1
|
Karimi Tari P, Parsons CG, Collingridge GL, Rammes G. Memantine: Updating a rare success story in pro-cognitive therapeutics. Neuropharmacology 2024; 244:109737. [PMID: 37832633 DOI: 10.1016/j.neuropharm.2023.109737] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 09/25/2023] [Accepted: 09/26/2023] [Indexed: 10/15/2023]
Abstract
The great potential for NMDA receptor modulators as druggable targets in neurodegenerative disorders has been met with limited success. Considered one of the rare exceptions, memantine has consistently demonstrated restorative and prophylactic properties in many AD models. In clinical trials memantine slows the decline in cognitive performance associated with AD. Here, we provide an overview of the basic properties including pharmacological targets, toxicology and cellular effects of memantine. Evidence demonstrating reductions in molecular, physiological and behavioural indices of AD-like impairments associated with memantine treatment are also discussed. This represents both an extension and homage to Dr. Chris Parson's considerable contributions to our fundamental understanding of a success story in the AD treatment landscape.
Collapse
Affiliation(s)
- Parisa Karimi Tari
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, ON, M5G 1X5, Canada
| | - Chris G Parsons
- Galimedix Therapeutics, Inc., 2704 Calvend Lane, Kensington, 20895, MD, USA
| | - Graham L Collingridge
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, ON, M5G 1X5, Canada; Department of Physiology, University of Toronto, Toronto, ON, M5S 1A8, Canada; TANZ Centre for Research in Neurodegenerative Diseases, University of Toronto, Toronto, ON, M5S 1A8, Canada.
| | - Gerhard Rammes
- Department of Anesthesiology and Intensive Care Medicine of the Technical University of Munich, School of Medicine, 22, 81675, Munich, Germany.
| |
Collapse
|
2
|
Müller T, Riederer P, Kuhn W. Aminoadamantanes: from treatment of Parkinson's and Alzheimer's disease to symptom amelioration of long COVID-19 syndrome? Expert Rev Clin Pharmacol 2023; 16:101-107. [PMID: 36726198 DOI: 10.1080/17512433.2023.2176301] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
INTRODUCTION The aminoadamantanes amantadine and memantine are well known. They mainly act as N-methyl-D-aspartate antagonists. AREAS COVERED The antiviral drug amantadine moderately ameliorates impaired motor behavior in patients with Parkinson's disease. Memantine provides beneficial effects on memory function in patients with advanced Alzheimer's disease already treated with acetylcholine esterase inhibitors. Both compounds counteract impaired monoamine neurotransmission with associated symptoms, such as depression. They improve vigilance, lack of attention and concentration, fatigue syndromes according to clinical findings in patients with chronic neurodegenerative processes. Their extrasynaptic N-methyl-D-Aspartate receptor blockade weakens a prolonged influx of Ca2+ ions as the main responsible components of neuronal excitotoxicity. This causes neuronal dying and associated functional deficits. EXPERT OPINION We suggest aminoadamantanes as future therapies for amelioration of short- and long-term consequences of a COVID 19 infection. Particularly the extended-release amantadine formulations will be suitable. They showed better clinical efficacy compared with the conventional available compounds. Amantadine may particularly be suitable for amelioration of fatigue or chronic exhaustion, memantine for improvement of cognitive deficits. Clinical research in patients, who are affected by the short- and long-term consequences of a COVID 19 infection, is warranted to confirm these still hypothetical putative beneficial effects of aminoadamantanes.
Collapse
Affiliation(s)
- Thomas Müller
- Department of Neurology, St. Joseph Hospital Berlin-Weissensee, Gartenstr. 1, 13088, Berlin, Germany
| | - Peter Riederer
- Center of Mental Health, Department of Psychiatry, Psychosomatics and Psychotherapy, University Hospital Würzburg, Füchsleinstrasse 15, 97080, Würzburg, Germany
| | - Wilfried Kuhn
- Department of Neurology, Leopoldina Hospital Schweinfurt, Gustav Adolf Str. 8, 97422, Schweinfurt, Germany
| |
Collapse
|
3
|
Pereyra M, Medina JH. AMPA Receptors: A Key Piece in the Puzzle of Memory Retrieval. Front Hum Neurosci 2021; 15:729051. [PMID: 34621161 PMCID: PMC8490764 DOI: 10.3389/fnhum.2021.729051] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Accepted: 08/20/2021] [Indexed: 11/20/2022] Open
Abstract
Retrieval constitutes a highly regulated and dynamic phase in memory processing. Its rapid temporal scales require a coordinated molecular chain of events at the synaptic level that support transient memory trace reactivation. AMPA receptors (AMPAR) drive the majority of excitatory transmission in the brain and its dynamic features match the singular fast timescales of memory retrieval. Here we provide a review on AMPAR contribution to memory retrieval regarding its dynamic movements along the synaptic compartments, its changes in receptor number and subunit composition that take place in activity dependent processes associated with retrieval. We highlight on the differential regulations exerted by AMPAR subunits in plasticity processes and its impact on memory recall.
