024.08.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Accepted: 08/06/2024] [Indexed: 08/17/2024]
Abstract
BACKGROUND Tacrolimus is the core basic immunosuppressant after transplantation. Cytochrome P450 3A5 (CYP3A5) is the main enzyme involved in tacrolimus metabolism, and rs776746A>G is the most frequently studied polymorphism in the CYP3A5 gene. The aim of this study was to investigate the effect of CYP3A5 gene polymorphisms on tacrolimus blood concentrations and acute graft versus host disease (GVHD) in patients with allogeneic hematopoietic stem cell transplantation (allo-HSCT). METHODS This study included adult patients who received allo-HSCT at the First Affiliated Hospital of Wannan Medical College from January 2021 to June 2022, and received postoperative treatment with tacrolimus. Tacrolimus blood levels were obtained by fully automatic chemiluminescence immunoassay analyzer. Polymerase chain reaction/restriction fragment length polymorphism was used to genotype for CYP3A5*3 allelic variants. RESULTS In a total of 50 transplant patients, 30 patients were detected with CYP3A5*3/*3 genotype, 15 patients with CYP3A5*1/*3 genotype, and 5 patients with CYP3A5*1/*1 genotype. The initial tacrolimus blood concentrations in allo-HSCT patients with CYP3A5*1/*1, *1/*3, and *3/*3 genes were 7.75, 8.61, and 10.19 ng/mL, respectively; The initial blood concentration/dose (C/D) ratios were 4.08, 4.42 and 5.66 ng/(mL·mg), respectively. The C/D ratios of allo-HSCT patients carrying CYP3A5*1/*1, *1/*3, and *3/*3 genes were 4.35 and 4.71 and 5.58, 4.19, 4.56 and 5.71 ng/(mL·mg) in the second and 3rd weeks after operation. These results showed that the blood concentration and C/D ratio of tacrolimus in patients with CYP3A5*3/*3 genotype were significantly higher than those in patients with CYP3A5*1/*3 or CYP3A5*1/*1 genotype. Moreover, the incidence of acute GVHD after allo-HSCT in patients with CYP3A5*1/*1 genotype was significantly higher than that in patients with CYP3A5*1/*3 or CYP3A5*3/*3 genotype. CONCLUSIONS Most patients carry the mutant allele CYP3A5*3. CYP3A5 gene polymorphisms affect tacrolimus blood concentrations and acute GVHD after allo-HSCT.
Collapse
Affiliation(s)
- Jia Jiang
- Department of Pharmacy, The First Affiliated Hospital of Wannan Medical College (Yijishan Hospital of Wannan Medical College), Wuhu, China.
| | - Jiajie Luan
- Department of Pharmacy, The First Affiliated Hospital of Wannan Medical College (Yijishan Hospital of Wannan Medical College), Wuhu, China
| |
Collapse
|
5
|
Marco DN, Molina M, Guio AM, Julian J, Fortuna V, Fabregat-Zaragoza VL, Salas MQ, Monge-Escartín I, Riu-Viladoms G, Carcelero E, Roma JR, Llobet N, Arcarons J, Suárez-Lledó M, Rosiñol L, Fernández-Avilés F, Rovira M, Brunet M, Martínez C. Effects of CYP3A5 Genotype on Tacrolimus Pharmacokinetics and Graft-versus-Host Disease Incidence in Allogeneic Hematopoietic Stem Cell Transplantation. Pharmaceuticals (Basel) 2024; 17:553. [PMID: 38794124 PMCID: PMC11124388 DOI: 10.3390/ph17050553] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2024] [Revised: 04/18/2024] [Accepted: 04/22/2024] [Indexed: 05/26/2024] Open
Abstract
Tacrolimus (Tac) is pivotal in preventing acute graft-versus-host disease (GVHD) after allogeneic hematopoietic stem cell transplantation (alloHSCT). It has been reported that genetic factors, including CYP3A5*3 and CYP3A4*22 polymorphisms, have an impact on Tac metabolism, dose requirement, and response to Tac. There is limited information regarding this topic in alloHSCT. The CYP3A5 genotype and a low Tac trough concentration/dose ratio (Tac C0/D ratio) can be used to identify fast metabolizers and predict the required Tac dose to achieve target concentrations earlier. We examined 62 Caucasian alloHSCT recipients with a fast metabolizer phenotype (C0/dose ratio ≤ 1.5 ng/mL/mg), assessing CYP3A5 genotypes and acute GVHD incidence. Forty-nine patients (79%) were poor metabolizers (2 copies of the variant *3 allele) and 13 (21%) were CYP3A5 expressers (CYP3A5*1/*1 or CYP3A5*1/*3 genotypes). CYP3A5 expressers had lower C0 at 48 h (3.7 vs. 6.2 ng/mL, p = 0.03) and at 7 days (8.6 vs. 11.4 ng/mL, p = 0.04) after Tac initiation, tended to take longer to reach Tac therapeutic range (11.8 vs. 8.9 days, p = 0.16), and had higher incidence of both global (92.3% vs. 38.8%, p < 0.001) and grade II-IV acute GVHD (61.5% vs. 24.5%, p = 0.008). These results support the adoption of preemptive pharmacogenetic testing to better predict individual Tac initial dose, helping to achieve the therapeutic range and reducing the risk of acute GVHD earlier.
