1
|
Miura S, Ueda K, Minakawa K, Nollet KE, Ikeda K. Prospects and Potential for Chimerism Analysis after Allogeneic Hematopoietic Stem Cell Transplantation. Cells 2024; 13:993. [PMID: 38891125 PMCID: PMC11172215 DOI: 10.3390/cells13110993] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 06/03/2024] [Accepted: 06/04/2024] [Indexed: 06/21/2024] Open
Abstract
Chimerism analysis after allogeneic hematopoietic stem cell transplantation serves to confirm engraftment, indicate relapse of hematologic malignancy, and attribute graft failure to either immune rejection or poor graft function. Short tandem repeat PCR (STR-PCR) is the prevailing method, followed by quantitative real-time PCR (qPCR), with detection limits of 1-5% and 0.1%, respectively. Chimerism assays using digital PCR or next-generation sequencing, both of which are more sensitive than STR-PCR, are increasingly used. Stable mixed chimerism is usually not associated with poor outcomes in non-malignant diseases, but recipient chimerism may foretell relapse of hematologic malignancies, so higher detection sensitivity may be beneficial in such cases. Thus, the need for and the type of intervention, e.g., immunosuppression regimen, donor lymphocyte infusion, and/or salvage second transplantation, should be guided by donor chimerism in the context of the feature and/or residual malignant cells of the disease to be treated.
Collapse
Affiliation(s)
- Saori Miura
- Department of Clinical Laboratory Sciences, Fukushima Medical University School of Health Sciences, Fukushima 960-8516, Japan
- Department of Blood Transfusion and Transplantation Immunology, Fukushima Medical University School of Medicine, Fukushima 960-1295, Japan
| | - Koki Ueda
- Department of Blood Transfusion and Transplantation Immunology, Fukushima Medical University School of Medicine, Fukushima 960-1295, Japan
| | - Keiji Minakawa
- Department of Blood Transfusion and Transplantation Immunology, Fukushima Medical University School of Medicine, Fukushima 960-1295, Japan
| | - Kenneth E. Nollet
- Department of Blood Transfusion and Transplantation Immunology, Fukushima Medical University School of Medicine, Fukushima 960-1295, Japan
| | - Kazuhiko Ikeda
- Department of Blood Transfusion and Transplantation Immunology, Fukushima Medical University School of Medicine, Fukushima 960-1295, Japan
| |
Collapse
|
2
|
Zhang A, Macecevic S, Thomas D, Allen J, Mandley S, Kawczak P, Jurcago R, Tyler J, Casey H, Bosler D, Sobecks R, Hamilton B, Sauter C, Mineishi S, Claxton D, Shike H. Engraftment and Measurable Residual Disease Monitoring after Hematopoietic Stem Cell Transplantation: Comparison of Two Chimerism Test Strategies, Next-Generation Sequencing versus a Combination of Short-Tandem Repeats and Quantitative PCR. J Mol Diagn 2024; 26:233-244. [PMID: 38307253 DOI: 10.1016/j.jmoldx.2024.01.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 12/20/2023] [Accepted: 01/02/2024] [Indexed: 02/04/2024] Open
Abstract
Chimerism testing supports the study of engraftment and measurable residual disease (MRD) in patients after allogeneic hematopoietic stem cell transplant. In chimerism MRD, relapse can be predicted by increasing mixed chimerism (IMC), recipient increase ≥0.1% in peripheral blood, and proliferating recipient cells as a surrogate of tumor activity. Conventionally, the combination of short-tandem repeat (STR) and quantitative PCR (qPCR) was needed to ensure assay sensitivity and accuracy in all chimerism status. We evaluated the use of next-generation sequencing (NGS) as an alternate technique. The median numbers of informative markers in unrelated/related cases were 124/82 (NGS; from 202 single-nucleotide polymorphism), 5/3 (qPCR), and 17/10 (STR). Assay sensitivity was 0.22% (NGS), 0.1% (qPCR), and 1% (STR). NGS batch (4 to 48 samples) required 19.60 to 24.80 hours and 1.52 to 2.42 hours of hands-on time (comparable to STR/qPCR). NGS assay cost/sample was $91 to $151, similar to qPCR ($99) but higher than STR ($27). Using 56 serial DNAs from six post-transplant patients monitored by the qPCR/STR, the correlation with NGS was strong for percentage recipient (y = 1.102x + 0.010; R2 = 0.968) and percentage recipient change (y = 0.892x + 0.041; R2 = 0.945). NGS identified all 17 IMC events detected by qPCR (100% sensitivity). The NGS chimerism provides sufficient sensitivity, accuracy, and economical/logistical feasibility in supporting engraftment and MRD monitoring.
Collapse
Affiliation(s)
- Aiwen Zhang
- Allogen Laboratories, Pathology & Laboratory Medicine Institute, Cleveland Clinic, Cleveland, Ohio
| | - Stacey Macecevic
- Allogen Laboratories, Pathology & Laboratory Medicine Institute, Cleveland Clinic, Cleveland, Ohio
| | - Dawn Thomas
- Allogen Laboratories, Pathology & Laboratory Medicine Institute, Cleveland Clinic, Cleveland, Ohio
| | - Jeffrey Allen
- Allogen Laboratories, Pathology & Laboratory Medicine Institute, Cleveland Clinic, Cleveland, Ohio
| | - Sarah Mandley
- Allogen Laboratories, Pathology & Laboratory Medicine Institute, Cleveland Clinic, Cleveland, Ohio
| | - Paul Kawczak
- Allogen Laboratories, Pathology & Laboratory Medicine Institute, Cleveland Clinic, Cleveland, Ohio
| | - Raymond Jurcago
- Allogen Laboratories, Pathology & Laboratory Medicine Institute, Cleveland Clinic, Cleveland, Ohio
| | - Jennifer Tyler
- Pathology, Penn State Milton S. Hershey Medical Center, Hershey, Pennsylvania
| | - Heather Casey
- Pathology, Penn State Milton S. Hershey Medical Center, Hershey, Pennsylvania
| | - David Bosler
- Molecular Pathology, Pathology & Laboratory Medicine Institute, Cleveland Clinic, Cleveland, Ohio
| | - Ronald Sobecks
- Hematology/Medical Oncology, Cleveland Clinic, Cleveland, Ohio
| | - Betty Hamilton
- Hematology/Medical Oncology, Cleveland Clinic, Cleveland, Ohio
| | - Craig Sauter
- Hematology/Medical Oncology, Cleveland Clinic, Cleveland, Ohio
| | - Shin Mineishi
- Hematology Oncology, Penn State Milton S. Hershey Medical Center, Hershey, Pennsylvania
| | - David Claxton
- Hematology Oncology, Penn State Milton S. Hershey Medical Center, Hershey, Pennsylvania
| | - Hiroko Shike
- Pathology, Penn State Milton S. Hershey Medical Center, Hershey, Pennsylvania.
| |
Collapse
|
3
|
Srour M, Fayard A, Giannotti F, Giltat A, Guenounou S, Roy J, Schmitt J, Servais S, Alsuliman T, Agha IY, Guillerm G. [Graft failure, poor graft function erythroblastopenia: Actualization of definitions, diagnosis and treatment: Guidelines from the SFGM-TC]. Bull Cancer 2023; 110:S67-S78. [PMID: 36307323 DOI: 10.1016/j.bulcan.2022.09.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 09/03/2022] [Accepted: 09/05/2022] [Indexed: 11/06/2022]
Abstract
In this article, we discuss again the definition, the risk factor and guideline to treat the graft failure, the poor graft function and erythrobalstopenia. Graft failure is a severe but rare complication after hematopoietic cell transplantation (HCT). Despite disparity in the literature, we defined this complication and discussed the factor risks and recommendation for treatment based on new studies. Poor graft function is also a more frequent complication after HCT. New studies will soon be available to prove or not the current recommendation suggested in this article based on therapeutics medicine or cellular therapy. Erythroblastopenia, is a rarer complication post HCT. Despite anticipation for a better choice of compatibility donor/recipient, some patients still suffer from this complication.
Collapse
Affiliation(s)
- Micha Srour
- Hôpital Huriez, CHRU Lille, maladies du sang, rue Michel-Polonowski, 59000 Lille, France
| | - Amandine Fayard
- CHU de Clermont-Ferrand, service hématologie, 1, rue Lucie- et Raymond-Aubrac, 63003 Clermont-Ferrand, France
| | - Federica Giannotti
- HUG, service hématologie, rue Gabrielle-Perret-Gentil, 4, 1205 Genève, Suisse
| | - Aurelien Giltat
- CHU d'Angers, service hématologie, 4, rue Larrey, 49933 Angers cedex 9, France
| | - Sarah Guenounou
- Institut universitaire du cancer de Toulouse-Oncopole, service d'hématologie, 1, avenue Irène-Joliot-Curie, 31059 Toulouse cedex, France
| | - Jean Roy
- Hématologie, 5415, boulevard de l'assomption, QC H1T 2M4 Montréal, Canada
| | - Justine Schmitt
- CHU de Liège, service d'hématologie biologique et d'immuno-hématologie, Liège, Belgique
| | - Sophie Servais
- CHU de Liège, service d'hématologie clinique, Liège, Belgique
| | - Tamim Alsuliman
- AP-HP, hôpital Saint-Antoine, Sorbonne université, service d'hématologie, Paris, France.
| | - Ibrahim Yakoub Agha
- Université Lille, CHU de Lille, Infininite, Inserm U1286, 59000 Lille, France
| | - Gaelle Guillerm
- Hôpital Morvan, CHRU Brest, service d'hématologie, 2, avenue Foch, 29609 Brest cedex, France
| |
Collapse
|
4
|
Ciurea SO, Kothari A, Sana S, Al Malki MM. The mythological chimera and new era of relapse prediction post-transplant. Blood Rev 2023; 57:100997. [PMID: 35961800 DOI: 10.1016/j.blre.2022.100997] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Revised: 07/13/2022] [Accepted: 07/21/2022] [Indexed: 01/28/2023]
Abstract
Allogeneic hemopoietic stem cell transplantation is the treatment of choice for high-risk or relapsed acute leukemia. However, unfortunately, relapse post-transplant continues to be the most common cause of treatment failure with 20-80% of patients relapsing based on disease risk and status at transplant. Advances in molecular profiling of different hematological malignancies have enabled us to monitor low level disease before and after transplant and develop a more personalized approach to the management of these disease including early detection post-transplant. While, in general, detectable disease by morphology remains the gold standard to diagnosing relapse, multiple approaches have allowed detection of cancer cells earlier, using peripheral blood-based methods with sensitivities as high as 1:106, together called minimal/measurable residual disease (MRD) detection. However, a in significant number of patients with acute leukemia where no such molecular markers exist it remains challenging to detect early relapse. In such patients who receive transplantation, chimerism monitoring remains the only option. An increase in mixed chimerism in post allogeneic HCT patients has been correlated with relapse in multiple studies. However, chimerism monitoring, while commonly accepted as a tool for assessing engraftment, has not been routinely used for relapse detection, at least in part because of the lack of standardized, high sensitivity, reliable methods for chimerism detection. In this paper, we review the various methods employed for MRD and chimerism detection post-transplant and discuss future trends in MRD and chimerism monitoring from the viewpoint of the practicing transplant physician.