Collapse
Affiliation(s)
- Magdalena Pereyra
- Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Jorge H Medina
- Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires, Argentina.,Instituto de Biología Celular y Neurociencia "Dr. Eduardo De Robertis" (IBCN), CONICET-Universidad de Buenos Aires, Buenos Aires, Argentina.,Instituto Tecnológico de Buenos Aires (ITBA), Buenos Aires, Argentina
| |
Collapse
|
4
|
De Castro V, Girard P. Location and temporal memory of objects declines in aged marmosets (Callithrix jacchus). Sci Rep 2021; 11:9138. [PMID: 33911122 PMCID: PMC8080792 DOI: 10.1038/s41598-021-88357-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Accepted: 04/12/2021] [Indexed: 12/17/2022] Open
Abstract
Episodic memory decline is an early marker of cognitive aging in human. Although controversial in animals and called “episodic-like memory”, several models have been successfully developed, however they rarely focused on ageing. While marmoset is an emerging primate model in aging science, episodic-like memory has never been tested in this species and importantly in aged marmosets. Here, we examined if the recall of the what-when and what-where building blocks of episodic-like memory declines in ageing marmosets. We developed a naturalistic approach using spontaneous exploration of real objects by young and old marmosets in the home cage. We implemented a three-trial task with 1 week inter-trial interval. Two different sets of identical objects were presented in sample trials 1 and 2, respectively. For the test trial, two objects from each set were presented in a former position and two in a new one. We quantified the exploratory behaviour and calculated discrimination indices in a cohort of 20 marmosets. Young animals presented a preserved memory for combined what-where, and what-when components of the experiment, which declined with aging. These findings lead one to expect episodic-like memory deficits in aged marmosets.
Collapse
Affiliation(s)
- Vanessa De Castro
- Centre de Recherche Cerveau et Cognition (CerCo), Toulouse, France. .,Centre National de la Recherche Scientifique (CNRS) - UMR 5549, Toulouse, France.
| | - Pascal Girard
- Centre de Recherche Cerveau et Cognition (CerCo), Toulouse, France. .,Institut national de la santé et de la recherche médicale (INSERM), Toulouse, France.
| |
Collapse
|
5
|
Chataigner M, Mortessagne P, Lucas C, Pallet V, Layé S, Mehaignerie A, Bouvret E, Dinel AL, Joffre C. Dietary fish hydrolysate supplementation containing n-3 LC-PUFAs and peptides prevents short-term memory and stress response deficits in aged mice. Brain Behav Immun 2021; 91:716-730. [PMID: 32976934 DOI: 10.1016/j.bbi.2020.09.022] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Revised: 09/15/2020] [Accepted: 09/17/2020] [Indexed: 12/12/2022] Open
Abstract
Brain aging is characterized by a decline in cognitive functions, which can lead to the development of neurodegenerative pathologies. Age-related spatial learning and memory deficits are associated with a chronic low-grade inflammation. Anxiety disorders and stress response alterations, occurring for a part of the elderly, have also been linked to an increased neuroinflammation and thus, an accelerated cognitive decline. Nutrition is an innovative strategy to prevent age-related cognitive impairments. Among the nutrients, n-3 long chain polyunsaturated fatty acids (LC-PUFAs) and low molecular weight peptides from proteins, especially those from marine resources, are good candidates for their immunomodulatory, anxiolytic and neuroprotective properties. The aim of this study is to determine the combined effect of n-3 LC-PUFAs and low molecular weight peptides on cognitive functions, and their mechanism of action. We are the first to show that a dietary supplementation with a fish hydrolysate containing n-3 LC-PUFAs and low molecular weight peptides prevented the age-related spatial short-term memory deficits and modulated navigation strategies adopted during spatial learning. In addition, the fish hydrolysate displayed anxiolytic activities with the reduction of anxiety-like behaviour in aged mice, restored the plasmatic corticosterone levels similar to adult animals following an acute stress and modulated the hypothalamic stress response. These effects on behaviour can be explained by the immunomodulatory and neuroprotective properties of the fish hydrolysate that limited microgliosis in vivo, decreased LPS-induced expression of pro-inflammatory cytokines and increased the expression of growth factors such as BDNF and NGF in vitro. Thus, n-3 LC-PUFAs and low molecular weight peptides contained in the fish hydrolysate can play an important role in the limitation of neuroinflammation and stress response alterations during aging and represent a potential strategy for the prevention of age-related cognitive decline.