Collapse
Affiliation(s)
- Daniel N. Marco
- Hematopoietic Stem Cell Transplantation Unit, Hematology Department, Institute of Cancer and Hematological Diseases, Instituto de Investigación Biomédica August Pi i Sunyer (IDIBAPS), Hospital Clínic, 08036 Barcelona, Spain; (D.N.M.); (M.M.); (A.-M.G.); (M.-Q.S.); (N.L.); (J.A.); (M.S.-L.); (L.R.); (F.F.-A.); (M.R.)
| | - Mònica Molina
- Hematopoietic Stem Cell Transplantation Unit, Hematology Department, Institute of Cancer and Hematological Diseases, Instituto de Investigación Biomédica August Pi i Sunyer (IDIBAPS), Hospital Clínic, 08036 Barcelona, Spain; (D.N.M.); (M.M.); (A.-M.G.); (M.-Q.S.); (N.L.); (J.A.); (M.S.-L.); (L.R.); (F.F.-A.); (M.R.)
| | - Ana-María Guio
- Hematopoietic Stem Cell Transplantation Unit, Hematology Department, Institute of Cancer and Hematological Diseases, Instituto de Investigación Biomédica August Pi i Sunyer (IDIBAPS), Hospital Clínic, 08036 Barcelona, Spain; (D.N.M.); (M.M.); (A.-M.G.); (M.-Q.S.); (N.L.); (J.A.); (M.S.-L.); (L.R.); (F.F.-A.); (M.R.)
| | - Judit Julian
- Pharmacology and Toxicology Laboratory, Biochemistry and Molecular Genetics Department, Biomedical Diagnostic Center, IDIBAPS, CIBERehd, Hospital Clínic, 08036 Barcelona, Spain; (J.J.); (V.F.); (M.B.)
| | - Virginia Fortuna
- Pharmacology and Toxicology Laboratory, Biochemistry and Molecular Genetics Department, Biomedical Diagnostic Center, IDIBAPS, CIBERehd, Hospital Clínic, 08036 Barcelona, Spain; (J.J.); (V.F.); (M.B.)
| | | | - María-Queralt Salas
- Hematopoietic Stem Cell Transplantation Unit, Hematology Department, Institute of Cancer and Hematological Diseases, Instituto de Investigación Biomédica August Pi i Sunyer (IDIBAPS), Hospital Clínic, 08036 Barcelona, Spain; (D.N.M.); (M.M.); (A.-M.G.); (M.-Q.S.); (N.L.); (J.A.); (M.S.-L.); (L.R.); (F.F.-A.); (M.R.)
| | - Inés Monge-Escartín
- Department of Pharmacy, Pharmacy Service, Hospital Clínic, 08036 Barcelona, Spain; (I.M.-E.); (G.R.-V.); (E.C.); (J.R.R.)
| | - Gisela Riu-Viladoms
- Department of Pharmacy, Pharmacy Service, Hospital Clínic, 08036 Barcelona, Spain; (I.M.-E.); (G.R.-V.); (E.C.); (J.R.R.)
| | - Esther Carcelero
- Department of Pharmacy, Pharmacy Service, Hospital Clínic, 08036 Barcelona, Spain; (I.M.-E.); (G.R.-V.); (E.C.); (J.R.R.)
| | - Joan Ramón Roma
- Department of Pharmacy, Pharmacy Service, Hospital Clínic, 08036 Barcelona, Spain; (I.M.-E.); (G.R.-V.); (E.C.); (J.R.R.)
| | - Noemí Llobet
- Hematopoietic Stem Cell Transplantation Unit, Hematology Department, Institute of Cancer and Hematological Diseases, Instituto de Investigación Biomédica August Pi i Sunyer (IDIBAPS), Hospital Clínic, 08036 Barcelona, Spain; (D.N.M.); (M.M.); (A.-M.G.); (M.-Q.S.); (N.L.); (J.A.); (M.S.-L.); (L.R.); (F.F.-A.); (M.R.)
| | - Jordi Arcarons
- Hematopoietic Stem Cell Transplantation Unit, Hematology Department, Institute of Cancer and Hematological Diseases, Instituto de Investigación Biomédica August Pi i Sunyer (IDIBAPS), Hospital Clínic, 08036 Barcelona, Spain; (D.N.M.); (M.M.); (A.-M.G.); (M.-Q.S.); (N.L.); (J.A.); (M.S.-L.); (L.R.); (F.F.-A.); (M.R.)
| | - María Suárez-Lledó
- Hematopoietic Stem Cell Transplantation Unit, Hematology Department, Institute of Cancer and Hematological Diseases, Instituto de Investigación Biomédica August Pi i Sunyer (IDIBAPS), Hospital Clínic, 08036 Barcelona, Spain; (D.N.M.); (M.M.); (A.-M.G.); (M.-Q.S.); (N.L.); (J.A.); (M.S.-L.); (L.R.); (F.F.-A.); (M.R.)
| | - Laura Rosiñol
- Hematopoietic Stem Cell Transplantation Unit, Hematology Department, Institute of Cancer and Hematological Diseases, Instituto de Investigación Biomédica August Pi i Sunyer (IDIBAPS), Hospital Clínic, 08036 Barcelona, Spain; (D.N.M.); (M.M.); (A.-M.G.); (M.-Q.S.); (N.L.); (J.A.); (M.S.-L.); (L.R.); (F.F.-A.); (M.R.)
| | - Francesc Fernández-Avilés
- Hematopoietic Stem Cell Transplantation Unit, Hematology Department, Institute of Cancer and Hematological Diseases, Instituto de Investigación Biomédica August Pi i Sunyer (IDIBAPS), Hospital Clínic, 08036 Barcelona, Spain; (D.N.M.); (M.M.); (A.-M.G.); (M.-Q.S.); (N.L.); (J.A.); (M.S.-L.); (L.R.); (F.F.-A.); (M.R.)