Collapse
Affiliation(s)
- Stefan O Ciurea
- University of California Irvine, Orange, CA, United States of America.
| | | | - Sean Sana
- CareDx Inc., Brisbane, CA, United States of America
| | - Monzr M Al Malki
- City of Hope National Medical Center, Duarte, CA, United States of America
| |
Collapse
|
5
|
Evaluation of a quantitative PCR-based method for chimerism analysis of Japanese donor/recipient pairs. Sci Rep 2022; 12:21328. [PMID: 36494422 PMCID: PMC9734659 DOI: 10.1038/s41598-022-25878-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Accepted: 12/06/2022] [Indexed: 12/13/2022] Open
Abstract
Chimerism analysis is a surrogate indicator of graft rejection or relapse after allogeneic hematopoietic stem cell transplantation (HSCT). Although short tandem repeat PCR (STR-PCR) is the usual method, limited sensitivity and technical variability are matters of concern. Quantitative PCR-based methods to detect single nucleotide polymorphisms (SNP-qPCR) are more sensitive, but their informativity and quantitative accuracy are highly variable. For accurate and sensitive chimerism analysis, a set of KMR kits (GenDx, Utrecht, Netherlands), based on detection of insertions/deletions (indels) by qPCR, have been developed. Here, we investigated informativity and validated the accuracy of KMR kits in Japanese donor/recipient pairs and virtual samples of DNA mixtures representative of Japanese genetic diversity. We found that at least one recipient-specific marker among 39 KMR-kit markers was informative in all of 65 Japanese donor/recipient pairs. Moreover, the percentage of recipient chimerism estimated by KMRtrack correlated well with ratios of mixed DNA in virtual samples and with the percentage of chimerism in HSCT recipients estimated by STR-PCR/in-house SNP-qPCR. Moreover, KMRtrack showed better sensitivity with high specificity when compared to STR-PCR to detect recipient chimerism. Chimerism analysis with KMR kits can be a standardized, sensitive, and highly informative method to evaluate the graft status of HSCT recipients.
Collapse
|
6
|
Klyuchnikov E, Badbaran A, Massoud R, Fritsche-Friedland U, Freiberger P, Ayuk F, Wolschke C, Bacher U, Kröger N. Post-transplant day +100 MRD detection rather than mixed chimerism predicts relapses after allo-SCT for intermediate risk AML patients transplanted in CR. Transplant Cell Ther 2022; 28:374.e1-374.e9. [DOI: 10.1016/j.jtct.2022.04.009] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Revised: 04/07/2022] [Accepted: 04/07/2022] [Indexed: 12/17/2022]
|
7
|
Arnold PY. Review: HLA loss and detection in the setting of relapse from HLA-mismatched hematopoietic cell transplant. Hum Immunol 2022; 83:712-720. [DOI: 10.1016/j.humimm.2022.03.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Revised: 02/09/2022] [Accepted: 03/02/2022] [Indexed: 01/25/2023]
|
8
|
Blouin AG, Askar M. Chimerism analysis for clinicians: a review of the literature and worldwide practices. Bone Marrow Transplant 2022; 57:347-359. [PMID: 35082369 DOI: 10.1038/s41409-022-01579-9] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Revised: 12/18/2021] [Accepted: 01/12/2022] [Indexed: 11/09/2022]
Abstract
This review highlights literature pertinent to chimerism analysis in the context of hematopoietic cell transplantation (HCT). We also conducted a survey of testing practices of program members of CIBMTR worldwide. Questions included testing methods, time points, specimen type, cell lineage tested and testing indications. Recent literature suggests that detection of low level mixed chimerism has a clinical utility in predicting relapse. There is also increasing recognition of HLA loss relapse to potentially guide rescue decisions in cases of relapse. These developments coincide with wider access to high sensitivity next generation sequencing (NGS) in clinical laboratories. Our survey revealed a heterogeneity in practices as well as in findings and conclusions of published studies. Although the most commonly used method is STR, studies support more sensitive methods such as NGS, especially for predicting relapse. There is no conclusive evidence to support testing chimerism in BM over PB, particularly when using a high sensitivity testing method. Periodic monitoring of chimerism especially in diagnoses with a high risk of relapse is advantageous. Lineage specific chimerism is more sensitive than whole blood in predicting impending relapse. Further studies that critically assess how to utilize chimerism testing results will inform evidence based clinical management decisions.
Collapse
Affiliation(s)
- Amanda G Blouin
- Department of Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Medhat Askar
- Department of Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA. .,Department of Pathology & Laboratory Medicine, Baylor University Medical Center, Dallas, TX, USA. .,Department of Pathology and Laboratory Medicine, Texas A&M Health Science Center College of Medicine, Bryan, TX, USA. .,National Donor Marrow Program (NMDP)/Be The Match, Minneapolis, MN, USA.
| |
Collapse
|
9
|
Wang A, Li W, Zhao F, Zheng Z, Yang T, Wang S, Yan J, Lan J, Fan S, Zhao M, Shen J, Li X, Yang T, Lu Q, Lu Y, Bai H, Zhang H, Cai D, Wang L, Yuan Z, Jiang E, Zhou F, Song X. Clinical Characteristics and Outcome Analysis for HLA Loss Patients Following Partially Mismatched Related Donor Transplantation Using HLA Chimerism for Loss of Heterozygosity Analysis by Next-Generation Sequencing. Cell Transplant 2022; 31:9636897221102902. [PMID: 35670196 PMCID: PMC9178980 DOI: 10.1177/09636897221102902] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Genomic loss of mismatched human leukocyte antigen (HLA loss) is one of the most vital immune escape mechanisms of leukemic cells after allogeneic hematopoietic stem cell transplantation (allo-HSCT). However, the methods currently used for HLA loss analysis have some shortcomings. Limited literature has been published, especially in lymphoid malignancies. This study aims to evaluate the incidences, risk factors of HLA loss, and clinical outcomes of HLA loss patients. In all, 160 patients undergoing partially mismatched related donor (MMRD) transplantation from 18 centers in China were selected for HLA loss analysis with the next-generation sequencing (NGS)-based method, which was validated by HLA-KMR. Variables of the prognostic risk factors for HLA loss or HLA loss–related relapse were identified with the logistic regression or the Fine and Gray regression model. An HLA loss detection system, HLA-CLN [HLA chimerism for loss of heterozygosity (LOH) analysis by NGS], was successfully developed. Forty (25.0%) patients with HLA loss were reported, including 27 with myeloid and 13 with lymphoid malignancies. Surprisingly, 6 of those 40 patients did not relapse. The 2-year cumulative incidences of HLA loss (22.7% vs 22.0%, P = 0.731) and HLA loss–related relapse (18.4% vs 20.0%, P = 0.616) were similar between patients with myeloid and lymphoid malignancies. The number of HLA mismatches (5/10 vs <5/10) was significantly associated with HLA loss in the whole cohort [odds ratio (OR): 3.15, P = 0.021] and patients with myeloid malignancies (OR: 3.94, P = 0.021). A higher refined-disease risk index (OR: 6.91, P = 0.033) and donor–recipient ABO incompatibility (OR: 4.58, P = 0.057) contributed to HLA loss in lymphoid malignancies. To sum up, HLA-CLN could overcome the limitations of HLA-KMR and achieve a better HLA coverage for more patients. The clinical characteristics and outcomes were similar in patients with HLA loss between myeloid and lymphoid malignancies. In addition, the results suggested that a patient with HLA loss might not always relapse.
Collapse
Affiliation(s)
- Andi Wang
- Department of Hematology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Wenjun Li
- Department of Hematology, No. 960 Hospital of People's Liberation Army, Jinan, China
| | - Fei Zhao
- Department of Hematology, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, China
| | | | - Ting Yang
- Department of Hematology, Fujian Medical University Union Hospital, Fuzhou, China
| | - Sanbin Wang
- Department of Hematology, 920th Hospital of Joint Logistics Support Force, Kunming, China
| | - Jinsong Yan
- Department of Hematology, Liaoning Medical Center for Hematopoietic Stem Cell Transplantation, Second Hospital of Dalian Medical University, Dalian, China
| | - Jianpin Lan
- Department of Hematology, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou, China
| | - Shengjin Fan
- Department of Hematology, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Mingfeng Zhao
- Department of Hematology, Tianjin First Central Hospital, Tianjin, China
| | - Jianpin Shen
- Department of Hematology, Zhejiang Provincial Hospital of Chinese Medicine, Hangzhou, China
| | - Xin Li
- Department of Hematology, The Third Xiangya Hospital of Central South University, Changsha, China
| | - Tonghua Yang
- Department of Hematology, First People's Hospital of Yunnan Province, Kunming University of Science and Technology Affiliated Kun Hua Hospital, Kunming, China
| | - Quanyi Lu
- Department of Hematology, Zhongshan Hospital of Xiamen University, Xiamen, China
| | - Ying Lu
- Department of Hematology, The Affiliated People's Hospital of Ningbo University, Ningbo, China
| | - Hai Bai
- Department of Hematology, The 940th Hospital of the Joint Logistic Support Force of PLA, Lanzhou, China
| | - Haiyan Zhang
- Department of Hematology, Linyi People's Hospital, Linyi, China
| | - Dali Cai
- Department of Hematology, The First Hospital of China Medical University, Shenyang, China
| | - Ling Wang
- Department of Hematology, Affiliated Qingdao Central Hospital, Qingdao University, Qingdao, China
| | - Zhiyang Yuan
- Tissuebank Biotechnology Co., Ltd, Shanghai, China
| | - Erlie Jiang
- Department of Hematology, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, China
| | - Fang Zhou
- Department of Hematology, No. 960 Hospital of People's Liberation Army, Jinan, China
| | - Xianmin Song
- Department of Hematology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Engineering Technology Research Center of Cell Therapy and Clinical Translation, Shanghai Science and Technology Committee, Shanghai, China
| |
Collapse
|
10
|
Delie A, Verlinden A, Beel K, Deeren D, Mazure D, Baron F, Breems D, De Becker A, Graux C, Lewalle P, Maertens J, Poire X, Schoemans H, Selleslag D, Van Obbergh F, Kerre T. Use of chimerism analysis after allogeneic stem cell transplantation: Belgian guidelines and review of the current literature. Acta Clin Belg 2021; 76:500-508. [PMID: 32362204 DOI: 10.1080/17843286.2020.1754635] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Background: Allogeneic hematopoietic stem cell transplantation (HSCT) is a curative treatment option in both adult and pediatric patients with malignant and non-malignant hematological diseases. Chimerism analysis, which determines the donor or recipient origin of hematopoietic cells in HSCT recipients, is an essential aspect of post-HSCT follow-up.Objectives: To review the current literature and develop Belgian consensus guidelines for the use of chimerism analysis in the standard of care after allogeneic HSCT.Methods: Non-systematic review of the literature in consultancy with the members of the BHS transplantation committee.Results: Clinical application with regards to prediction of graft failure or relapse as well as cell source are reviewed. A consensus guideline on the use of chimerism analysis after HSCT is presented.Conclusion: Monitoring of the dynamics or kinetics of a patient's chimerism status by serial analysis at fixed time points, as well as on suspicion of relapse or graft failure, is needed to monitor engraftment levels, as well as disease control and possible relapse.