Collapse
Affiliation(s)
- M Chataigner
- Université de Bordeaux, INRAE, Bordeaux INP, NutriNeuro, 146 rue Léo Saignat, 33076 Bordeaux, France; Abyss Ingredients, 56850 Caudan, France
| | - P Mortessagne
- Université de Bordeaux, INRAE, Bordeaux INP, NutriNeuro, 146 rue Léo Saignat, 33076 Bordeaux, France
| | - C Lucas
- NutriBrain Research and Technology Transfer, NutriNeuro, 146 rue Léo Saignat, 33076 Bordeaux, France
| | - V Pallet
- Université de Bordeaux, INRAE, Bordeaux INP, NutriNeuro, 146 rue Léo Saignat, 33076 Bordeaux, France
| | - S Layé
- Université de Bordeaux, INRAE, Bordeaux INP, NutriNeuro, 146 rue Léo Saignat, 33076 Bordeaux, France
| | | | - E Bouvret
- Abyss Ingredients, 56850 Caudan, France
| | - A L Dinel
- Université de Bordeaux, INRAE, Bordeaux INP, NutriNeuro, 146 rue Léo Saignat, 33076 Bordeaux, France; NutriBrain Research and Technology Transfer, NutriNeuro, 146 rue Léo Saignat, 33076 Bordeaux, France
| | - C Joffre
- Université de Bordeaux, INRAE, Bordeaux INP, NutriNeuro, 146 rue Léo Saignat, 33076 Bordeaux, France.
| |
Collapse
|
6
|
Conner MR, Jang D, Anderson BJ, Kritzer MF. Biological Sex and Sex Hormone Impacts on Deficits in Episodic-Like Memory in a Rat Model of Early, Pre-motor Stages of Parkinson's Disease. Front Neurol 2020; 11:942. [PMID: 33041964 PMCID: PMC7527538 DOI: 10.3389/fneur.2020.00942] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Accepted: 07/21/2020] [Indexed: 01/30/2023] Open
Abstract
Episodic memory deficits are among the earliest appearing and most commonly occurring examples of cognitive impairment in Parkinson's disease (PD). These enduring features can also predict a clinical course of rapid motor decline, significant cognitive deterioration, and the development of PD-related dementia. The lack of effective means to treat these deficits underscores the need to better understand their neurobiological bases. The prominent sex differences that characterize episodic memory in health, aging and in schizophrenia and Alzheimer's disease suggest that neuroendocrine factors may also influence episodic memory dysfunction in PD. However, while sex differences have been well-documented for many facets of PD, sex differences in, and sex hormone influences on associated episodic memory impairments have been less extensively studied and have never been examined in preclinical PD models. Accordingly, we paired bilateral neostriatal 6-hydroxydopamine (6-OHDA) lesions with behavioral testing using the What-Where-When Episodic-Like Memory (ELM) Task in adult rats to first determine whether episodic-like memory is impaired in this model. We further compared outcomes in gonadally intact female and male subjects, and in male rats that had undergone gonadectomy—with and without hormone replacement, to determine whether biological sex and/or sex hormones influenced the expression of dopamine lesioned-induced memory deficits. These studies showed that 6-OHDA lesions profoundly impaired recall for all memory domains in male and female rats. They also showed that in males, circulating gonadal hormones powerfully modulated the negative impacts of 6-OHDA lesions on What, Where, and When discriminations in domain-specific ways. Specifically, the absence of androgens was shown to fully attenuate 6-OHDA lesion-induced deficits in ELM for “Where” and to partially protect against lesion-induced deficits in ELM for “What.” In sum, these findings show that 6-OHDA lesions in rats recapitulate the vulnerability of episodic memory seen in early PD. Together with similar evidence recently obtained for spatial working memory, the present findings also showed that diminished androgen levels provide powerful, highly selective protections against the harmful effects that 6-OHDA lesions have on memory functions in male rats.