| | - Montserrat Rovira
- Hematopoietic Stem Cell Transplantation Unit, Hematology Department, Institute of Cancer and Hematological Diseases, Instituto de Investigación Biomédica August Pi i Sunyer (IDIBAPS), Hospital Clínic, 08036 Barcelona, Spain; (D.N.M.); (M.M.); (A.-M.G.); (M.-Q.S.); (N.L.); (J.A.); (M.S.-L.); (L.R.); (F.F.-A.); (M.R.)
| | - Mercè Brunet
- Pharmacology and Toxicology Laboratory, Biochemistry and Molecular Genetics Department, Biomedical Diagnostic Center, IDIBAPS, CIBERehd, Hospital Clínic, 08036 Barcelona, Spain; (J.J.); (V.F.); (M.B.)
| | - Carmen Martínez
- Hematopoietic Stem Cell Transplantation Unit, Hematology Department, Institute of Cancer and Hematological Diseases, Instituto de Investigación Biomédica August Pi i Sunyer (IDIBAPS), Hospital Clínic, 08036 Barcelona, Spain; (D.N.M.); (M.M.); (A.-M.G.); (M.-Q.S.); (N.L.); (J.A.); (M.S.-L.); (L.R.); (F.F.-A.); (M.R.)
| |
Collapse
|
6
|
Seligson ND, Zhang X, Zemanek MC, Johnson JA, VanGundy Z, Wang D, Phelps MA, Roddy J, Hofmeister CC, Li J, Poi MJ. CYP3A5 influences oral tacrolimus pharmacokinetics and timing of acute kidney injury following allogeneic hematopoietic stem cell transplantation. Front Pharmacol 2024; 14:1334440. [PMID: 38259277 PMCID: PMC10800424 DOI: 10.3389/fphar.2023.1334440] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Accepted: 12/21/2023] [Indexed: 01/24/2024] Open
Abstract
Introduction: Polymorphisms in genes responsible for the metabolism and transport of tacrolimus have been demonstrated to influence clinical outcomes for patients following allogeneic hematologic stem cell transplant (allo-HSCT). However, the clinical impact of germline polymorphisms specifically for oral formulations of tacrolimus is not fully described. Methods: To investigate the clinical impact of genetic polymorphisms in CYP3A4, CYP3A5, and ABCB1 on oral tacrolimus pharmacokinetics and clinical outcomes, we prospectively enrolled 103 adult patients receiving oral tacrolimus for the prevention of graft-versus-host disease (GVHD) following allo-HSCT. Patients were followed in the inpatient and outpatient phase of care for the first 100 days of tacrolimus therapy. Patients were genotyped for CYP3A5 *3 (rs776746), CYP3A4 *1B (rs2740574), ABCB1 exon 12 (rs1128503), ABCB1 exon 21 (rs2032582), ABCB1 exon 26 (rs1045642). Results: Expression of CYP3A5 *1 was highly correlated with tacrolimus pharmacokinetics in the inpatient phase of care (p < 0.001) and throughout the entirety of the study period (p < 0.001). Additionally, Expression of CYP3A5 *1 was associated with decreased risk of developing AKI as an inpatient (p = 0.06). Variants in ABCB1 were not associated with tacrolimus pharmacokinetics in this study. We were unable to discern an independent effect of CYP3A4 *1B or *22 in this population. Conclusion: Expression of CYP3A5 *1 is highly influential on the pharmacokinetics and clinical outcomes for patients receiving oral tacrolimus as GVHD prophylaxis following allo-HSCT.
Collapse
Affiliation(s)
- Nathan D. Seligson
- Division of Pharmacy Practice and Science, College of Pharmacy, The Ohio State University, Columbus, OH, United States
- Department of Pharmacy, The Ohio State University Wexner Medical Center, Columbus, OH, United States
- Comprehensive Cancer Center, The Ohio State University, Columbus, OH, United States
| | - Xunjie Zhang
- Division of Pharmacy Practice and Science, College of Pharmacy, The Ohio State University, Columbus, OH, United States
| | - Mark C. Zemanek
- Division of Pharmacy Practice and Science, College of Pharmacy, The Ohio State University, Columbus, OH, United States
| | - Jasmine A. Johnson
- Division of Pharmacy Practice and Science, College of Pharmacy, The Ohio State University, Columbus, OH, United States
| | - Zachary VanGundy
- Division of Pharmacy Practice and Science, College of Pharmacy, The Ohio State University, Columbus, OH, United States
| | - Danxin Wang
- Department of Pharmacotherapy and Translational Research, College of Pharmacy, University of Florida, Gainesville, FL, United States
| | - Mitch A. Phelps
- Comprehensive Cancer Center, The Ohio State University, Columbus, OH, United States
- Division of Pharmaceutics and Pharmaceutical Chemistry, College of Pharmacy, The Ohio State University, Columbus, OH, United States
| | - Julianna Roddy
- Division of Pharmacy Practice and Science, College of Pharmacy, The Ohio State University, Columbus, OH, United States
- Department of Pharmacy, The Ohio State University Wexner Medical Center, Columbus, OH, United States
| | - Craig C. Hofmeister
- Department of Hematology and Oncology, Winship Cancer Institute of Emory University, Atlanta, GA, United States
| | - Junan Li
- Comprehensive Cancer Center, The Ohio State University, Columbus, OH, United States
- Division of Outcomes and Translational Sciences, College of Pharmacy, The Ohio State University, Columbus, OH, United States
| | - Ming J. Poi
- Division of Pharmacy Practice and Science, College of Pharmacy, The Ohio State University, Columbus, OH, United States
- Department of Pharmacy, The Ohio State University Wexner Medical Center, Columbus, OH, United States
- Comprehensive Cancer Center, The Ohio State University, Columbus, OH, United States
| |
Collapse
|
7
|
Ho TT, Perkins JB, Gonzalez R, Hicks JK, Martinez RA, Duranceau K, North B, Kim J, Teer JK, Yao J, Yoder SJ, Nishihori T, Bejanyan N, Pidala J, Elmariah H. Association between CYP3A4, CYP3A5 and ABCB1 genotype and tacrolimus treatment outcomes among allogeneic HSCT patients. Pharmacogenomics 2024; 25:29-40. [PMID: 38189154 DOI: 10.2217/pgs-2023-0204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2024] Open
Abstract
Aim: Successful treatment with tacrolimus to prevent graft versus host disease (GVHD) and minimize tacrolimus-related toxicities among allogeneic hematopoietic cell transplantation (alloHCT) recipients is contingent upon quickly achieving and maintaining concentrations within a narrow therapeutic range. The primary objective was to investigate associations between CYP3A4, CYP3A5 or ABCB1 genotype and the proportion of patients that attained an initial tacrolimus goal concentration following initiation of intravenous (iv.) and conversion to oral administration. Materials & methods: We retrospectively evaluated 86 patients who underwent HLA-matched (8/8) related donor alloHCT and were prescribed a tacrolimus-based regimen for GVHD prophylaxis. Results & conclusion: The findings of the present study suggests that CYP3A5 genotype may impact attainment of initial therapeutic tacrolimus concentrations with oral administration in alloHCT recipients.