Collapse
Affiliation(s)
- Anke Delie
- Department of Hematology, University Hospital, Ghent University, Ghent, Belgium
| | - Anke Verlinden
- Department of Hematology, University Hospital, University of Antwerp, Antwerp, Belgium
| | - Karolien Beel
- Department of Hematology, Ziekenhuis Netwerk, Antwerpen, Belgium
| | - Dries Deeren
- Department of Hematology, AZ Delta, Roeselare, Belgium
| | - Dominiek Mazure
- Department of Hematology, University Hospital, Ghent University, Ghent, Belgium
| | - Frédéric Baron
- Department of Hematology, University Hospital, University of Liège, Liège, Belgium
| | - Dimitri Breems
- Department of Hematology, Ziekenhuis Netwerk, Antwerpen, Belgium
| | - Ann De Becker
- Department of Hematology, University Hospital, Vrije Universiteit Brussel, Brussels, Belgium
| | - Carlos Graux
- Department of Hematology, University Hospital Namur, Université Catholique de Louvain, Belgium
| | - Philippe Lewalle
- Department of Hematology, Jules Bordet Institute, Université Libre de Bruxelles, Brussels, Belgium
| | - Johan Maertens
- Department of Hematology, University Hospital, KU Leuven, Leuven, Belgium
| | - Xavier Poire
- Department of Hematology, University Hospital Saint Luc, Univeristé Catholique de Louvain, Brussels, Belgium
| | - Helene Schoemans
- Department of Hematology, University Hospital, KU Leuven, Leuven, Belgium
| | | | | | - Tessa Kerre
- Department of Hematology, University Hospital, Ghent University, Ghent, Belgium
| |
Collapse
|
11
|
Noorazar L, Bonakchi H, Sankanian G, Parkhideh S, Salimi M, Hajifathali A, Mirfakhraie R, Roshandel E. The effect of granulocyte colony-stimulating factor dose and administration interval after allogeneic hematopoietic cell transplantation on early engraftment of neutrophil and platelet. J Clin Lab Anal 2021; 35:e24060. [PMID: 34674310 PMCID: PMC8649331 DOI: 10.1002/jcla.24060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Revised: 09/02/2021] [Accepted: 09/03/2021] [Indexed: 11/11/2022] Open
Abstract
BACKGROUND Hematopoietic stem cell transplantation (HSCT) is one of the treatments for hematologic malignancies. Numerous factors affect the HSCT outcome. The purpose of this study was to investigate the effect of post-HSCT administration of granulocyte colony-stimulating factor (post-G-CSF) on early neutrophil and platelet engraftment in allogeneic HSCT (allo-HSCT). MATERIAL & METHODS The study was performed on 76 patients diagnosed with AML and ALL. All patients underwent allo-HSCT at Taleghani stem cell transplantation center, Tehran, Iran, from February 2016 to December 2018. Chemotherapy regimens based on patients' conditions were selected between myeloablative and reduced-intensity regimens. RESULTS Statistical analysis revealed that the number of administered G-CSF units after HSCT was a time-dependent variable. Statistical analysis before day +11 reported that patients who received G-CSF <14 units had three times better early neutrophil engraftment than those with G-CSF ≥14 (CI 95%, AHR = 3.03, p:0.002). CD3+ cells count <318.5 × 106 /kg was associated with fast platelet engraftment (CI 95%, AHR 2.28, p:0.01). CONCLUSION In this study, post-G-CSF stimulation was associated with early engraftment in a time- and dose-dependent manner. Administration of G-CSF beyond 14 units resulted in adverse effects on neutrophil early engraftment. It also appeared that with a reduction in CD3+ cell counts, the likelihood of GVHD decreases, and platelet engraftment occurs earlier. Further investigations in the future are required to determine the factors affecting the process of early engraftment.
Collapse
Affiliation(s)
- Leila Noorazar
- Hematopoietic Stem Cell Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Hossein Bonakchi
- Hematopoietic Stem Cell Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Ghazaleh Sankanian
- Hematopoietic Stem Cell Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Sayeh Parkhideh
- Hematopoietic Stem Cell Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Maryam Salimi
- Hematopoietic Stem Cell Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Abbas Hajifathali
- Hematopoietic Stem Cell Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Reza Mirfakhraie
- Hematopoietic Stem Cell Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Elham Roshandel
- Hematopoietic Stem Cell Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
12
|
Blouin AG, Ye F, Williams J, Askar M. A practical guide to chimerism analysis: Review of the literature and testing practices worldwide. Hum Immunol 2021; 82:838-849. [PMID: 34404545 DOI: 10.1016/j.humimm.2021.07.013] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Revised: 06/30/2021] [Accepted: 07/26/2021] [Indexed: 12/17/2022]
Abstract
BACKGROUND AND PURPOSE Currently there are no widely accepted guidelines for chimerism analysis testing in hematopoietic cell transplantation (HCT) patients. The objective of this review is to provide a practical guide to address key aspects of performing and utilizing chimerism testing results. In developing this guide, we conducted a survey of testing practices among laboratories that are accredited for performing engraftment monitoring/chimerism analysis by either the American Society for Histocompatibility & Immunogenetics (ASHI) and/or the European Federation of Immunogenetics (EFI). We interpreted the survey results in the light of pertinent literature as well as the experience in the laboratories of the authors. RECENT DEVELOPMENTS In recent years there has been significant advances in high throughput molecular methods such as next generation sequencing (NGS) as well as growing access to these technologies in histocompatibility and immunogenetics laboratories. These methods have the potential to improve the performance of chimerism testing in terms of sensitivity, availability of informative genetic markers that distinguish donors from recipients as well as cost. SUMMARY The results of the survey revealed a great deal of heterogeneity in chimerism testing practices among participating laboratories. The most consistent response indicated monitoring of engraftment within the first 30 days. These responses are reflective of published literature. Additional clinical indications included early detection of impending relapse as well as identification of cases of HLA-loss relapse.
Collapse
Affiliation(s)
- Amanda G Blouin
- Department of Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, United States
| | - Fei Ye
- Department of Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, United States
| | - Jenifer Williams
- Department of Pathology & Laboratory Medicine, Baylor University Medical Center, Dallas, TX, United States
| | - Medhat Askar
- Department of Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, United States; Department of Pathology & Laboratory Medicine, Baylor University Medical Center, Dallas, TX, United States; Department of Pathology and Laboratory Medicine, Texas A&M Health Science Center College of Medicine, United States.
| |
Collapse
|
13
|
Vynck M, Nollet F, Sibbens L, Lievens B, Denys A, Cauwelier B, Devos H. Performance Assessment of the Devyser High-Throughput Sequencing-Based Assay for Chimerism Monitoring in Patients after Allogeneic Hematopoietic Stem Cell Transplantation. J Mol Diagn 2021; 23:1116-1126. [PMID: 34186173 DOI: 10.1016/j.jmoldx.2021.05.017] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Revised: 05/07/2021] [Accepted: 05/25/2021] [Indexed: 10/21/2022] Open
Abstract
Chimerism analysis is widely used to aid in the clinical management of patients after allogeneic hematopoietic stem cell transplantation. Many laboratories currently use assays based on polymerase chain reaction followed by capillary electrophoresis, with a limit of quantification of 1% to 5%. Assays with a lower limit of quantification could allow for earlier relapse detection, resulting in improved patient care. This study investigated the analytical, clinical, technical, and practical performance of the Devyser NGS chimerism assay, a commercial high-throughput sequencing-based assay for chimerism analysis. Performance of this assay was compared with that of the Promega PowerPlex 16 HS assay, a commercial capillary electrophoresis-based assay. A limit of quantification of 0.1% was achievable with the Devyser assay. The repeatability, reproducibility, trueness, and linearity of the Devyser assay were acceptable. The Devyser assay showed potential for earlier relapse detection compared with the Promega assay. Conclusive analysis was not possible for 3% of donor-recipient pairs with the Devyser assay due to an insufficient number of informative markers; this factor was not an issue for the Promega assay. Further improvements in assay design or data analysis may allow the assay's applicability to be extended to all donor-recipient pairs studied. Technical performance criteria for chimerism analysis by high-throughput sequencing were suggested and evaluated. Both assays were found to be practical for use in a clinical diagnostics laboratory.
Collapse
Affiliation(s)
- Matthijs Vynck
- Department of Laboratory Medicine, AZ Sint-Jan Brugge-Oostende AV, Bruges, Belgium.
| | - Friedel Nollet
- Department of Laboratory Medicine, AZ Sint-Jan Brugge-Oostende AV, Bruges, Belgium
| | - Lode Sibbens
- Department of Laboratory Medicine, AZ Sint-Jan Brugge-Oostende AV, Bruges, Belgium
| | - Bernadette Lievens
- Department of Laboratory Medicine, AZ Sint-Jan Brugge-Oostende AV, Bruges, Belgium
| | - Astrid Denys
- Department of Laboratory Medicine, AZ Sint-Jan Brugge-Oostende AV, Bruges, Belgium
| | - Barbara Cauwelier
- Department of Laboratory Medicine, AZ Sint-Jan Brugge-Oostende AV, Bruges, Belgium
| | - Helena Devos
- Department of Laboratory Medicine, AZ Sint-Jan Brugge-Oostende AV, Bruges, Belgium
| |
Collapse
|
14
|
Kim J, Yun W, Park YJ, Seo J, Lee RDW, Shin S, Lee HJ, Kim IS, Choi JR, Lee ST. Chimerism Assay Using Single Nucleotide Polymorphisms Adjacent and in Linkage-Disequilibrium Enables Sensitive Disease Relapse Monitoring after Hematopoietic Stem-Cell Transplantation. Clin Chem 2021; 67:781-787. [PMID: 33582770 DOI: 10.1093/clinchem/hvab010] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Accepted: 12/31/2020] [Indexed: 11/14/2022]
Abstract
BACKGROUND Short tandem repeat (STR)-based chimerism analysis has been widely used for chimerism monitoring after hematopoietic stem-cell transplantation (HSCT), but technical artifacts can be problematic. We designed a chimerism assay using single nucleotide polymorphisms (SNPs) adjacent and in linkage-disequilibrium (CASAL), which doubly checked for SNP pairs, and thus could reduce background errors and increase analytical sensitivity. METHODS CASAL targeted 84 SNP pairs within 10 bp distance and in perfect linkage-disequilibrium. Using undiluted and serially diluted samples, baseline error rates, and linearity was calculated. Clinical performance of CASAL was evaluated in comparison with a conventional STR assay, using 191 posttransplant samples from 42 patients with HSCT. RESULTS CASAL had ∼10 times lower baseline error rates compared to that of ordinary next-generation sequencing. Limit of detection and quantification of CASAL were estimated to be 0.09 and 0.39%, respectively, with a linear range of 0.1-100%. CASAL correlated well with STR assay (r2 = 0.99) and the higher sensitivity enabled detection of low-level recipient chimerism and earlier prediction of relapse. CONCLUSIONS CASAL is a simple, analytically sensitive and accurate assay that can be used in clinical samples after HSCT with a higher performance compared to that of traditional assays. It should also be useful in other forensic and archeological testing.