Collapse
Affiliation(s)
- Meagan R Conner
- Graduate Program in Neuroscience, Stony Brook University, Stony Brook, NY, United States.,Department of Neurobiology and Behavior, Stony Brook University, Stony Brook, NY, United States
| | - Doyeon Jang
- Department of Neurobiology and Behavior, Stony Brook University, Stony Brook, NY, United States
| | - Brenda J Anderson
- Department of Psychology, Stony Brook University, Stony Brook, NY, United States
| | - Mary F Kritzer
- Department of Neurobiology and Behavior, Stony Brook University, Stony Brook, NY, United States
| |
Collapse
|
7
|
Conner MR, Adeyemi OM, Anderson BJ, Kritzer MF. Domain-specific contributions of biological sex and sex hormones to what, where and when components of episodic-like memory in adult rats. Eur J Neurosci 2020; 52:2705-2723. [PMID: 31943448 DOI: 10.1111/ejn.14676] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2019] [Revised: 01/03/2020] [Accepted: 01/08/2020] [Indexed: 12/21/2022]
Abstract
Episodic memory involves the integration and recall of discrete events that include information about what happened, where it happened and when it occurred. Episodic memory function is critical to daily life, and its dysfunction is both a first identifiable indicator and an enduring core feature of cognitive decline in ageing and in neuropsychiatric disorders including Alzheimer's disease and schizophrenia. Available evidence from human studies suggests that biological sex and sex hormones modulate episodic memory function in health and disease. However, knowledge of how this occurs is constrained by the limited availability and underutilization of validated animal models in investigating hormone impacts on episodic-like memory function. Here, adult female, adult male and gonadally manipulated adult male rats were tested on the what-where-when episodic-like memory task to determine whether rats model human sex differences in episodic memory and how the hormonal milieu impacts episodic-like memory processes in this species. These studies revealed salient ways in which rats model human sex differences in episodic memory, including a male advantage in spatial episodic memory performance. They also identified domain-specific roles for oestrogens and androgens in modulating what, where and when discriminations in male rats that were unlike those engaged in corresponding novel object recognition and novel object location tasks. These studies thus identify rats and the what-where-when task as suitable for investigating the neuroendocrine bases of episodic-like memory, and provide new information about the unique contributions that sex and sex hormones make to this complex mnemonic process.
Collapse
Affiliation(s)
- Meagan R Conner
- Graduate Program in Neuroscience, Stony Brook University, Stony Brook, NY, USA.,Department of Neurobiology and Behavior, Stony Brook University, Stony Brook, NY, USA
| | | | - Brenda J Anderson
- Department of Psychology, Stony Brook University, Stony Brook, NY, USA
| | - Mary F Kritzer
- Department of Neurobiology and Behavior, Stony Brook University, Stony Brook, NY, USA
| |
Collapse
|
8
|
Chauveau F, De Job E, Poly-Thomasson B, Cavroy R, Thomasson J, Fromage D, Beracochea D. Procognitive impact of ciproxifan (a histaminergic H 3 receptor antagonist) on contextual memory retrieval after acute stress. CNS Neurosci Ther 2019; 25:832-841. [PMID: 31094061 PMCID: PMC6630007 DOI: 10.1111/cns.13113] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2018] [Revised: 02/01/2019] [Accepted: 02/05/2019] [Indexed: 12/11/2022] Open
Abstract
AIM Although cognitive deficits commonly co-occur with stress-related emotional disorders, effect of procognitive drugs such as histaminergic H3 receptor antagonists are scarcely studied on memory retrieval in stress condition. METHODS Experiment 1. Memory of two successive spatial discriminations (D1 then D2) 24 hours after learning was studied in a four-hole board in mice. H3 receptor antagonist ciproxifan (ip 3 mg/kg) and acute stress (three electric footshocks; 0.9 mA; 15 ms) were administered 30 and 15 minutes respectively before memory retrieval test. Fos immunostaining was performed to evaluate the neural activity of several brain areas. Experiment 2. Effects of ciproxifan and acute stress were evaluated on anxiety-like behavior in the elevated plus maze and glucocorticoid activity using plasma corticosterone assay. RESULTS Experiment 1. Ciproxifan increased memory retrieval of D2 in nonstress condition and of D1 in stress one. Ciproxifan mitigated the stress-induced increase of Fos expression in the prelimbic and infralimbic cortex, the central and basolateral amygdala and the CA1 of dorsal hippocampus. Experiment 2. Ciproxifan dampened the stress-induced anxiety-like behavior and plasma corticosterone increase. CONCLUSION Ciproxifan improved contextual memory retrieval both in stress and nonstress conditions without exacerbating behavioral and endocrine responses to stress. Overall, these data suggest potential usefulness of H3 receptor antagonists as cognitive enhancer both in nonstress and stress conditions.