Collapse
Affiliation(s)
- Teresa T Ho
- Department of Pharmacotherapeutics & Clinical Research, University of South Florida Taneja College of Pharmacy, Tampa, FL 33612, USA
- Department of Pathology, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL 33612, USA
| | - Janelle B Perkins
- Department of Pharmacotherapeutics & Clinical Research, University of South Florida Taneja College of Pharmacy, Tampa, FL 33612, USA
| | - Rebecca Gonzalez
- Department of Blood & Marrow Transplant & Cellular Immunotherapy (BMT CI), H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL 33612, USA
- Department of Pharmacy, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL 33612, USA
| | - James Kevin Hicks
- Department of Pathology, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL 33612, USA
| | - Ronald Alvarez Martinez
- Department of Pharmacotherapeutics & Clinical Research, University of South Florida Taneja College of Pharmacy, Tampa, FL 33612, USA
| | - Katie Duranceau
- Department of Pharmacotherapeutics & Clinical Research, University of South Florida Taneja College of Pharmacy, Tampa, FL 33612, USA
| | - Brianna North
- Department of Pharmacotherapeutics & Clinical Research, University of South Florida Taneja College of Pharmacy, Tampa, FL 33612, USA
| | - Jongphil Kim
- Department of Biostatistics & Bioinformatics, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL 33612, USA
| | - Jamie K Teer
- Department of Biostatistics & Bioinformatics, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL 33612, USA
| | - Jiqiang Yao
- Department of Biostatistics & Bioinformatics, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL 33612, USA
| | - Sean J Yoder
- Molecular Genomics Core, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL 33612, USA
| | - Taiga Nishihori
- Department of Blood & Marrow Transplant & Cellular Immunotherapy (BMT CI), H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL 33612, USA
| | - Nelli Bejanyan
- Department of Blood & Marrow Transplant & Cellular Immunotherapy (BMT CI), H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL 33612, USA
| | - Joseph Pidala
- Department of Blood & Marrow Transplant & Cellular Immunotherapy (BMT CI), H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL 33612, USA
| | - Hany Elmariah
- Department of Blood & Marrow Transplant & Cellular Immunotherapy (BMT CI), H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL 33612, USA
| |
Collapse
|
8
|
Park YA, Park J, Yee J, Gwak HS. Effects of CYP3A5 Genetic Polymorphisms on the Weight-adjusted through Concentration of Sirolimus in Renal Transplant Recipients: A Systematic Review and Meta-analysis. Curr Pharm Des 2024; 30:3108-3115. [PMID: 39171589 DOI: 10.2174/0113816128324199240730093415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 07/15/2024] [Accepted: 07/15/2024] [Indexed: 08/23/2024]
Abstract
BACKGROUND Sirolimus, one of the immunosuppressive drugs administered to renal transplant recipients, is metabolized by cytochrome P450 (CYP) 3A5. Accordingly, CYP3A5 polymorphism is a genetic factor affecting sirolimus pharmacokinetics (PK). Therefore, we conducted a systematic review and meta-analysis on the association between sirolimus PK and CYP3A5*3 polymorphism. METHODS We searched for studies published up to 13 June 2024 from PubMed, Embase, Cochrane Library, and Web of Science. We reviewed studies on the relationship between CYP3A5*3 polymorphism and weightadjusted trough concentration/dose (C0 /D) ratio and dosage of sirolimus in renal transplant recipients, according to the Preferred Reporting Items for Systematic Reviews and Meta-Analyses guidelines. We evaluated mean differences (MDs) and 95% confidence intervals (CIs). RESULTS A total of seven studies were included. The weight-adjusted C0 /D ratio of sirolimus was significantly higher in patients with the CYP3A5*3/*3 rather than CYP3A5*1/*1 or CYP3A5*1/*3 genotype (MD 95.27 ng/mL per mg/kg; 95% CI: 58.06, 132.47; I2 = 74%; p < 0.00001). Also, the weight-adjusted dosage of sirolimus was significantly lower in patients with the CYP3A5*3/*3 rather than CYP3A5*1/*1 or CYP3A5*1/*3 genotype (MD -2.60 × 10-3 mg/kg; 95% CI: -4.52, -0.69; I2 = 44%; p = 0.008). CONCLUSION Our meta-analysis showed a significant effect for the CYP3A5*3 genotype on weight-adjusted C0 /D ratio and dosage of sirolimus in adult renal transplant recipients.
