1
|
Atypical electrophysiological and behavioral responses to diazepam in a leading mouse model of Down syndrome. Sci Rep 2021; 11:9521. [PMID: 33947925 PMCID: PMC8096846 DOI: 10.1038/s41598-021-89011-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Accepted: 04/15/2021] [Indexed: 02/02/2023] Open
Abstract
Mounting evidence implicates dysfunctional GABAAR-mediated neurotransmission as one of the underlying causes of learning and memory deficits observed in the Ts65Dn mouse model of Down syndrome (DS). The specific origin and nature of such dysfunction is still under investigation, which is an issue with practical consequences to preclinical and clinical research, as well as to the care of individuals with DS and anxiety disorder or those experiencing seizures in emergency room settings. Here, we investigated the effects of GABAAR positive allosteric modulation (PAM) by diazepam on brain activity, synaptic plasticity, and behavior in Ts65Dn mice. We found Ts65Dn mice to be less sensitive to diazepam, as assessed by electroencephalography, long-term potentiation, and elevated plus-maze. Still, diazepam pre-treatment displayed typical effectiveness in reducing susceptibility and severity to picrotoxin-induced seizures in Ts65Dn mice. These findings fill an important gap in the understanding of GABAergic function in a key model of DS.
Collapse
|
2
|
Kleschevnikov AM, Yu J, Kim J, Lysenko LV, Zeng Z, Yu YE, Mobley WC. Evidence that increased Kcnj6 gene dose is necessary for deficits in behavior and dentate gyrus synaptic plasticity in the Ts65Dn mouse model of Down syndrome. Neurobiol Dis 2017; 103:1-10. [PMID: 28342823 DOI: 10.1016/j.nbd.2017.03.009] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2016] [Revised: 02/09/2017] [Accepted: 03/21/2017] [Indexed: 11/15/2022] Open
Abstract
Down syndrome (DS), trisomy 21, is caused by increased dose of genes present on human chromosome 21 (HSA21). The gene-dose hypothesis argues that a change in the dose of individual genes or regulatory sequences on HSA21 is necessary for creating DS-related phenotypes, including cognitive impairment. We focused on a possible role for Kcnj6, the gene encoding Kir3.2 (Girk2) subunits of a G-protein-coupled inwardly-rectifying potassium channel. This gene resides on a segment of mouse Chromosome 16 that is present in one extra copy in the genome of the Ts65Dn mouse, a well-studied genetic model of DS. Kir3.2 subunit-containing potassium channels serve as effectors for a number of postsynaptic metabotropic receptors including GABAB receptors. Several studies raise the possibility that increased Kcnj6 dose contributes to synaptic and cognitive abnormalities in DS. To assess directly a role for Kcnj6 gene dose in cognitive deficits in DS, we produced Ts65Dn mice that harbor only 2 copies of Kcnj6 (Ts65Dn:Kcnj6++- mice). The reduction in Kcnj6 gene dose restored to normal the hippocampal level of Kir3.2. Long-term memory, examined in the novel object recognition test with the retention period of 24h, was improved to the level observed in the normosomic littermate control mice (2N:Kcnj6++). Significantly, both short-term and long-term potentiation (STP and LTP) was improved to control levels in the dentate gyrus (DG) of the Ts65Dn:Kcnj6++- mouse. In view of the ability of fluoxetine to suppress Kir3.2 channels, we asked if fluoxetine-treated DG slices of Ts65Dn:Kcnj6+++ mice would rescue synaptic plasticity. Fluoxetine increased STP and LTP to control levels. These results are evidence that increased Kcnj6 gene dose is necessary for synaptic and cognitive dysfunction in the Ts65Dn mouse model of DS. Strategies aimed at pharmacologically reducing channel function should be explored for enhancing cognition in DS.