Collapse
Affiliation(s)
- Frédéric Chauveau
- IRBA (Institut de Recherche Biomédicale des Armées) BP73, Bretigny-sur-Orge Cedex, France
| | - Elodie De Job
- IRBA (Institut de Recherche Biomédicale des Armées) BP73, Bretigny-sur-Orge Cedex, France
| | - Betty Poly-Thomasson
- IRBA (Institut de Recherche Biomédicale des Armées) BP73, Bretigny-sur-Orge Cedex, France
| | - Raphaël Cavroy
- IRBA (Institut de Recherche Biomédicale des Armées) BP73, Bretigny-sur-Orge Cedex, France
| | - Julien Thomasson
- IRBA (Institut de Recherche Biomédicale des Armées) BP73, Bretigny-sur-Orge Cedex, France
| | - Dominique Fromage
- IRBA (Institut de Recherche Biomédicale des Armées) BP73, Bretigny-sur-Orge Cedex, France
| | - Daniel Beracochea
- INCIA (Institut de Neurosciences Cognitives et Intégratives d'Aquitaine), UMR CNRS 5287, Université de Bordeaux, Pessac, France
| |
Collapse
|
9
|
Abstract
Notwithstanding tremendous research efforts, the cause of Alzheimer's disease (AD) remains elusive and there is no curative treatment. The cholinergic hypothesis presented 35 years ago was the first major evidence-based hypothesis on the etiology of AD. It proposed that the depletion of brain acetylcholine was a primary cause of cognitive decline in advanced age and AD. It relied on a series of observations obtained in aged animals, elderly, and AD patients that pointed to dysfunctions of cholinergic basal forebrain, similarities between cognitive impairments induced by anticholinergic drugs and those found in advanced age and AD, and beneficial effects of drugs stimulating cholinergic activity. This review revisits these major results to show how this hypothesis provided the drive for the development of anticholinesterase inhibitor-based therapies of AD, the almost exclusively approved treatment in use despite transient and modest efficacy. New ideas for improving cholinergic therapies are also compared and discussed in light of the current revival of the cholinergic hypothesis on the basis of two sets of evidence from new animal models and refined imagery techniques in humans. First, human and animal studies agree in detecting signs of cholinergic dysfunctions much earlier than initially believed. Second, alterations of the cholinergic system are deeply intertwined with its reactive responses, providing the brain with efficient compensatory mechanisms to delay the conversion into AD. Active research in this field should provide new insight into development of multitherapies incorporating cholinergic manipulation, as well as early biomarkers of AD enabling earlier diagnostics. This is of prime importance to counteract a disease that is now recognized to start early in adult life.