Collapse
Affiliation(s)
- Yoon-A Park
- College of Pharmacy and Graduate School of Pharmaceutical Sciences, Ewha Womans University, Seoul, 03760, Republic of Korea
| | - Juyeong Park
- College of Pharmacy and Graduate School of Pharmaceutical Sciences, Ewha Womans University, Seoul, 03760, Republic of Korea
| | - Jeong Yee
- School of Pharmacy, Sungkyunkwan University, Suwon, Gyeonggi-do, 16419, South Korea
| | - Hye Sun Gwak
- College of Pharmacy and Graduate School of Pharmaceutical Sciences, Ewha Womans University, Seoul, 03760, Republic of Korea
| |
Collapse
|
9
|
Delgado A, Enkemann S. Three Layers of Personalized Medicine in the Use of Sirolimus and Its Derivatives for the Treatment of Cancer. J Pers Med 2023; 13:jpm13050745. [PMID: 37240915 DOI: 10.3390/jpm13050745] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 04/05/2023] [Accepted: 04/19/2023] [Indexed: 05/28/2023] Open
Abstract
Rapamycin and its derivatives are mTOR inhibitors which are FDA-approved for use as immunosuppressants and chemotherapeutic agents. These agents are currently approved to treat renal cell carcinomas, soft tissue sarcomas, and other rare tumors. As tumor treatment paradigms are moving away from organ-based drug selection and moving towards tumor characteristics for individualized treatment it is important to identify as many properties as possible that impact the efficacy of the rapalogues. A review of the current literature was conducted to identify enzymes involved in the metabolism of Sirolimus, Everolimus, Ridaforolimus, and Temsirolimus along with characteristics of tumors that predict the efficacy of these agents. This review also sought to establish whether the genetic characteristics of the patient might influence the activity of the rapalogues or lead to side effects from these agents. Current evidence suggests that tumors with mutations in the mTOR signal transduction pathway are sensitive to rapalogue treatment; the rapalogues are metabolized by cytochromes such as CYP3A4, CYP3A5, and CYP2C8 and transported by ABC transporters that are known to vary in activity in individuals; and that tumors can express these transporters and detoxifying enzymes. This results in three levels of genetic analysis that could impact the effectiveness of the mTOR inhibitors.
Collapse
Affiliation(s)
- Andres Delgado
- Aultman Hospital/NEOMED Program 1, Canton, OH 44710, USA
| | - Steven Enkemann
- Edward Via College of Osteopathic Medicine, 350 Howard St., Spartanburg, SC 29303, USA
| |
Collapse
|
10
|
Shen G, Moua KTY, Perkins K, Johnson D, Li A, Curtin P, Gao W, McCune JS. Precision sirolimus dosing in children: The potential for model-informed dosing and novel drug monitoring. Front Pharmacol 2023; 14:1126981. [PMID: 37021042 PMCID: PMC10069443 DOI: 10.3389/fphar.2023.1126981] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2022] [Accepted: 02/14/2023] [Indexed: 04/07/2023] Open
Abstract
The mTOR inhibitor sirolimus is prescribed to treat children with varying diseases, ranging from vascular anomalies to sporadic lymphangioleiomyomatosis to transplantation (solid organ or hematopoietic cell). Precision dosing of sirolimus using therapeutic drug monitoring (TDM) of sirolimus concentrations in whole blood drawn at the trough (before the next dose) time-point is the current standard of care. For sirolimus, trough concentrations are only modestly correlated with the area under the curve, with R 2 values ranging from 0.52 to 0.84. Thus, it should not be surprising, even with the use of sirolimus TDM, that patients treated with sirolimus have variable pharmacokinetics, toxicity, and effectiveness. Model-informed precision dosing (MIPD) will be beneficial and should be implemented. The data do not suggest dried blood spots point-of-care sampling of sirolimus concentrations for precision dosing of sirolimus. Future research on precision dosing of sirolimus should focus on pharmacogenomic and pharmacometabolomic tools to predict sirolimus pharmacokinetics and wearables for point-of-care quantitation and MIPD.