Collapse
Affiliation(s)
- JinJu Kim
- Department of Laboratory Medicine, Yonsei University College of Medicine, Seoul, South Korea
| | - Woobin Yun
- Brain Korea 21 PLUS Project for Medical Science, Yonsei University, Seoul, South Korea
| | - Yu Jin Park
- Department of Laboratory Medicine, Yonsei University College of Medicine, Seoul, South Korea
- Department of Laboratory Medicine, Armed Forces Yangju Hospital, Gyeonggi-do, South Korea
| | - Jieun Seo
- Department of Laboratory Medicine, Yonsei University College of Medicine, Seoul, South Korea
| | | | - Saeam Shin
- Department of Laboratory Medicine, Yonsei University College of Medicine, Seoul, South Korea
| | - Hyun-Ji Lee
- Department of Laboratory Medicine, Pusan National University, Yangsan Hospital, Yangsan, South Korea
| | - In Suk Kim
- Department of Laboratory Medicine, Pusan National University, School of Medicine, Pusan, South Korea
| | - Jong Rak Choi
- Department of Laboratory Medicine, Yonsei University College of Medicine, Seoul, South Korea
- Dxome Co. Ltd, Seongnam-si, Gyeonggi-do, South Korea
| | - Seung-Tae Lee
- Department of Laboratory Medicine, Yonsei University College of Medicine, Seoul, South Korea
- Dxome Co. Ltd, Seongnam-si, Gyeonggi-do, South Korea
| |
Collapse
|
15
|
Aguirre-Ruiz P, Ariceta B, Viguria MC, Zudaire MT, Blasco-Iturri Z, Arnedo P, Aguilera-Diaz A, Jauregui A, Mañú A, Prosper F, Mateos MC, Fernández-Mercado M, Larráyoz MJ, Redondo M, Calasanz MJ, Vázquez I, Bandrés E. Assessment of Minimal Residual Disease by Next Generation Sequencing in Peripheral Blood as a Complementary Tool for Personalized Transplant Monitoring in Myeloid Neoplasms. J Clin Med 2020; 9:jcm9123818. [PMID: 33255857 PMCID: PMC7760908 DOI: 10.3390/jcm9123818] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Revised: 11/20/2020] [Accepted: 11/23/2020] [Indexed: 12/30/2022] Open
Abstract
Patients with myeloid neoplasms who relapsed after allogenic hematopoietic stem cell transplant (HSCT) have poor prognosis. Monitoring of chimerism and specific molecular markers as a surrogate measure of relapse is not always helpful; therefore, improved systems to detect early relapse are needed. We hypothesized that the use of next generation sequencing (NGS) could be a suitable approach for personalized follow-up post-HSCT. To validate our hypothesis, we analyzed by NGS, a retrospective set of peripheral blood (PB) DNA samples previously evaluated by high-sensitive quantitative PCR analysis using insertion/deletion polymorphisms (indel-qPCR) chimerism engraftment. Post-HCST allelic burdens assessed by NGS and chimerism status showed a similar time-course pattern. At time of clinical relapse in 8/12 patients, we detected positive NGS-based minimal residual disease (NGS-MRD). Importantly, in 6/8 patients, we were able to detect NGS-MRD at time points collected prior to clinical relapse. We also confirmed the disappearance of post-HCST allelic burden in non-relapsed patients, indicating true clinical specificity. This study highlights the clinical utility of NGS-based post-HCST monitoring in myeloid neoplasia as a complementary specific analysis to high-sensitive engraftment testing. Overall, NGS-MRD testing in PB is widely applicable for the evaluation of patients following HSCT and highly valuable to personalized early treatment intervention when mixed chimerism is detected.
Collapse
Affiliation(s)
- Paula Aguirre-Ruiz
- Hematological Diseases Laboratory, CIMA LAB Diagnostics, University of Navarra, 31008 Pamplona, Navarra, Spain; (P.A.-R.); (B.A.); (Z.B.-I.); (A.M.); (M.F.-M.); (M.J.L.); (M.J.C.)
| | - Beñat Ariceta
- Hematological Diseases Laboratory, CIMA LAB Diagnostics, University of Navarra, 31008 Pamplona, Navarra, Spain; (P.A.-R.); (B.A.); (Z.B.-I.); (A.M.); (M.F.-M.); (M.J.L.); (M.J.C.)
- Navarra Institute for Health Research (IdiSNA), 31008 Pamplona, Navarra, Spain; (M.C.V.); (M.T.Z.); (A.A.-D.); (F.P.); (M.C.M.); (M.R.)
| | - María Cruz Viguria
- Navarra Institute for Health Research (IdiSNA), 31008 Pamplona, Navarra, Spain; (M.C.V.); (M.T.Z.); (A.A.-D.); (F.P.); (M.C.M.); (M.R.)
- Hematology Department, Complejo Hospitalario de Navarra, 31008 Pamplona, Navarra, Spain; (P.A.); (A.J.)
| | - María Teresa Zudaire
- Navarra Institute for Health Research (IdiSNA), 31008 Pamplona, Navarra, Spain; (M.C.V.); (M.T.Z.); (A.A.-D.); (F.P.); (M.C.M.); (M.R.)
- Hematology Department, Complejo Hospitalario de Navarra, 31008 Pamplona, Navarra, Spain; (P.A.); (A.J.)
| | - Zuriñe Blasco-Iturri
- Hematological Diseases Laboratory, CIMA LAB Diagnostics, University of Navarra, 31008 Pamplona, Navarra, Spain; (P.A.-R.); (B.A.); (Z.B.-I.); (A.M.); (M.F.-M.); (M.J.L.); (M.J.C.)
| | - Patricia Arnedo
- Hematology Department, Complejo Hospitalario de Navarra, 31008 Pamplona, Navarra, Spain; (P.A.); (A.J.)
| | - Almudena Aguilera-Diaz
- Navarra Institute for Health Research (IdiSNA), 31008 Pamplona, Navarra, Spain; (M.C.V.); (M.T.Z.); (A.A.-D.); (F.P.); (M.C.M.); (M.R.)
- Advanced Genomics Laboratory, Hemato-Oncology, Center for Applied Medical Research (CIMA), 31008 Pamplona, Navarra, Spain
| | - Axier Jauregui
- Hematology Department, Complejo Hospitalario de Navarra, 31008 Pamplona, Navarra, Spain; (P.A.); (A.J.)
| | - Amagoia Mañú
- Hematological Diseases Laboratory, CIMA LAB Diagnostics, University of Navarra, 31008 Pamplona, Navarra, Spain; (P.A.-R.); (B.A.); (Z.B.-I.); (A.M.); (M.F.-M.); (M.J.L.); (M.J.C.)
- Navarra Institute for Health Research (IdiSNA), 31008 Pamplona, Navarra, Spain; (M.C.V.); (M.T.Z.); (A.A.-D.); (F.P.); (M.C.M.); (M.R.)
| | - Felipe Prosper
- Navarra Institute for Health Research (IdiSNA), 31008 Pamplona, Navarra, Spain; (M.C.V.); (M.T.Z.); (A.A.-D.); (F.P.); (M.C.M.); (M.R.)
- Advanced Genomics Laboratory, Hemato-Oncology, Center for Applied Medical Research (CIMA), 31008 Pamplona, Navarra, Spain
- Hematology Department, Clinica Universidad de Navarra (CUN), 31008 Pamplona, Navarra, Spain
| | - María Carmen Mateos
- Navarra Institute for Health Research (IdiSNA), 31008 Pamplona, Navarra, Spain; (M.C.V.); (M.T.Z.); (A.A.-D.); (F.P.); (M.C.M.); (M.R.)
- Hematology Department, Complejo Hospitalario de Navarra, 31008 Pamplona, Navarra, Spain; (P.A.); (A.J.)
| | - Marta Fernández-Mercado
- Hematological Diseases Laboratory, CIMA LAB Diagnostics, University of Navarra, 31008 Pamplona, Navarra, Spain; (P.A.-R.); (B.A.); (Z.B.-I.); (A.M.); (M.F.-M.); (M.J.L.); (M.J.C.)
- Navarra Institute for Health Research (IdiSNA), 31008 Pamplona, Navarra, Spain; (M.C.V.); (M.T.Z.); (A.A.-D.); (F.P.); (M.C.M.); (M.R.)
- Advanced Genomics Laboratory, Hemato-Oncology, Center for Applied Medical Research (CIMA), 31008 Pamplona, Navarra, Spain
| | - María José Larráyoz
- Hematological Diseases Laboratory, CIMA LAB Diagnostics, University of Navarra, 31008 Pamplona, Navarra, Spain; (P.A.-R.); (B.A.); (Z.B.-I.); (A.M.); (M.F.-M.); (M.J.L.); (M.J.C.)
- Navarra Institute for Health Research (IdiSNA), 31008 Pamplona, Navarra, Spain; (M.C.V.); (M.T.Z.); (A.A.-D.); (F.P.); (M.C.M.); (M.R.)
| | - Margarita Redondo
- Navarra Institute for Health Research (IdiSNA), 31008 Pamplona, Navarra, Spain; (M.C.V.); (M.T.Z.); (A.A.-D.); (F.P.); (M.C.M.); (M.R.)
- Hematology Department, Complejo Hospitalario de Navarra, 31008 Pamplona, Navarra, Spain; (P.A.); (A.J.)
| | - María José Calasanz
- Hematological Diseases Laboratory, CIMA LAB Diagnostics, University of Navarra, 31008 Pamplona, Navarra, Spain; (P.A.-R.); (B.A.); (Z.B.-I.); (A.M.); (M.F.-M.); (M.J.L.); (M.J.C.)