Collapse
|
10
|
Bretin S, Krazem A, Henkous N, Froger-Colleaux C, Mocaer E, Louis C, Perdaems N, Marighetto A, Beracochea D. Synergistic enhancing-memory effect of donepezil and S 47445, an AMPA positive allosteric modulator, in middle-aged and aged mice. Psychopharmacology (Berl) 2018; 235:771-787. [PMID: 29167913 PMCID: PMC5847048 DOI: 10.1007/s00213-017-4792-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/09/2017] [Accepted: 11/14/2017] [Indexed: 11/30/2022]
Abstract
Positive allosteric modulators of AMPA receptors (AMPA-PAMs) are described to facilitate cognitive processes in different memory-based models. Among them, S 47445 is a novel potent and selective AMPA-PAM. In order to assess its efficacy after repeated administration, S 47445 effect was evaluated in two aging-induced memory dysfunction tasks in old mice, one short-term working memory model evaluated in a radial maze task and one assessing contextual memory performance. S 47445 was shown to improve cognition in both models sensitive to aging. In fact, administration of S 47445 at 0.3 mg/kg (s.c.) reversed the age-induced deficits of the working memory model whatever the retention interval. Moreover, in the contextual task, S 47445 also reversed the age-induced deficit at all tested doses (from 0.03 to 0.3 mg/kg, p.o.). Since donepezil, an acetylcholinesterase inhibitor, induces only moderate symptomatic effects on memory in Alzheimer's disease patients, an alternative strategy for treatment of cognitive symptoms could be to act simultaneously on both glutamatergic AMPA receptors and cholinergic pathways by combining pharmacological treatments. The present study further examined such effects by assessing combinations of S 47445 and donepezil given orally during 9 days in aged C57/Bl6J mice using contextual memory task (CSD) and the working memory model of serial alternation task (AT). Interestingly, a significant synergistic memory-enhancing effect was observed with the combination of donepezil at 0.1 mg/kg with S 47445 at 0.1 mg/kg p.o. in the CSD or with S 47445 at 0.1 and 0.3 mg/kg in AT in comparison to compounds given alone and without any pharmacokinetic interaction.
Collapse
Affiliation(s)
- S Bretin
- Institut de Recherches Internationales Servier, Pôle d'Innovation Thérapeutique Neuropsychiatrie, Suresnes, France
| | - A Krazem
- Institut de Neurosciences Cognitives et Intégratives d'Aquitaine (INCIA), Université de Bordeaux, UMR CNRS 5287, Allée Geoffroy Saint-Hilaire, Bat B2, 33613, Pessac, France
| | - N Henkous
- Institut de Neurosciences Cognitives et Intégratives d'Aquitaine (INCIA), Université de Bordeaux, UMR CNRS 5287, Allée Geoffroy Saint-Hilaire, Bat B2, 33613, Pessac, France
| | - C Froger-Colleaux
- Froger-Colleaux C, Porsolt Research Laboratory, Z.A de Glatiné, 53940, Le Genest-Saint-Isle, France
| | - E Mocaer
- Institut de Recherches Internationales Servier, Pôle d'Innovation Thérapeutique Neuropsychiatrie, Suresnes, France
| | - C Louis
- Institut de Recherches Servier, Pôle d'Innovation Thérapeutique Neuropsychiatrie, Croissy-Sur-Seine, France
| | - N Perdaems
- Pôle Expertise en Pharmacocinétique, Orléans, France
| | - A Marighetto
- INSERM, Neurocentre Magendie, Physiopathologie de la plasticité neuronale, U1215, 33077, Bordeaux, France
| | - D Beracochea
- Institut de Neurosciences Cognitives et Intégratives d'Aquitaine (INCIA), Université de Bordeaux, UMR CNRS 5287, Allée Geoffroy Saint-Hilaire, Bat B2, 33613, Pessac, France.