Collapse
Affiliation(s)
- Guofang Shen
- Department of Hematologic Malignancies Translational Sciences, City of Hope, and Department of Hematopoietic Cell Transplantation, City of Hope Medical Center, Duarte, CA, United States
| | - Kao Tang Ying Moua
- Alfred E. Mann School of Pharmacy and Pharmaceutical Sciences, University of Southern California, Los Angeles, CA, United States
| | - Kathryn Perkins
- Alfred E. Mann School of Pharmacy and Pharmaceutical Sciences, University of Southern California, Los Angeles, CA, United States
| | - Deron Johnson
- Clinical Informatics, City of Hope Medical Center, Duarte, CA, United States
| | - Arthur Li
- Division of Biostatistics, City of Hope, Duarte, CA, United States
| | - Peter Curtin
- Department of Hematologic Malignancies Translational Sciences, City of Hope, and Department of Hematopoietic Cell Transplantation, City of Hope Medical Center, Duarte, CA, United States
| | - Wei Gao
- Division of Engineering and Applied Science, Andrew and Peggy Cherng Department of Medical Engineering, California Institute of Technology, Pasadena, CA, United States
| | - Jeannine S. McCune
- Department of Hematologic Malignancies Translational Sciences, City of Hope, and Department of Hematopoietic Cell Transplantation, City of Hope Medical Center, Duarte, CA, United States
| |
Collapse
|
11
|
Yao JM, Yang D, Clark MC, Otoukesh S, Cao T, Ali H, Arslan S, Aldoss I, Artz A, Amanam I, Salhotra A, Pullarkat V, Sandhu K, Stein A, Marcucci G, Forman SJ, Nakamura R, Al Malki MM. Tacrolimus initial steady state level in post-transplant cyclophosphamide-based GvHD prophylaxis regimens. Bone Marrow Transplant 2021; 57:232-242. [PMID: 34802049 PMCID: PMC8825746 DOI: 10.1038/s41409-021-01528-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Revised: 11/02/2021] [Accepted: 11/09/2021] [Indexed: 11/11/2022]
Abstract
Post-transplant cyclophosphamide (PTCy) combined with tacrolimus (TAC) as graft-versus-host disease (GvHD) prophylaxis post-hematopoietic cell transplantation (HCT) is safe and effective. Optimal serum levels of TAC in this combination remain undetermined. We hypothesized that TAC at initial steady state (TISS) of <10 ng/mL could promote optimal transplant outcomes and prevent TAC-associated toxicities. We retrospectively analyzed a consecutive case series of 210 patients who received PTCy/TAC-based prophylaxis post-HCT from 1/2013–6/2018. Patients received HCT from haploidentical (n=172) or mismatched donors (n=38), and flat dose (FD) or weight-based dose (WBD) TAC. Twenty-four-month overall survival (OS), disease free survival (DFS), and relapse rate (RR) were 61%, 56%, and 22%, respectively, in TISS <10 ng/mL cohort (n=176), and 50%, 43%, and 35%, respectively, in TISS ≥10 ng/mL cohort (n=34) (OS, P=0.71; DFS, P=0.097; RR, P=0.031). OS, DFS, RR, non-relapse mortality, acute GvHD grade II-IV, grade III-IV or chronic GvHD by TISS were similar in multivariable analysis. TISS ≥10 ng/mL conferred increased risk of viral infection (P=0.003). More patients receiving FD vs. WBD had TISS <10 ng/mL (P=0.001). Overall, TISS <10 ng/mL early post HCT conferred similar survival outcomes and lowered risk of viral infection and toxicities compared to TISS ≥10 ng/mL.
Collapse
Affiliation(s)
- Janny M Yao
- Department of Pharmacy, City of Hope National Medical Center, Duarte, CA, USA
| | - Dongyun Yang
- Department of Computational and Quantitative Medicine, Division of Biostatistics, City of Hope National Medical Center, Duarte, CA, USA
| | - Mary C Clark
- Department of Clinical and Translational Project Development, City of Hope National Medical Center, Duarte, CA, USA
| | - Salman Otoukesh
- Department of Hematology and Hematopoietic Cell Transplantation, City of Hope National Medical Center, Duarte, CA, USA
| | - Thai Cao
- Bone Marrow Transplant Department, Kaiser Permanente, Los Angeles, CA, USA
| | - Haris Ali
- Department of Hematology and Hematopoietic Cell Transplantation, City of Hope National Medical Center, Duarte, CA, USA
| | - Shukaib Arslan
- Department of Hematology and Hematopoietic Cell Transplantation, City of Hope National Medical Center, Duarte, CA, USA
| | - Ibrahim Aldoss
- Department of Hematology and Hematopoietic Cell Transplantation, City of Hope National Medical Center, Duarte, CA, USA
| | - Andrew Artz
- Department of Hematology and Hematopoietic Cell Transplantation, City of Hope National Medical Center, Duarte, CA, USA
| | - Idoroenyi Amanam
- Department of Hematology and Hematopoietic Cell Transplantation, City of Hope National Medical Center, Duarte, CA, USA
| | - Amandeep Salhotra
- Department of Hematology and Hematopoietic Cell Transplantation, City of Hope National Medical Center, Duarte, CA, USA
| | - Vinod Pullarkat
- Department of Hematology and Hematopoietic Cell Transplantation, City of Hope National Medical Center, Duarte, CA, USA
| | - Karamjeet Sandhu
- Department of Hematology and Hematopoietic Cell Transplantation, City of Hope National Medical Center, Duarte, CA, USA
| | - Anthony Stein
- Department of Hematology and Hematopoietic Cell Transplantation, City of Hope National Medical Center, Duarte, CA, USA
| | - Guido Marcucci
- Department of Hematology and Hematopoietic Cell Transplantation, City of Hope National Medical Center, Duarte, CA, USA
| | - Stephen J Forman
- Department of Hematology and Hematopoietic Cell Transplantation, City of Hope National Medical Center, Duarte, CA, USA
| | - Ryotaro Nakamura
- Department of Hematology and Hematopoietic Cell Transplantation, City of Hope National Medical Center, Duarte, CA, USA
| | - Monzr M Al Malki
- Department of Hematology and Hematopoietic Cell Transplantation, City of Hope National Medical Center, Duarte, CA, USA.