- Navarra Institute for Health Research (IdiSNA), 31008 Pamplona, Navarra, Spain; (M.C.V.); (M.T.Z.); (A.A.-D.); (F.P.); (M.C.M.); (M.R.)
| | - Iria Vázquez
- Hematological Diseases Laboratory, CIMA LAB Diagnostics, University of Navarra, 31008 Pamplona, Navarra, Spain; (P.A.-R.); (B.A.); (Z.B.-I.); (A.M.); (M.F.-M.); (M.J.L.); (M.J.C.)
- Navarra Institute for Health Research (IdiSNA), 31008 Pamplona, Navarra, Spain; (M.C.V.); (M.T.Z.); (A.A.-D.); (F.P.); (M.C.M.); (M.R.)
- Correspondence: (I.V.); (E.B.); Tel.: +34-948194700-1000 (I.V.)
| | - Eva Bandrés
- Navarra Institute for Health Research (IdiSNA), 31008 Pamplona, Navarra, Spain; (M.C.V.); (M.T.Z.); (A.A.-D.); (F.P.); (M.C.M.); (M.R.)
- Hematology Department, Complejo Hospitalario de Navarra, 31008 Pamplona, Navarra, Spain; (P.A.); (A.J.)
- Correspondence: (I.V.); (E.B.); Tel.: +34-948194700-1000 (I.V.)
| |
Collapse
|
16
|
Haugaard AK, Kofoed J, Masmas TN, Madsen HO, Marquart HV, Heilmann C, Müller KG, Ifversen M. Is microchimerism a sign of imminent disease recurrence after allogeneic hematopoietic stem cell transplantation? A systematic review of the literature. Blood Rev 2020; 44:100673. [DOI: 10.1016/j.blre.2020.100673] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2019] [Revised: 02/05/2020] [Accepted: 02/24/2020] [Indexed: 12/12/2022]
|
17
|
Gambacorta V, Parolini R, Xue E, Greco R, Bouwmans EE, Toffalori C, Giglio F, Assanelli A, Stanghellini MTL, Ambrosi A, Mazzi B, Mulder W, Corti C, Peccatori J, Ciceri F, Vago L. Quantitative PCR-based chimerism in bone marrow or peripheral blood to predict acute myeloid leukemia relapse in high-risk patients: results from the KIM-PB prospective study. Haematologica 2020; 106:1480-1483. [PMID: 33054102 PMCID: PMC8094083 DOI: 10.3324/haematol.2019.238543] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Indexed: 11/26/2022] Open
Affiliation(s)
- Valentina Gambacorta
- Unit of Immunogenetics, Leukemia Genomics and Immunobiology, IRCCS San Raffaele Scientific Institute, Milano
| | - Riccardo Parolini
- Unit of Immunogenetics, Leukemia Genomics and Immunobiology, IRCCS San Raffaele Scientific Institute, Milano
| | - Elisabetta Xue
- Unit of Immunogenetics, Leukemia Genomics and Immunobiology, IRCCS San Raffaele Scientific Institute, Milano, Italy; Hematology and Bone Marrow Transplantation Unit, IRCCS San Raffaele Scientific Institute, Milano
| | - Raffaella Greco
- Hematology and Bone Marrow Transplantation Unit, IRCCS San Raffaele Scientific Institute, Milano
| | | | - Cristina Toffalori
- Unit of Immunogenetics, Leukemia Genomics and Immunobiology, IRCCS San Raffaele Scientific Institute, Milano
| | - Fabio Giglio
- Hematology and Bone Marrow Transplantation Unit, IRCCS San Raffaele Scientific Institute, Milano
| | - Andrea Assanelli
- Hematology and Bone Marrow Transplantation Unit, IRCCS San Raffaele Scientific Institute, Milano
| | | | | | - Benedetta Mazzi
- HLA and Chimerism Laboratory, IRCCS San Raffaele Scientific Institute, Milano
| | | | - Consuelo Corti
- Hematology and Bone Marrow Transplantation Unit, IRCCS San Raffaele Scientific Institute, Milano
| | - Jacopo Peccatori
- Hematology and Bone Marrow Transplantation Unit, IRCCS San Raffaele Scientific Institute, Milano
| | - Fabio Ciceri
- Hematology and Bone Marrow Transplantation Unit, IRCCS San Raffaele Scientific Institute, Milano, Italy; Vita-Salute San Raffaele University, Milano
| | - Luca Vago
- Unit of Immunogenetics, Leukemia Genomics and Immunobiology, IRCCS San Raffaele Scientific Institute, Milano, Italy; Hematology and Bone Marrow Transplantation Unit, IRCCS San Raffaele Scientific Institute, Milano.
| |
Collapse
|
18
|
Hu K, Du X, Guo M, Yu C, Qiao J, Sun Q, Zuo H, Cai B, Huang Y, Ai H, Dong Z, Wang Y. Comparative study of micro-transplantation from HLA fully mismatched unrelated and partly matched related donors in acute myeloid leukemia. Am J Hematol 2020; 95:630-636. [PMID: 32157700 DOI: 10.1002/ajh.25780] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2020] [Revised: 02/12/2020] [Accepted: 02/27/2020] [Indexed: 11/09/2022]
Abstract
Micro-transplantation (MST) by chemotherapy, combined with granulocyte colony-stimulating factor-mobilized peripheral blood stem cell (GPBSC) infusion, from an HLA partial matched related donor has shown some encouraging effective therapy for acute myeloid leukemia (AML). However, the outcome of human leukocyte antigen (HLA) fully mismatched unrelated donor-derived MST in such patients is still unknown. In the present study, we compared the efficacy of HLA fully mismatched unrelated donor-derived MST, and partly matched related donor-derived MST, in AML of 126 patients from two centers in China, These patients, aged 16 to 65 years, were given three or four courses of MST, which consisted of a high dosage cytarabine followed by GPBSC from unrelated donor or related donor. There was a statistically significant difference in 3-year leukemia-free survival (LFS) and 3-year overall survival (OS) between the unrelated and the related group. The non-treatment-related mortality (NRM) rates of patients, and other adverse complications, were no different in the two groups. In conclusion, unrelated donor-derived MST is believed to be a safe treatment, with efficacy similar to or higher than related donor-derived MST. This result provides support for the potential of MST for expanding the donor selection. However, the specific mechanism of action needs further study.
Collapse
Affiliation(s)
- Kai‐Xun Hu
- Department of Hematology and Transplantation, Fifth Medical CenterGeneral Hospital of the Chinese Peopleʼs Liberation Army Beijing China
| | - Xin Du
- Department of HematologyGuangdong Peopleʼs Hospital Gongdong China
| | - Mei Guo
- Department of Hematology and Transplantation, Fifth Medical CenterGeneral Hospital of the Chinese Peopleʼs Liberation Army Beijing China
| | - Chang‐Lin Yu
- Department of Hematology and Transplantation, Fifth Medical CenterGeneral Hospital of the Chinese Peopleʼs Liberation Army Beijing China
| | - Jian‐Hui Qiao
- Department of Hematology and Transplantation, Fifth Medical CenterGeneral Hospital of the Chinese Peopleʼs Liberation Army Beijing China
| | - Qi‐Yun Sun
- Department of Hematology and Transplantation, Fifth Medical CenterGeneral Hospital of the Chinese Peopleʼs Liberation Army Beijing China
| | - Hong‐Li Zuo
- Department of Hematology and Transplantation, Fifth Medical CenterGeneral Hospital of the Chinese Peopleʼs Liberation Army Beijing China
| | - Bo Cai
- Department of Hematology and Transplantation, Fifth Medical CenterGeneral Hospital of the Chinese Peopleʼs Liberation Army Beijing China
| | - Ya‐Jing Huang
- Department of Hematology and Transplantation, Fifth Medical CenterGeneral Hospital of the Chinese Peopleʼs Liberation Army Beijing China
| | - Hui‐Sheng Ai
- Department of Hematology and Transplantation, Fifth Medical CenterGeneral Hospital of the Chinese Peopleʼs Liberation Army Beijing China
| | - Zheng Dong
- Department of Hematology and Transplantation, Fifth Medical CenterGeneral Hospital of the Chinese Peopleʼs Liberation Army Beijing China
| | - Yi Wang
- Department of Hematology and Transplantation, Fifth Medical CenterGeneral Hospital of the Chinese Peopleʼs Liberation Army Beijing China
| |
Collapse
|
19
|
Stingl Jankovic K, Maskalan M, Burek Kamenaric M, Zunec R, Durakovic N, Serventi-Seiwerth R, Vrhovac R, Grubic Z. Quantitative polymerase chain reaction technology in chimerism monitoring after hematopoietic stem cell transplantation: One center experience. HLA 2020; 94 Suppl 2:16-20. [PMID: 31577854 DOI: 10.1111/tan.13707] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2019] [Revised: 09/03/2019] [Accepted: 09/20/2019] [Indexed: 11/29/2022]
Abstract
Chimerism status evaluation is a routine test performed in post-hematopoietic stem cell transplantation (HSCT) period. The aim of the study was to evaluate a quantitative polymerase chain reaction (qPCR) method (GenDx, Utrecht, the Netherlands) applicability for this purpose. The study included 74 recipient/donor pairs tested for informative markers: median of four and six informative markers was found for patients (related and unrelated donor, respectively). Higher sensitivity of qPCR method was confirmed by analysis of recipient post-HSCT samples (N = 800) among which microchimerism (0.1%-1% recipient DNA) was detected in 21.8% of cases. The ability to detect less than 1% of minor population, as opposed to the short tandem repeat (STR) method for which 1% is the limit, translated into earlier identification of a disease relapse for four patients in our study sample.