| |
Collapse
|
11
|
Roles of Hippocampal Somatostatin Receptor Subtypes in Stress Response and Emotionality. Neuropsychopharmacology 2017; 42:1647-1656. [PMID: 27986975 PMCID: PMC5518893 DOI: 10.1038/npp.2016.281] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/22/2016] [Revised: 10/30/2016] [Accepted: 12/02/2016] [Indexed: 01/21/2023]
Abstract
Altered brain somatostatin functions recently appeared as key elements for the pathogenesis of stress-related neuropsychiatric disorders. The hippocampus exerts an inhibitory feedback on stress but the mechanisms involved remain unclear. We investigated herein the role of hippocampal somatostatin receptor subtypes in both stress response and behavioral emotionality using C57BL/6, wild type and sst2 or sst4 knockout mice. Inhibitory effects of hippocampal infusions of somatostatin agonists on stress-induced hypothalamo-pituitary-adrenal axis (HPA) activity were tested by monitoring peripheral blood and local hippocampus corticosterone levels, the latter by using microdialysis. Anxiolytic and antidepressant-like effects were determined in the elevated-plus maze, open field, forced swimming, and stress-sensitive beam walking tests. Hippocampal injections of somatostatin analogs and sst2 or sst4, but not sst1 or sst3 receptor agonists produced rapid and sustained inhibition of HPA axis. sst2 agonists selectively produced anxiolytic-like behaviors whereas both sst2 and sst4 agonists had antidepressant-like effects. Consistent with these findings, high corticosterone levels and anxiety were found in sst2KO mice and depressive-like behaviors observed in both sst2KO and sst4KO strains. Both hippocampal sst2 and sst4 receptors selectively inhibit stress-induced HPA axis activation but mediate anxiolytic and antidepressive effects through distinct mechanisms. Such results are to be accounted for in development of pathway-specific somatostatin receptor agents in the treatment of hypercortisolism (Cushing's disease) and stress-related neuropsychiatric disorders.
Collapse
|
12
|
Sors A, Krazem A, Kehr J, Yoshitake T, Dominguez G, Henkous N, Letondor C, Mocaer E, Béracochéa DJ. The Synergistic Enhancing-Memory Effect of Donepezil and S 38093 (a Histamine H 3 Antagonist) Is Mediated by Increased Neural Activity in the Septo-hippocampal Circuitry in Middle-Aged Mice. Front Pharmacol 2016; 7:492. [PMID: 28066242 PMCID: PMC5177663 DOI: 10.3389/fphar.2016.00492] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2016] [Accepted: 12/01/2016] [Indexed: 01/01/2023] Open
Abstract
Donepezil, an acetylcholinesterase inhibitor, induces only moderate symptomatic effects on memory in Alzheimer’s disease patients. An alternative strategy for treatment of cognitive symptoms could be to act simultaneously on both histaminergic and cholinergic pathways, to create a synergistic effect. To that aim, 14 month old C57/Bl6 mice were administered per oesophagy during nine consecutive days with Donepezil (at 0.1 and 0.3 mg/kg) and S 38093 (at 0.1, 0.3, and 1.0 mg/kg), a H3 histaminergic antagonist developed by Servier, alone or in combination and tested for memory in a contextual memory task that modelized the age-induced memory dysfunction. The present study shows that the combination of Donepezil and S 38093 induced a dose-dependent synergistic memory-enhancing effect in middle-aged mice with a statistically higher size of effect never obtained with compounds alone and without any pharmacokinetic interaction between both compounds. We demonstrated that the memory-enhancing effect of the S 38093 and Donepezil combination is mediated by its action on the septo-hippocampal circuitry, since it canceled out the reduction of CREB phosphorylation (pCREB) observed in these brain areas in vehicle-treated middle-aged animals. Overall, the effects of drug combinations on pCREB in the hippocampus indicate that the synergistic promnesiant effects of the combination on memory performance in middle-aged mice stem primarily from an enhancement of neural activity in the septo-hippocampal system.