Collapse
Affiliation(s)
- Alexander M Kleschevnikov
- Department of Neurosciences, University of California San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA.
| | - Jessica Yu
- Department of Neurosciences, University of California San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA
| | - Jeesun Kim
- Department of Neurosciences, University of California San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA
| | - Larisa V Lysenko
- Department of Neurosciences, University of California San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA; Academy of Biology and Biotechnology of Southern Federal University, 194/1 Stachki Str, Rostov-na-Donu 344090, Russian Federation
| | - Zheng Zeng
- Department of Neurosciences, University of California San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA
| | - Y Eugene Yu
- The Children's Guild Foundation Down Syndrome Research Program, Genetics Program and Department of Cancer Genetics, Roswell Park Cancer Institute, Buffalo, NY 14263, USA
| | - William C Mobley
- Department of Neurosciences, University of California San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA
| |
Collapse
|
3
|
Normal Performance of Fmr1 Mice on a Touchscreen Delayed Nonmatching to Position Working Memory Task. eNeuro 2016; 3:eN-CFN-0143-15. [PMID: 27022628 PMCID: PMC4800045 DOI: 10.1523/eneuro.0143-15.2016] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2015] [Revised: 02/10/2016] [Accepted: 02/10/2016] [Indexed: 11/21/2022] Open
Abstract
Fragile X syndrome is a neurodevelopmental disorder characterized by mild-to-severe cognitive deficits. The complete absence of Fmr1 and its protein product in the mouse model of fragile X (Fmr1 KO) provides construct validity. A major conundrum in the field is the remarkably normal performance of Fmr1 mice on cognitive tests in most reports. One explanation may be insufficiently challenging cognitive testing procedures. Here we developed a delayed nonmatching to position touchscreen task to test the hypothesis that paradigms placing demands on working memory would reveal robust and replicable cognitive deficits in the Fmr1 KO mouse. We first tested Fmr1 KO mice (Fmr1) and their wild-type (WT) littermates in a simple visual discrimination task, followed by assessment of reversal learning. We then tested Fmr1 and WT mice in a new touchscreen nonmatch to position task and subsequently challenged their working memory abilities by adding delays, representing a higher cognitive load. The performance by Fmr1 KO mice was equal to WTs on both touchscreen tasks. Last, we replicated previous reports of normal performance by Fmr1 mice on Morris water maze spatial navigation and reversal. These results indicate that, while the Fmr1 mouse model effectively recapitulates many molecular and cellular aspects of fragile X syndrome, the cognitive profile of Fmr1 mice generally does not recapitulate the primary cognitive deficits in the human syndrome, even when diverse and challenging tasks are imposed.
Collapse
|
4
|
De la Torre R, De Sola S, Pons M, Duchon A, de Lagran MM, Farré M, Fitó M, Benejam B, Langohr K, Rodriguez J, Pujadas M, Bizot JC, Cuenca A, Janel N, Catuara S, Covas MI, Blehaut H, Herault Y, Delabar JM, Dierssen M. Epigallocatechin-3-gallate, a DYRK1A inhibitor, rescues cognitive deficits in Down syndrome mouse models and in humans. Mol Nutr Food Res 2014; 58:278-88. [PMID: 24039182 DOI: 10.1002/mnfr.201300325] [Citation(s) in RCA: 189] [Impact Index Per Article: 18.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2013] [Revised: 07/04/2013] [Accepted: 07/07/2013] [Indexed: 12/17/2022]
Abstract
SCOPE Trisomy for human chromosome 21 results in Down syndrome (DS), which is among the most complex genetic perturbations leading to intellectual disability. Accumulating data suggest that overexpression of the dual-specificity tyrosine-(Y)-phosphorylation regulated kinase 1A (DYRK1A), is a critical pathogenic mechanisms in the intellectual deficit. METHODS AND RESULTS Here we show that the green tea flavonol epigallocatechin-gallate (EGCG), a DYRK1A inhibitor, rescues the cognitive deficits of both segmental trisomy 16 (Ts65Dn) and transgenic mice overexpressing Dyrk1A in a trisomic or disomic genetic background, respectively. It also significantly reverses cognitive deficits in a pilot study in DS individuals with effects on memory recognition, working memory and quality of life. We used the mouse models to ensure that EGCG was able to reduce DYRK1A kinase activity in the hippocampus and found that it also induced significant changes in plasma homocysteine levels, which were correlated with Dyrk1A expression levels. Thus, we could use plasma homocysteine levels as an efficacy biomarker in our human study. CONCLUSION We conclude that EGCG is a promising therapeutic tool for cognitive enhancement in DS, and its efficacy may depend of Dyrk1A inhibition.