| |
Collapse
|
12
|
Chen X, Zhang RL, Zhai WH, Ma QL, Pang AM, Yang DL, He Y, Wei JL, Jiang EL, Feng SZ, Han MZ. [The effect of CYP3A5 gene polymorphism on tacrolimus concentration and adverse events in patients undergoing allogeneic hematopoietic stem cell transplantation]. ZHONGHUA XUE YE XUE ZA ZHI = ZHONGHUA XUEYEXUE ZAZHI 2021; 42:828-833. [PMID: 34788922 PMCID: PMC8607024 DOI: 10.3760/cma.j.issn.0253-2727.2021.10.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Indexed: 11/30/2022]
Abstract
Objective: To investigates the relationship between CYP3A5 gene polymorphism, tacrolimus concentration, and acute graft versus host disease (GVHD) in patients undergoing allogeneic hematopoietic stem cell transplantation (allo-HSCT) . Methods: A retrospective analysis of the clinical data of 35 Chinese adult patients who received allo-HSCT from July 2019 to February 2020 was conducted. Also, bone marrow samples were collected before transplantation for CYP3A5 genotyping, and intravenous infusion of tacrolimus and a short course of methotrexate (MTX) ± mycophenolate were used to prevent GVHD. The initial concentration was monitored on the second or third day of tacrolimus administration, followed by 2-3 times a week. The drug dose was adjusted according to the target blood concentration (10-15 ng/ml) . Results: In 16 allo-HSCT patients with CYP3A5 *3/*3 gene, the initial concentration of tacrolimus (9.82 ng/ml vs 8.53 ng/ml) , the initial concentration/dose (C/D) ratio (5.72 ng·ml(-1)·mg(-1) vs 4.26 ng·ml(-1)·mg(-1)) , and the median C/D ratio in the first two weeks after HSCT (5.29 ng·ml(-1)·mg(-1) vs 4.61 ng·ml(-1)·mg(-1), 5.65 ng·ml(-1)·mg(-1) vs 4.56 ng·ml(-1)·mg(-1)) were significantly higher than in 19 patients with at least one CYP3A5 * 1 allele (P=0.028, 0.001, 0.037, 0.045) . The incidence of Ⅲ-Ⅳ aGVHD in patients with CYP3A5*1 alleles was higher than in patients with CYP3A5*3/*3 gene[ (26.3±10.1) %vs (6.2±6.1) %, P=0.187]. Conclusion: CYP3A5 genotype-directed administration may help achieve the target blood concentration of tacrolimus after HSCT more quickly, reduce the incidence of severe aGVHD, and improve the efficacy of transplantation.
Collapse
Affiliation(s)
- X Chen
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300020, China
| | - R L Zhang
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300020, China
| | - W H Zhai
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300020, China
| | - Q L Ma
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300020, China
| | - A M Pang
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300020, China
| | - D L Yang
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300020, China
| | - Y He
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300020, China
| | - J L Wei
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300020, China
| | - E L Jiang
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300020, China
| | - S Z Feng
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300020, China
| | - M Z Han
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300020, China
| |
Collapse
|
13
|
Pasternak AL, Marcath LA, Li Y, Nguyen V, Gersch CL, Rae JM, Frame D, Scappaticci G, Kidwell KM, Hertz DL. Impact of Pharmacogenetics on Intravenous Tacrolimus Exposure and Conversions to Oral Therapy. Transplant Cell Ther 2021; 28:19.e1-19.e7. [PMID: 34583027 DOI: 10.1016/j.jtct.2021.09.011] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Revised: 09/07/2021] [Accepted: 09/19/2021] [Indexed: 12/17/2022]
Abstract
CYP3A5 and CYP3A4 are the predominant enzymes responsible for tacrolimus metabolism; however only a proportion of the population expresses CYP3A5 secondary to genetic variation. CYP3A5 is expressed in both the intestine and the liver and has been shown to impact both the bioavailability and metabolism of orally administered tacrolimus. Increasing the initial tacrolimus dose by 50% to 100% is recommended in patients who are known CYP3A5 expressers; however, whether this dose adjustment is appropriate for i.v. tacrolimus administration is unclear. The objective of this study was to evaluate the impact of CYP3A5 genotype as well as other pharmacogenes on i.v. tacrolimus exposure to determine whether the current genotype-guided dosing recommendations are appropriate for this formulation. In addition, this study aimed to investigate dose conversion requirements among CYP3A5 genotypes when converting from i.v. to p.o. tacrolimus. This study is a retrospective chart review of all patients who underwent allogeneic stem cell transplantation at Michigan Medicine between June 1, 2014, and March 1, 2018, who received i.v. tacrolimus at the time of their transplantation. Secondary use samples were obtained for genotyping CYP3A5, CYP3A4, and ABCB1. Patient demographic information, tacrolimus dosing and trough levels, and concomitant medications received at the time of tacrolimus trough were collected retrospectively from the patients' medical records. The i.v. dose-controlled concentration (C/D) and the i.v.:p.o. exposure ratio was calculated for all tacrolimus doses and patients, respectively. The impact of CYP3A5, CYP3A4, and ABCB1 genotypes on the i.v. C/D were evaluated with linear mixed modeling. The impact of CYP3A5 genotype on the i.v.:p.o. ratio was evaluated while controlling for age and concomitant use of an azole inhibitor. CYP3A5 and CYP3A4 genotypes were significantly associated with the i.v. C/D, with CYP3A5 expressers and CYP3A4 rapid metabolizers having 20% lower tacrolimus exposure. Neither genotype remained significant in the multivariable model, although age, hematocrit, and concomitant use of strong azole inhibitors were associated with increased i.v. C/D. When controlling for patient age and sex, CYP3A5 expressers had significantly higher i.v.:p.o. ratios than CYP3A5 nonexpressers (3.42 versus 2.78; P = .04). Post hoc analysis showed that the i.v.:p.o. ratio may differ among different CYP3A5 genotypes and azole inhibitor combinations. This study demonstrates that the current genotype-guided tacrolimus dose adjustment recommendations are inappropriate for CYP3A5 expressers receiving i.v. tacrolimus. Although CYP3A5 genotype is likely a minor contributor to i.v. tacrolimus exposure, genotype, in addition to capturing concomitant CYP3A inhibitors, would likely improve i.v.:p.o. dose conversion selection. © 2021 American Society for Transplantation and Cellular Therapy. Published by Elsevier Inc.