Collapse
Affiliation(s)
- Katarina Stingl Jankovic
- Tissue Typing Centre, Clinical Department for Transfusion Medicine and Transplantation Biology, University Hospital Centre Zagreb, Zagreb, Croatia
| | - Marija Maskalan
- Tissue Typing Centre, Clinical Department for Transfusion Medicine and Transplantation Biology, University Hospital Centre Zagreb, Zagreb, Croatia
| | - Marija Burek Kamenaric
- Tissue Typing Centre, Clinical Department for Transfusion Medicine and Transplantation Biology, University Hospital Centre Zagreb, Zagreb, Croatia
| | - Renata Zunec
- Tissue Typing Centre, Clinical Department for Transfusion Medicine and Transplantation Biology, University Hospital Centre Zagreb, Zagreb, Croatia
| | - Nadira Durakovic
- Department of Hematology, University Hospital Centre Zagreb, Zagreb, Croatia
| | | | - Radovan Vrhovac
- Department of Hematology, University Hospital Centre Zagreb, Zagreb, Croatia
| | - Zorana Grubic
- Tissue Typing Centre, Clinical Department for Transfusion Medicine and Transplantation Biology, University Hospital Centre Zagreb, Zagreb, Croatia
| |
Collapse
|
20
|
Cechova H, Pavlatova L, Leontovycova M, Vrana M. Suitable Molecular Genetic Methods for the Monitoring of Cell Chimerism. Rare Dis 2020. [DOI: 10.5772/intechopen.88436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
|
21
|
Hanusovska E, Sufliarska S. Monitoring of Chimerism in Rare Haematological Malignant Diseases after Allogeneic Haematopoietic Stem Cell Transplantation. Rare Dis 2020. [DOI: 10.5772/intechopen.89845] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
|
22
|
Baumeister SHC, Rambaldi B, Shapiro RM, Romee R. Key Aspects of the Immunobiology of Haploidentical Hematopoietic Cell Transplantation. Front Immunol 2020; 11:191. [PMID: 32117310 PMCID: PMC7033970 DOI: 10.3389/fimmu.2020.00191] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Accepted: 01/24/2020] [Indexed: 12/27/2022] Open
Abstract
Hematopoietic stem cell transplantation from a haploidentical donor is increasingly used and has become a standard donor option for patients lacking an appropriately matched sibling or unrelated donor. Historically, prohibitive immunological barriers resulting from the high degree of HLA-mismatch included graft-vs.-host disease (GVHD) and graft failure. These were overcome with increasingly sophisticated strategies to manipulate the sensitive balance between donor and recipient immune cells. Three different approaches are currently in clinical use: (a) ex vivo T-cell depletion resulting in grafts with defined immune cell content (b) extensive immunosuppression with a T-cell replete graft consisting of G-CSF primed bone marrow and PBSC (GIAC) (c) T-cell replete grafts with post-transplant cyclophosphamide (PTCy). Intriguing studies have recently elucidated the immunologic mechanisms by which PTCy prevents GVHD. Each approach uniquely affects post-transplant immune reconstitution which is critical for the control of post-transplant infections and relapse. NK-cells play a key role in haplo-HCT since they do not mediate GVHD but can successfully mediate a graft-vs.-leukemia effect. This effect is in part regulated by KIR receptors that inhibit NK cell cytotoxic function when binding to the appropriate HLA-class I ligands. In the context of an HLA-class I mismatch in haplo-HCT, lack of inhibition can contribute to NK-cell alloreactivity leading to enhanced anti-leukemic effect. Emerging work reveals immune evasion phenomena such as copy-neutral loss of heterozygosity of the incompatible HLA alleles as one of the major mechanisms of relapse. Relapse and infectious complications remain the leading causes impacting overall survival and are central to scientific advances seeking to improve haplo-HCT. Given that haploidentical donors can typically be readily approached to collect additional stem- or immune cells for the recipient, haplo-HCT represents a unique platform for cell- and immune-based therapies aimed at further reducing relapse and infections. The rapid advancements in our understanding of the immunobiology of haplo-HCT are therefore poised to lead to iterative innovations resulting in further improvement of outcomes with this compelling transplant modality.
Collapse
Affiliation(s)
- Susanne H C Baumeister
- Division of Pediatric Hematology-Oncology, Boston Children's Hospital, Boston, MA, United States.,Department of Pediatric Oncology, Dana-Farber Cancer Institute, Boston, MA, United States.,Harvard Medical School, Boston, MA, United States
| | - Benedetta Rambaldi
- Harvard Medical School, Boston, MA, United States.,Division of Hematologic Malignancies, Dana-Farber Cancer Institute, Boston, MA, United States.,Bone Marrow Transplant Unit, Clinical and Experimental Sciences Department, ASST Spedali Civili, University of Pavia, Brescia, Italy
| | - Roman M Shapiro
- Harvard Medical School, Boston, MA, United States.,Division of Hematologic Malignancies, Dana-Farber Cancer Institute, Boston, MA, United States
| | - Rizwan Romee
- Harvard Medical School, Boston, MA, United States.,Division of Hematologic Malignancies, Dana-Farber Cancer Institute, Boston, MA, United States
| |
Collapse
|
23
|
Lee JM, Kim YJ, Park SS, Han E, Kim M, Kim Y. Simultaneous Monitoring of Mutation and Chimerism Using Next-Generation Sequencing in Myelodysplastic Syndrome. J Clin Med 2019; 8:jcm8122077. [PMID: 31795155 PMCID: PMC6947461 DOI: 10.3390/jcm8122077] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2019] [Revised: 11/02/2019] [Accepted: 11/21/2019] [Indexed: 01/27/2023] Open
Abstract
Monitoring minimal residual disease (MRD) provides important information during treatment of hematologic malignancies. Chimerism analysis also provides key information after allogeneic hematopoietic stem cell transplantation (allo-HSCT). Recent advances in next-generation sequencing (NGS) have enabled identification of various mutations and quantification of mutant allele burden. In this study, we developed a new analytic algorithm to monitor chimerism applicable to NGS multi-gene panel in use to identify mutations of myelodysplastic syndrome (MDS). We enrolled patients who were diagnosed with MDS and received allo-HSCT and their corresponding donors. Monitoring MRD by NGS assay was performed using 53 DNA samples by calculating mutant allele burden after treatment. For monitoring chimerism by NGS, we selected 121 single nucleotide polymorphisms (SNPs) after careful stepwise evaluation and calculated average donor allele burden. Data obtained from NGS were compared with bone marrow findings, chromosome analysis and short tandem repeat (STR)-based chimerism. SNP-based NGS chimerism analysis was accurate and even superior to conventional STR method by overcoming the various technical limitations of STR. In addition, simultaneous monitoring of mutation and chimerism using NGS could implement comprehensive pre- and post-HSCT monitoring of various clinical conditions such as complete donor chimerism, persistent mixed chimerism, early relapse, and even donor cell-derived diseases.
Collapse
Affiliation(s)
- Jong-Mi Lee
- Department of Laboratory Medicine, College of Medicine, The Catholic University of Korea, Seoul 06591, Korea; (J.-M.L.); (E.H.)
- Catholic Genetic Laboratory Center, Seoul St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Seoul 06591, Korea
| | - Yoo-Jin Kim
- Department of Hematology, Seoul St. Mary’s Hematology Hospital, College of Medicine, The Catholic University of Korea, Seoul 06591, Korea; (Y.-J.K.)
| | - Sung-Soo Park
- Department of Hematology, Seoul St. Mary’s Hematology Hospital, College of Medicine, The Catholic University of Korea, Seoul 06591, Korea; (Y.-J.K.)
| | - Eunhee Han
- Department of Laboratory Medicine, College of Medicine, The Catholic University of Korea, Seoul 06591, Korea; (J.-M.L.); (E.H.)
- Catholic Genetic Laboratory Center, Seoul St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Seoul 06591, Korea
| | - Myungshin Kim
- Department of Laboratory Medicine, College of Medicine, The Catholic University of Korea, Seoul 06591, Korea; (J.-M.L.); (E.H.)
- Catholic Genetic Laboratory Center, Seoul St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Seoul 06591, Korea
- Correspondence: (M.K.); (Y.K.); Tel.: +82-2-2258-1645 (M.K.); +82-2-2258-1642 (Y.K.)
| | - Yonggoo Kim
- Department of Laboratory Medicine, College of Medicine, The Catholic University of Korea, Seoul 06591, Korea; (J.-M.L.); (E.H.)
- Catholic Genetic Laboratory Center, Seoul St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Seoul 06591, Korea
- Correspondence: (M.K.); (Y.K.); Tel.: +82-2-2258-1645 (M.K.); +82-2-2258-1642 (Y.K.)
| |
Collapse
|
24
|
Bouvier A, Riou J, Thépot S, Sutra Del Galy A, François S, Schmidt A, Orvain C, Estienne MH, Villate A, Luque Paz D, Cottin L, Ribourtout B, Beucher A, Delneste Y, Ifrah N, Ugo V, Hunault-Berger M, Blanchet O. Quantitative chimerism in CD3-negative mononuclear cells predicts prognosis in acute myeloid leukemia patients after hematopoietic stem cell transplantation. Leukemia 2019; 34:1342-1353. [PMID: 31768015 DOI: 10.1038/s41375-019-0624-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2019] [Revised: 10/18/2019] [Accepted: 11/03/2019] [Indexed: 12/20/2022]
Abstract
Relapse is a major complication of acute myeloid leukemia (AML) after allogeneic hematopoietic stem cell transplantation (SCT). The objective of our study was to evaluate chimerism monitoring on the CD3-negative mononuclear cells by RQ-PCR to predict relapse of patients allografted for AML and to compare its performance with WT1 quantification. A cohort of 100 patients undergoing allogenic SCT for AML was retrospectively analyzed in a single institution. Patients without complete chimerism, defined as less than 0.01% of recipient's DNA in CD3-negative cells, had a significantly higher risk of relapse and a lower overall survival (p < 0.001). An increase in the percentage of recipient DNA in CD3-negative cells was associated with an increased risk of relapse (p < 0.001) but not with overall survival. Comparable performances between monitoring of CD3-negative cell chimerism and WT1 expression to predict relapse was observed up to more than 90 days before hematological relapse, with sensitivity of 82% and 78%, respectively, and specificity of 100% for both approaches. Quantitative specific chimerism of the CD3-negative mononuclear fraction, enriched in blastic cells, is a new and powerful tool for monitoring measurable residual disease and could be used for AML patients without available molecular markers.