Collapse
Affiliation(s)
- Rafael De la Torre
- Human Pharmacology and Clinical Neurosciences Research Group-Neurosciences Program, IMIM-Hospital del Mar Research Institute, Barcelona, Spain; Cardiovascular Risk and Nutrition Research Group-Inflammatory and Cardiovascular Disorders Program, IMIM-Hospital del Mar Research Institute, and CIBER of Physiopathology of Obesity and Nutrition (CIBEROBN), Barcelona, Spain; University Pompeu Fabra, CEXS-UPF, Barcelona, Spain
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
5
|
Abstract
Down syndrome (DS), which results from an extra copy of chromosome 21 (trisomy 21), is the most common genetically defined cause of intellectual disability. Although no pharmacotherapy aimed at counteracting the cognitive and adaptive deficits associated with this genetic disorder has been approved at present, there have been several new promising studies on pharmacological agents capable of rescuing learning/memory deficits seen in mouse models of DS. Here, we will review the available mouse models for DS and provide a comprehensive, albeit not exhaustive review of the following preclinical research strategies: (1) SOD1 and antioxidant agents; (2) APP and γ-secretase inhibitors; (3) DYRK1A and the polyphenol epigallocatechin gallate (EGCG); (4) GIRK2 and fluoxetine; (5) adrenergic receptor agonists; (6) modulation of GABAA and GABAB receptors; (7) agonism of the hedgehog signaling pathway; (8) nerve growth factor (NGF) and other neurotrophic factors; (9) anticholinesterase (AChE) agents; and (10) antagonism of NMDA receptors. Finally, we will review briefly five different strategies in DS that have led to clinical studies that either have been concluded or are currently underway: (1) antioxidant therapy; (2) AChE therapy; (3) green tea extract therapy; (4) RG1662 therapy; and (5) memantine therapy. These are exciting times in DS research. Within a decade or so, it is well into the realm of possibility that new forms of pharmacotherapies might become valuable tools in the armamentarium of developmental clinicians, as adjutants to more traditional and proven forms of habilitative interventions aimed at improving the quality of life of individuals with DS.
Collapse
|
6
|
Rigoldi C, Galli M, Cimolin V, Camerota F, Celletti C, Tenore N, Albertini G. Gait strategy in patients with Ehlers-Danlos syndrome hypermobility type and Down syndrome. RESEARCH IN DEVELOPMENTAL DISABILITIES 2012; 33:1437-1442. [PMID: 22522202 DOI: 10.1016/j.ridd.2012.03.016] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2012] [Revised: 03/08/2012] [Accepted: 03/08/2012] [Indexed: 05/31/2023]
Abstract
People suffering from Ehlers-Danlos syndrome (EDS) hypermobility type present a severe ligament laxity that results in difficulties in muscle force transmission. The same condition is present in people suffering from Down syndrome (DS) even if their clumsy movements are due to cerebral and cognitive impairments. The aim of this study was to quantify the gait patterns of subjects with EDS and with DS using Gait Analysis (GA). We quantified the gait strategy in 12 EDS individuals and in 16 participants with DS. Both pathological groups were compared to 20 age-matched healthy controls in terms of kinematics and kinetics. Results showed that DS individuals are characterized by a more compromised gait pattern than EDS participants, even if both groups are characterized by joint hypermobility. All the patients showed significant decreased of ankle stiffness probably due to congenital hypotonia and ligament laxity, while different values of hip stiffness. These findings help to elucidate the complex biomechanical changes due to joint hypermobility and may have a major role in the multidimensional evaluation and tailored management of these patients.
Collapse
Affiliation(s)
- Chiara Rigoldi
- Bioengineering Dept, Politecnico di Milano, Via Golgi 39, 20133 Milan, Italy.