Collapse
Affiliation(s)
- Amy L Pasternak
- Department of Clinical Pharmacy, University of Michigan College of Pharmacy, Ann Arbor, Michigan; Department of Pharmacy, Michigan Medicine, Ann Arbor, Michigan.
| | - Lauren A Marcath
- Department of Pharmacotherapy, Washington State University College of Pharmacy and Pharmaceutical Sciences, Spokane, Washington
| | - Yajing Li
- Department of Biostatistics, University of Michigan School of Public Health, Ann Arbor, Michigan
| | - Vy Nguyen
- Department of Clinical Pharmacy, University of Michigan College of Pharmacy, Ann Arbor, Michigan
| | - Christina L Gersch
- Division of Hematology/Oncology, Department of Internal Medicine, Michigan Medicine, Ann Arbor, Michigan
| | - James M Rae
- Division of Hematology/Oncology, Department of Internal Medicine, Michigan Medicine, Ann Arbor, Michigan
| | - David Frame
- Department of Clinical Pharmacy, University of Michigan College of Pharmacy, Ann Arbor, Michigan
| | - Gianni Scappaticci
- Division of Hematology/Oncology, Department of Internal Medicine, Michigan Medicine, Ann Arbor, Michigan
| | - Kelley M Kidwell
- Department of Biostatistics, University of Michigan School of Public Health, Ann Arbor, Michigan
| | - Daniel L Hertz
- Department of Clinical Pharmacy, University of Michigan College of Pharmacy, Ann Arbor, Michigan
| |
Collapse
|
14
|
Association Between Neighborhood-level Socioeconomic Deprivation and the Medication Level Variability Index for Children Following Liver Transplantation. Transplantation 2021; 104:2346-2353. [PMID: 32032293 DOI: 10.1097/tp.0000000000003157] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
BACKGROUND Neighborhood socioeconomic deprivation is associated with adverse health outcomes. We sought to determine if neighborhood socioeconomic deprivation was associated with adherence to immunosuppressive medications after liver transplantation. METHODS We conducted a secondary analysis of a multicenter, prospective cohort of children enrolled in the medication adherence in children who had a liver transplant study (enrollment 2010-2013). Participants (N = 271) received a liver transplant ≥1 year before enrollment and were subsequently treated with tacrolimus. The primary exposure, connected to geocoded participant home addresses, was a neighborhood socioeconomic deprivation index (range 0-1, higher indicates more deprivation). The primary outcome was the medication level variability index (MLVI), a surrogate measure of adherence to immunosuppression in pediatric liver transplant recipients. Higher MLVI indicates worse adherence behavior; values ≥2.5 are predictive of late allograft rejection. RESULTS There was a 5% increase in MLVI for each 0.1 increase in deprivation index (95% confidence interval, -1% to 11%; P = 0.08). Roughly 24% of participants from the most deprived quartile had an MLVI ≥2.5 compared with 12% in the remaining 3 quartiles (P = 0.018). Black children were more likely to have high MLVI even after adjusting for deprivation (adjusted odds ratio 4.0 95% confidence interval, 1.7-10.6). CONCLUSIONS This is the first study to evaluate associations between neighborhood socioeconomic deprivation and an objective surrogate measure of medication adherence in children posttransplant. These findings suggest that neighborhood context may be an important consideration when assessing adherence. Differential rates of medication adherence may partly explain links between neighborhood factors and adverse health outcomes following pediatric liver transplantation.
Collapse
|
15
|
Zhu J, Campagne O, Torrice CD, Flynn G, Miller JA, Patel T, Suzuki O, Ptachcinski JR, Armistead PM, Wiltshire T, Mager DE, Weiner DL, Crona DJ. Evaluation of the performance of a prior tacrolimus population pharmacokinetic kidney transplant model among adult allogeneic hematopoietic stem cell transplant patients. Clin Transl Sci 2021; 14:908-918. [PMID: 33502111 PMCID: PMC8212733 DOI: 10.1111/cts.12956] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Revised: 12/02/2020] [Accepted: 12/03/2020] [Indexed: 12/11/2022] Open
Abstract
Abstract Tacrolimus is a calcineurin inhibitor used to prevent acute graft versus host disease in adult patients receiving allogeneic hematopoietic stem cell transplantation (HCT). Previous population pharmacokinetic (PK) models have been developed in solid organ transplant, yet none exists for patients receiving HCT. The primary objectives of this study were to (1) use a previously published population PK model in adult patients who underwent kidney transplant and apply it to allogeneic HCT; (2) evaluate model‐predicted tacrolimus steady‐state trough concentrations and simulations in patients receiving HCT; and (3) evaluate covariates that affect tacrolimus PK in allogeneic HCT. A total of 252 adult patients receiving allogeneic HCT were included in the study. They received oral tacrolimus twice daily (0.03 mg/kg) starting 3 days prior to transplant. Data for these analyses included baseline clinical and demographic data, genotype data for single nucleotide polymorphisms in CYP3A4/5 and ABCB1, and the first tacrolimus steady‐state trough concentration. A dosing simulation strategy based on observed trough concentrations (rather than model‐based predictions) resulted in 12% more patients successfully achieving tacrolimus trough concentrations within the institutional target range (5–10 ng/ml). Stepwise covariate analyses identified HLA match and conditioning regimen (myeloablative vs. reduced intensity) as significant covariates. Ultimately, a previously published tacrolimus population PK model in kidney transplant provided a platform to help establish a model‐based dose adjustment strategy in patients receiving allogenic HCT, and identified HCT‐specific covariates to be considered for future prospective studies.
|