Collapse
Affiliation(s)
- Anne Bouvier
- CHU Angers, Laboratoire d'Hématologie, Angers, France. .,Fédération Hospitalo-Universitaire 'Grand Ouest Against Leukemia' (FHU GOAL), Angers, France. .,CRCINA, INSERM, Université de Nantes, Université d'Angers, Angers, France.
| | - Jérémie Riou
- MINT, UMR INSERM 1066, CNRS 6021, Université d'Angers, Angers, France.,Université d'Angers, UFR Santé, Angers, France
| | - Sylvain Thépot
- Fédération Hospitalo-Universitaire 'Grand Ouest Against Leukemia' (FHU GOAL), Angers, France.,CRCINA, INSERM, Université de Nantes, Université d'Angers, Angers, France.,Université d'Angers, UFR Santé, Angers, France.,CHU Angers, Service des Maladies du sang, Angers, France
| | | | - Sylvie François
- Fédération Hospitalo-Universitaire 'Grand Ouest Against Leukemia' (FHU GOAL), Angers, France.,CHU Angers, Service des Maladies du sang, Angers, France
| | - Aline Schmidt
- Fédération Hospitalo-Universitaire 'Grand Ouest Against Leukemia' (FHU GOAL), Angers, France.,CRCINA, INSERM, Université de Nantes, Université d'Angers, Angers, France.,Université d'Angers, UFR Santé, Angers, France.,CHU Angers, Service des Maladies du sang, Angers, France
| | - Corentin Orvain
- Fédération Hospitalo-Universitaire 'Grand Ouest Against Leukemia' (FHU GOAL), Angers, France.,CRCINA, INSERM, Université de Nantes, Université d'Angers, Angers, France.,Université d'Angers, UFR Santé, Angers, France.,CHU Angers, Service des Maladies du sang, Angers, France
| | - Marie-Hélène Estienne
- Fédération Hospitalo-Universitaire 'Grand Ouest Against Leukemia' (FHU GOAL), Angers, France.,CHU Tours, Service d'Hématologie biologique, Tours, France
| | - Alban Villate
- Fédération Hospitalo-Universitaire 'Grand Ouest Against Leukemia' (FHU GOAL), Angers, France.,CHU Tours, Service d'Hématologie et thérapie cellulaire, Tours, France
| | - Damien Luque Paz
- CHU Angers, Laboratoire d'Hématologie, Angers, France.,Fédération Hospitalo-Universitaire 'Grand Ouest Against Leukemia' (FHU GOAL), Angers, France.,CRCINA, INSERM, Université de Nantes, Université d'Angers, Angers, France.,Université d'Angers, UFR Santé, Angers, France
| | - Laurane Cottin
- CHU Angers, Laboratoire d'Hématologie, Angers, France.,Fédération Hospitalo-Universitaire 'Grand Ouest Against Leukemia' (FHU GOAL), Angers, France.,Université d'Angers, UFR Santé, Angers, France
| | - Bénédicte Ribourtout
- CHU Angers, Laboratoire d'Hématologie, Angers, France.,Fédération Hospitalo-Universitaire 'Grand Ouest Against Leukemia' (FHU GOAL), Angers, France
| | - Annaëlle Beucher
- CHU Angers, Laboratoire d'Hématologie, Angers, France.,Fédération Hospitalo-Universitaire 'Grand Ouest Against Leukemia' (FHU GOAL), Angers, France
| | - Yves Delneste
- CRCINA, INSERM, Université de Nantes, Université d'Angers, Angers, France.,CHU Angers, Laboratoire d'Immunologie et Allergologie, Angers, France
| | - Norbert Ifrah
- Fédération Hospitalo-Universitaire 'Grand Ouest Against Leukemia' (FHU GOAL), Angers, France.,CRCINA, INSERM, Université de Nantes, Université d'Angers, Angers, France.,Université d'Angers, UFR Santé, Angers, France.,CHU Angers, Service des Maladies du sang, Angers, France
| | - Valérie Ugo
- CHU Angers, Laboratoire d'Hématologie, Angers, France.,Fédération Hospitalo-Universitaire 'Grand Ouest Against Leukemia' (FHU GOAL), Angers, France.,CRCINA, INSERM, Université de Nantes, Université d'Angers, Angers, France.,Université d'Angers, UFR Santé, Angers, France
| | - Mathilde Hunault-Berger
- Fédération Hospitalo-Universitaire 'Grand Ouest Against Leukemia' (FHU GOAL), Angers, France.,CRCINA, INSERM, Université de Nantes, Université d'Angers, Angers, France.,Université d'Angers, UFR Santé, Angers, France.,CHU Angers, Service des Maladies du sang, Angers, France
| | - Odile Blanchet
- CHU Angers, Laboratoire d'Hématologie, Angers, France.,Fédération Hospitalo-Universitaire 'Grand Ouest Against Leukemia' (FHU GOAL), Angers, France.,CRCINA, INSERM, Université de Nantes, Université d'Angers, Angers, France.,Université d'Angers, UFR Santé, Angers, France.,CHU Angers, Centre de Ressources Biologiques, BB-0033-00038, Angers, France
| |
Collapse
|
25
|
Haugaard AK, Madsen HO, Marquart HV, Rosthøj S, Masmas TN, Heilmann C, Müller KG, Ifversen M. Highly sensitive chimerism detection in blood is associated with increased risk of relapse after allogeneic hematopoietic cell transplantation in childhood leukemia. Pediatr Transplant 2019; 23:e13549. [PMID: 31313439 DOI: 10.1111/petr.13549] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/14/2018] [Revised: 05/04/2019] [Accepted: 06/19/2019] [Indexed: 12/19/2022]
Abstract
Analysis of chimerism in blood post-HCT using STR-PCR is routinely applied in parallel with quantification of MRD to predict relapse of leukemia. RQ-PCR chimerism is 10- to 100-fold more sensitive, but clinical studies in children are sparse. We analyzed IMC in blood samples following transplantation for acute lymphoblastic or myeloid leukemia in 56 children. IMC was defined as a minimum increase of (a) 0.1% or (b) 0.05% recipient DNA between two samples. The risk of relapse was higher in children with IMC of both 0.1% and 0.05% compared to children without IMC (HR 12.8 [95% CI: 3.9-41.4; P < .0001] and 7.6 [95% CI: 2.2-26.9; P < .01], respectively). The first IMC was detected at a median of 208 days prior to relapse. The 5-year cumulative incidence of relapse for children with a single IMC was 45.5% (CI 12.3-74.4) and 41.0% (14.2-66.6) for IMC above 0.1% and 0.05%, respectively. However, in 47 and 38 children never attaining IMC > 0.1% and >0.05%, 10 and 8 children relapsed, respectively. In a landmark analysis, no association was found between IMC prior to 90 days post-HCT and subsequent relapse by either classification of IMC and AUC for RQ-PCR chimerism was 54.2% (95 CI 27.7- 84.8). Although limited by a retrospective design, these results indicate that monitoring of RQ-PCR chimerism in peripheral blood may have a role in early detection of relapse in acute childhood leukemia.
Collapse
Affiliation(s)
- Anna Karen Haugaard
- Department for Children and Adolescents, Pediatric Hematopoietic Stem Cell Transplantation and Immunodeficiency, Copenhagen University Hospital Rigshospitalet, Copenhagen, Denmark
| | - Hans Ole Madsen
- Department of Clinical Immunology, The Tissue Typing Laboratory, Copenhagen University Hospital Rigshospitalet, Copenhagen, Denmark
| | - Hanne Vibeke Marquart
- Department of Clinical Immunology, The Tissue Typing Laboratory, Copenhagen University Hospital Rigshospitalet, Copenhagen, Denmark
| | - Susanne Rosthøj
- Department of Public Health, Section of Biostatistics, University of Copenhagen, Copenhagen, Denmark
| | - Tania Nicole Masmas
- Department for Children and Adolescents, Pediatric Hematopoietic Stem Cell Transplantation and Immunodeficiency, Copenhagen University Hospital Rigshospitalet, Copenhagen, Denmark
| | - Carsten Heilmann
- Department for Children and Adolescents, Pediatric Hematopoietic Stem Cell Transplantation and Immunodeficiency, Copenhagen University Hospital Rigshospitalet, Copenhagen, Denmark
| | - Klaus Gottlob Müller
- Department for Children and Adolescents, Pediatric Hematopoietic Stem Cell Transplantation and Immunodeficiency, Copenhagen University Hospital Rigshospitalet, Copenhagen, Denmark
| | - Marianne Ifversen
- Department for Children and Adolescents, Pediatric Hematopoietic Stem Cell Transplantation and Immunodeficiency, Copenhagen University Hospital Rigshospitalet, Copenhagen, Denmark
| |
Collapse
|
26
|
Andrikovics H, Őrfi Z, Meggyesi N, Bors A, Varga L, Kövy P, Vilimszky Z, Kolics F, Gopcsa L, Reményi P, Tordai A. Current Trends in Applications of Circulatory Microchimerism Detection in Transplantation. Int J Mol Sci 2019; 20:E4450. [PMID: 31509957 PMCID: PMC6769866 DOI: 10.3390/ijms20184450] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2019] [Revised: 09/05/2019] [Accepted: 09/05/2019] [Indexed: 02/07/2023] Open
Abstract
Primarily due to recent advances of detection techniques, microchimerism (the proportion of minor variant population is below 1%) has recently gained increasing attention in the field of transplantation. Availability of polymorphic markers, such as deletion insertion or single nucleotide polymorphisms along with a vast array of high sensitivity detection techniques, allow the accurate detection of small quantities of donor- or recipient-related materials. This diagnostic information can improve monitoring of allograft injuries in solid organ transplantations (SOT) as well as facilitate early detection of relapse in allogeneic hematopoietic stem cell transplantation (allo-HSCT). In the present review, genetic marker and detection platform options applicable for microchimerism detection are discussed. Furthermore, current results of relevant clinical studies in the context of microchimerism and SOT or allo-HSCT respectively are also summarized.
Collapse
Affiliation(s)
- Hajnalka Andrikovics
- Laboratory of Molecular Genetics, Central Hospital of Southern Pest National Institute of Hematology and Infectious Diseases, 1097 Budapest, Hungary
- Department of Pathophysiology, Semmelweis University, 1089 Budapest, Hungary
| | - Zoltán Őrfi
- Laboratory of Molecular Genetics, Central Hospital of Southern Pest National Institute of Hematology and Infectious Diseases, 1097 Budapest, Hungary
| | - Nóra Meggyesi
- Laboratory of Molecular Genetics, Central Hospital of Southern Pest National Institute of Hematology and Infectious Diseases, 1097 Budapest, Hungary
| | - András Bors
- Laboratory of Molecular Genetics, Central Hospital of Southern Pest National Institute of Hematology and Infectious Diseases, 1097 Budapest, Hungary
| | - Lívia Varga
- School of PhD Studies, Semmelweis University, 1085 Budapest, Hungary
- Hungarian National Blood Transfusion Service, 1113 Budapest, Hungary
| | - Petra Kövy
- Laboratory of Molecular Genetics, Central Hospital of Southern Pest National Institute of Hematology and Infectious Diseases, 1097 Budapest, Hungary
- School of PhD Studies, Semmelweis University, 1085 Budapest, Hungary
| | - Zsófia Vilimszky
- Laboratory of Molecular Genetics, Central Hospital of Southern Pest National Institute of Hematology and Infectious Diseases, 1097 Budapest, Hungary
| | - Fanni Kolics
- Laboratory of Molecular Genetics, Central Hospital of Southern Pest National Institute of Hematology and Infectious Diseases, 1097 Budapest, Hungary
| | - László Gopcsa
- Department of Hematology and Stem Cell Transplantation, Central Hospital of Southern Pest National Institute of Hematology and Infectious Diseases, 1097 Budapest, Hungary
| | - Péter Reményi
- Department of Hematology and Stem Cell Transplantation, Central Hospital of Southern Pest National Institute of Hematology and Infectious Diseases, 1097 Budapest, Hungary
| | - Attila Tordai
- Department of Pathophysiology, Semmelweis University, 1089 Budapest, Hungary.