| | | | | | | | | | | | | |
Collapse
|
7
|
Whitney KN, Wenger GR. Working memory in the aged Ts65Dn mouse, a model for Down syndrome. Behav Brain Res 2012; 232:202-9. [PMID: 22503781 DOI: 10.1016/j.bbr.2012.03.042] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2010] [Revised: 03/26/2012] [Accepted: 03/28/2012] [Indexed: 10/28/2022]
Abstract
The Ts65Dn mouse displays several phenotypic abnormalities that parallel characteristics found in Down syndrome. One important characteristic associated with Down syndrome is an increased incidence of early-onset Alzheimer's disease. Since Alzheimer's disease is characterized largely by progressive memory loss, it is of interest to study working memory in the Ts65Dn mouse. Previous research in our lab using a titrating, delayed matching-to-position schedule of reinforcement has demonstrated that young, adult male Ts65Dn mice do not display a working memory deficit when compared to age-matched littermate controls. However, there have been no studies examining the working memory of these mice as they age. Due to the correlation between Down syndrome and Alzheimer's disease, and as part of a larger effort to further characterize the phenotype of the Ts65Dn mouse, the purpose of this study was to determine whether aged Ts65Dn mice possess a working memory deficit when compared to age-matched littermate controls. In order to study working memory, two groups of mice were trained under a titrating, delayed matching-to-position schedule of reinforcement. The first group was trained beginning at 3 months of age, and the second group began training at 15 months of age. Both groups were studied to 24 months of age. Initially, both groups of Ts65Dn mice performed at a lower level of accuracy than the control mice; however, this difference disappeared with further practice. The results from these lifespan studies indicate that the aged Ts65Dn mouse does not possess a working memory deficit when compared to age-matched controls.
Collapse
Affiliation(s)
- Katharine N Whitney
- University of Arkansas for Medical Sciences, Slot 638, 4301 W. Markham, Little Rock, AR 72205, USA.
| | | |
Collapse
|
8
|
Scott-McKean JJ, Chang B, Hurd RE, Nusinowitz S, Schmidt C, Davisson MT, Costa ACS. The mouse model of Down syndrome Ts65Dn presents visual deficits as assessed by pattern visual evoked potentials. Invest Ophthalmol Vis Sci 2010; 51:3300-8. [PMID: 20130276 DOI: 10.1167/iovs.09-4465] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
PURPOSE The Ts65Dn mouse is the most complete widely available animal model of Down syndrome (DS). Quantitative information was generated about visual function in the Ts65Dn mouse by investigating their visual capabilities by means of electroretinography (ERG) and patterned visual evoked potentials (pVEPs). METHODS pVEPs were recorded directly from specific regions of the binocular visual cortex of anesthetized mice in response to horizontal sinusoidal gratings of different spatial frequency, contrast, and luminance generated by a specialized video card and presented on a 21-in. computer display suitably linearized by gamma correction. RESULTS ERG assessments indicated no significant deficit in retinal physiology in Ts65Dn mice compared with euploid control mice. The Ts65Dn mice were found to exhibit deficits in luminance threshold, spatial resolution, and contrast threshold, compared with the euploid control mice. The behavioral counterparts of these parameters are luminance sensitivity, visual acuity, and the inverse of contrast sensitivity, respectively. CONCLUSIONS DS includes various phenotypes associated with the visual system, including deficits in visual acuity, accommodation, and contrast sensitivity. The present study provides electrophysiological evidence of visual deficits in Ts65Dn mice that are similar to those reported in persons with DS. These findings strengthen the role of the Ts65Dn mouse as a model for DS. Also, given the historical assumption of integrity of the visual system in most behavioral assessments of Ts65Dn mice, such as the hidden-platform component of the Morris water maze, the visual deficits described herein may represent a significant confounding factor in the interpretation of results from such experiments.
Collapse
|
9
|
Fernandez F, Garner CC. Episodic-like memory in Ts65Dn, a mouse model of Down syndrome. Behav Brain Res 2007; 188:233-7. [PMID: 17950473 DOI: 10.1016/j.bbr.2007.09.015] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2007] [Revised: 09/07/2007] [Accepted: 09/09/2007] [Indexed: 10/22/2022]
Abstract
Ts65Dn mice, like individuals with Down syndrome (DS), demonstrate a functional dissociation between explicit and implicit forms of memory, showing selective impairment in explicit or declarative learning tasks. Here, we explored Ts65Dn explicit memory deficits further by evaluating the ability of these mice to assimilate the temporal and spatial contexts under which previously novel objects had been encountered. We found that Ts65Dn mice could in fact form contextual representations of objects over the course of a few hours, contrary to their inability to discriminate object novelty over a more prolonged period of 24h. These results suggest that Ts65Dn mice might have particular difficulties in declarative tasks requiring long-term memory, presenting an especially important putative therapeutic target for pre-clinical and clinical DS research.
Collapse
Affiliation(s)
- Fabian Fernandez
- Department of Psychiatry and Behavioral Sciences, Nancy Pritzker Laboratory, Stanford University, 1201 Welch Rd., Palo Alto, CA 94304-5485, USA
| | | |
Collapse
|