Ellenbroek BA, van der Kam EL, van der Elst MCJ, Cools AR. Individual differences in drug dependence in rats: the role of genetic factors and life events.
Eur J Pharmacol 2005;
526:251-8. [PMID:
16253227 DOI:
10.1016/j.ejphar.2005.09.032]
[Citation(s) in RCA: 33] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2005] [Revised: 06/28/2005] [Accepted: 09/23/2005] [Indexed: 12/15/2022]
Abstract
Drug dependence and addiction is a chronic mental illness that has far reaching consequences for society in terms of economic loss, health costs and judicial problems. A crucial question in drug addiction, is what factors are involved in its aetiology, and especially what mediates the shit from use to abuse. As in most other mental illnesses, addiction can best be described using the so-called three hit model, which states that a disease results from an interaction between genetic factors, early lie events and late environmental factors. However, the precise nature of these factors still remains to be elucidated. This present review discusses the results from an animal model in which these three different hit are currently being investigated. The apomorphine susceptible (APO-SUS) and apomorphine unsusceptible (APO-UNSUS) rats, originally selected on the basis of their behavioural response to the dopaminergic agonist apomorphine, were recently found to be genetically different in the number of gene copies of a component of the gamma-secretase complex called Aph-1b. Whereas APO-UNSUS rats have three copies of the gene, APO-SUS rats have either 1 or 2 copies. In addition we have shown that these rats show differences in cocaine and alcohol self-administration, and that both early life events and late environmental factors can alter this self-administration behaviour. Thus, the data so far support the hypothesis that the APO-SUS and APO-UNSUS rats offer an interesting animal model for drug dependence in which genes and environment interact. We finally propose a theoretical model which can explain this gene-environment interaction.
Collapse