- Department of Transfusion Medicine, Semmelweis University, 1089 Budapest, Hungary.
| |
Collapse
|
27
|
Sanz-Piña E, Santurtún A, Zarrabeitia MT. Forensic implications of the presence of chimerism after hematopoietic stem cell transplantation. Forensic Sci Int 2019; 302:109862. [DOI: 10.1016/j.forsciint.2019.06.020] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2018] [Revised: 05/29/2019] [Accepted: 06/16/2019] [Indexed: 11/17/2022]
|
28
|
Cechova H, Leontovycova M, Pavlatova L. Chimerism as an important marker in post-transplant monitoring chimerism monitoring. HLA 2019; 92 Suppl 2:60-63. [PMID: 30362266 DOI: 10.1111/tan.13407] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2018] [Revised: 09/11/2018] [Accepted: 10/23/2018] [Indexed: 12/21/2022]
Abstract
Cell chimerism determination is important for the monitoring of engraftment dynamics and for relapse prediction. Our cohort of 474 patients was divided into two groups according to the determination methods used over time, and by their chimerism status. A significant difference in survival was observed between mixed vs complete chimerism (P < 0.0001 vs P < 0.0002) in both patient groups, and also vs microchimerism (P = 0.0201) in the second group. Detection of mixed chimerism is thus a high-risk factor, and microchimerism is potentially a risk factor in the post-transplantation course. Methods with a high sensitivity for monitoring cell chimerism significantly improve the assessment of patients post-transplant, and they enable the identification of patients with high relapse risk. Supported by MH CZ-DRO (00023736, UHKT).
Collapse
Affiliation(s)
- Hana Cechova
- HLA department, The Institute of Hematology and Blood Transfusion, Prague 2, Czech Republic
| | - Monika Leontovycova
- HLA department, The Institute of Hematology and Blood Transfusion, Prague 2, Czech Republic
| | - Lucie Pavlatova
- HLA department, The Institute of Hematology and Blood Transfusion, Prague 2, Czech Republic
| |
Collapse
|
29
|
Nadvornikova S, Leontovycova M, Pegova K, Hrabakova P, Prerovska R, Cechova H. Multiplex real-time quantitative polymerase chain reaction assay for rapid and sensitive detection of hematopoietic chimerism. HLA 2019; 92:215-223. [PMID: 30129247 DOI: 10.1111/tan.13383] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2018] [Revised: 06/20/2018] [Accepted: 08/16/2018] [Indexed: 01/28/2023]
Abstract
The increase of mixed chimerism (MC) after allogeneic hematopoietic stem cell transplantation has been associated with a high risk of relapse. A variety of techniques that use polymorphic markers have been established to survey hematopoietic chimerism status. The highest sensitivity is achieved using real-time quantitative polymerase chain reaction (RQ-PCR) analysis of insertion/deletion polymorphism, which allows the detection of disease recurrence and subsequently the earlier initiation of therapeutic intervention. The purpose of this study is the evaluation of multiplex RQ-PCR for MC assessment (six biallelic genetic systems and Y-specific locus), allowing the amplification and detection of target gene of interest and glyceraldehyde-3-phosphate dehydrogenase reference housekeeping gene in a single microtube. With optimized amounts of primers and probe, the quantification of target DNA was shown to be linear throughout the tested range (100%-0.05%). The efficiencies of multiplex RQ-PCR were in a range of 0.89 to 1.07. The sensitivity of individual systems ranged 0.02% to 0.04% with an average of 0.034%. A high degree of linear correlation between the chimerism results obtained by multiplex RQ-PCR vs singleplex RQ-PCR was observed (P < 0.0001, Spearman's coefficient = 0.9927), while correlation between multiplex RQ-PCR vs short tandem repeat analysis was also statistically significant (P < 0.0001, Spearman's coefficient = 0.9769). This new multiplex RQ-PCR assay is a quick, sensitive, reproducible, and cost-effective method for accurate MC assessment.
Collapse
Affiliation(s)
| | | | - Kristyna Pegova
- The Institute of Hematology and Blood Transfusion, Prague 2, Czech Republic
| | - Pavla Hrabakova
- The Institute of Hematology and Blood Transfusion, Prague 2, Czech Republic
| | - Renata Prerovska
- The Institute of Hematology and Blood Transfusion, Prague 2, Czech Republic
| | - Hana Cechova
- The Institute of Hematology and Blood Transfusion, Prague 2, Czech Republic
| |
Collapse
|
30
|
Mika T, Baraniskin A, Ladigan S, Wulf G, Dierks S, Haase D, Schork K, Turewicz M, Eisenacher M, Schmiegel W, Schroers R, Klein-Scory S. Digital droplet PCR-based chimerism analysis for monitoring of hematopoietic engraftment after allogeneic stem cell transplantation. Int J Lab Hematol 2019; 41:615-621. [PMID: 31225701 DOI: 10.1111/ijlh.13073] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2019] [Revised: 04/25/2019] [Accepted: 05/29/2019] [Indexed: 11/29/2022]
Abstract
INTRODUCTION Allogeneic hematopoietic stem cell transplantation (alloHSCT) is a curative approach for multiple hematologic diseases. The success of alloHSCT is evaluated by analyzing the proportion of living donor cells in blood and bone marrow samples of the recipient (chimerism analysis). To monitor the engrafted cells, donor's individual genetic markers are analyzed in peripheral blood and bone marrow samples, usually by using short tandem repeat (STR) analysis. An alternative method to measure chimerism is based on insertion and deletion markers (InDels) analyzed by digital droplet PCR (ddPCR); however, this approach is rarely evaluated in clinical practice. METHODS In this study, we examined the usefulness of ddPCR-based chimerism analysis against the standard STR analysis in samples around day+30 after alloHSCT in clinical practice using peripheral blood and bone marrow samples. RESULTS The median absolute difference between ddPCR and STR analysis was 0.55% points for bone marrow chimerisms and 0.25% points for peripheral blood chimerisms, respectively, including variation in the range of maximum 2% for both methods. The results of every single sample gave the same clinical message. CONCLUSION According to our data, chimerism analysis by ddPCR has an excellent correlation with STR-based analyses. Due to its fast and easy applicability, the ddPCR technique is suitable for chimerism monitoring in clinical practice.
Collapse
Affiliation(s)
- Thomas Mika
- Department of Medicine, Ruhr-University Bochum, Universitätsklinikum Knappschaftskrankenhaus Bochum GmbH, Bochum, Germany
| | - Alexander Baraniskin
- Department of Medicine, Ruhr-University Bochum, Universitätsklinikum Knappschaftskrankenhaus Bochum GmbH, Bochum, Germany
| | - Swedlana Ladigan
- Department of Medicine, Ruhr-University Bochum, Universitätsklinikum Knappschaftskrankenhaus Bochum GmbH, Bochum, Germany
| | - Gerald Wulf
- Department of Hematology and Oncology, Georg-August University Göttingen, Göttingen, Germany
| | - Sascha Dierks
- Department of Hematology and Oncology, Georg-August University Göttingen, Göttingen, Germany
| | - Detlef Haase
- Department of Hematology and Oncology, Georg-August University Göttingen, Göttingen, Germany
| | - Karin Schork
- Medizinisches Proteom Center, Ruhr-University Bochum, Bochum, Germany
| | - Michael Turewicz
- Medizinisches Proteom Center, Ruhr-University Bochum, Bochum, Germany
| | - Martin Eisenacher
- Medizinisches Proteom Center, Ruhr-University Bochum, Bochum, Germany
| | - Wolff Schmiegel
- Department of Medicine, Ruhr-University Bochum, Universitätsklinikum Knappschaftskrankenhaus Bochum GmbH, Bochum, Germany.,IMBL Medical Clinic, Ruhr-University Bochum, Universitätsklinikum Knappschaftskrankenhaus Bochum GmbH, Bochum, Germany
| | - Roland Schroers
- Department of Medicine, Ruhr-University Bochum, Universitätsklinikum Knappschaftskrankenhaus Bochum GmbH, Bochum, Germany
| | - Susanne Klein-Scory
- IMBL Medical Clinic, Ruhr-University Bochum, Universitätsklinikum Knappschaftskrankenhaus Bochum GmbH, Bochum, Germany
| |
Collapse
|
31
|
Tyler J, Kumer L, Fisher C, Casey H, Shike H. Personalized Chimerism Test that Uses Selection of Short Tandem Repeat or Quantitative PCR Depending on Patient's Chimerism Status. J Mol Diagn 2019; 21:483-490. [PMID: 30797064 DOI: 10.1016/j.jmoldx.2019.01.007] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2018] [Revised: 01/14/2019] [Accepted: 01/29/2019] [Indexed: 12/11/2022] Open
Abstract
Chimerism testing is used to monitor engraftment and risk of relapse after allogeneic hematopoietic stem cell transplantation for hematologic malignancies. Although short tandem repeat (STR) method is widely used among clinical laboratories, quantitative PCR (qPCR) provides better sensitivity (0.1%) than STR (1% to 5%) but is less accurate than STR for patients in mixed chimerism. qPCR chimerism allows evaluation of residual recipient cells as a surrogate of measurable residual disease. To achieve higher sensitivity and accuracy, we applied qPCR or STR based on patient chimerism status (recipient alleles <5% or ≥5%, respectively). Of the 230 patients tested by STR in a 1-year period, excluding 10 deceased patients, 30 qPCR markers were genotyped and 167 patients converted to qPCR chimerism (76%), including eight patients undergoing multiple-donor transplantation. STR was continued on 53 patients (24%) for the following reasons: mixed chimerism (n = 23), lack of donor or pretransplantation DNA (n = 22), and insufficient qPCR informative markers [8 of 60 patients with related donors (13.3%)]. qPCR detected residual recipient chimerism in 85.5% of patients with complete chimerism by STR (<5% recipient). Selecting STR or qPCR testing based on each patient's chimerism status facilitates sensitive and accurate chimerism testing in clinical settings. In addition, we discuss clinical relevance of chimerism testing for measurable residual disease detection in various hematologic malignancies.
Collapse
Affiliation(s)
- Jennifer Tyler
- Department of Pathology, Histocompatibility, and Immunogenetics, Penn State Milton S. Hershey Medical Center, Hershey, Pennsylvania
| | - Lorie Kumer
- Department of Pathology, Histocompatibility, and Immunogenetics, Penn State Milton S. Hershey Medical Center, Hershey, Pennsylvania
| | - Carolyn Fisher
- Department of Pathology, Histocompatibility, and Immunogenetics, Penn State Milton S. Hershey Medical Center, Hershey, Pennsylvania
| | - Heather Casey
- Department of Pathology, Histocompatibility, and Immunogenetics, Penn State Milton S. Hershey Medical Center, Hershey, Pennsylvania
| | - Hiroko Shike
- Department of Pathology, Histocompatibility, and Immunogenetics, Penn State Milton S. Hershey Medical Center, Hershey, Pennsylvania.
| |
Collapse
|