Collapse
Affiliation(s)
- Aurore Sors
- Pôle d'Innovation Thérapeutique Neuropsychiatrie Servier Suresnes, France
| | - Ali Krazem
- CNRS 5287, Institut de Neurosciences Cognitives et Intégratives d'Aquitaine, Université de Bordeaux UMR, Pessac, France
| | - Jan Kehr
- Pronexus Analytical AB Bromma, Sweden
| | - Takashi Yoshitake
- Section of Pharmacological Neurochemistry, Department of Physiology and Pharmacology, Karolinska Institute Stockholm, Sweden
| | - Gaelle Dominguez
- CNRS 5287, Institut de Neurosciences Cognitives et Intégratives d'Aquitaine, Université de Bordeaux UMR, Pessac, France
| | - Nadia Henkous
- CNRS 5287, Institut de Neurosciences Cognitives et Intégratives d'Aquitaine, Université de Bordeaux UMR, Pessac, France
| | - Claire Letondor
- Pôle d'Innovation Thérapeutique Neuropsychiatrie Servier Suresnes, France
| | - Elisabeth Mocaer
- Pôle d'Innovation Thérapeutique Neuropsychiatrie Servier Suresnes, France
| | - Daniel J Béracochéa
- CNRS 5287, Institut de Neurosciences Cognitives et Intégratives d'Aquitaine, Université de Bordeaux UMR, Pessac, France
| |
Collapse
|
13
|
Diniz DG, de Oliveira MA, de Lima CM, Fôro CAR, Sosthenes MCK, Bento-Torres J, da Costa Vasconcelos PF, Anthony DC, Diniz CWP. Age, environment, object recognition and morphological diversity of GFAP-immunolabeled astrocytes. Behav Brain Funct 2016; 12:28. [PMID: 27719674 PMCID: PMC5056502 DOI: 10.1186/s12993-016-0111-2] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2016] [Accepted: 09/22/2016] [Indexed: 12/12/2022] Open
Abstract
Background Few studies have explored the glial response to a standard environment and how the response may be associated with age-related cognitive decline in learning and memory. Here we investigated aging and environmental influences on hippocampal-dependent tasks and on the morphology of an unbiased selected population of astrocytes from the molecular layer of dentate gyrus, which is the main target of perforant pathway. Results Six and twenty-month-old female, albino Swiss mice were housed, from weaning, in a standard or enriched environment, including running wheels for exercise and tested for object recognition and contextual memories. Young adult and aged subjects, independent of environment, were able to distinguish familiar from novel objects. All experimental groups, except aged mice from standard environment, distinguish stationary from displaced objects. Young adult but not aged mice, independent of environment, were able to distinguish older from recent objects. Only young mice from an enriched environment were able to distinguish novel from familiar contexts. Unbiased selected astrocytes from the molecular layer of the dentate gyrus were reconstructed in three-dimensions and classified using hierarchical cluster analysis of bimodal or multimodal morphological features. We found two morphological phenotypes of astrocytes and we designated type I the astrocytes that exhibited significantly higher values of morphological complexity as compared with type II. Complexity = [Sum of the terminal orders + Number of terminals] × [Total branch length/Number of primary branches]. On average, type I morphological complexity seems to be much more sensitive to age and environmental influences than that of type II. Indeed, aging and environmental impoverishment interact and reduce the morphological complexity of type I astrocytes at a point that they could not be distinguished anymore from type II. Conclusions We suggest these two types of astrocytes may have different physiological roles and that the detrimental effects of aging on memory in mice from a standard environment may be associated with a reduction of astrocytes morphological diversity. Electronic supplementary material The online version of this article (doi:10.1186/s12993-016-0111-2) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Daniel Guerreiro Diniz
- Laboratório de Investigações Em Neurodegeneração e Infecção, Instituto de Ciências Biológicas, Universidade Federal do Pará, Hospital Universitário João de Barros Barreto, Rua dos Mundurucus 4487, Guamá, Belém, Pará, CEP 66073-000, Brazil.,Laboratory of Experimental Neuropathology, Department of Pharmacology, University of Oxford, Oxford, England, UK
| | - Marcus Augusto de Oliveira
- Laboratório de Investigações Em Neurodegeneração e Infecção, Instituto de Ciências Biológicas, Universidade Federal do Pará, Hospital Universitário João de Barros Barreto, Rua dos Mundurucus 4487, Guamá, Belém, Pará, CEP 66073-000, Brazil
| | - Camila Mendes de Lima
- Laboratório de Investigações Em Neurodegeneração e Infecção, Instituto de Ciências Biológicas, Universidade Federal do Pará, Hospital Universitário João de Barros Barreto, Rua dos Mundurucus 4487, Guamá, Belém, Pará, CEP 66073-000, Brazil
| | - César Augusto Raiol Fôro
- Laboratório de Investigações Em Neurodegeneração e Infecção, Instituto de Ciências Biológicas, Universidade Federal do Pará, Hospital Universitário João de Barros Barreto, Rua dos Mundurucus 4487, Guamá, Belém, Pará, CEP 66073-000, Brazil
| | - Marcia Consentino Kronka Sosthenes
- Laboratório de Investigações Em Neurodegeneração e Infecção, Instituto de Ciências Biológicas, Universidade Federal do Pará, Hospital Universitário João de Barros Barreto, Rua dos Mundurucus 4487, Guamá, Belém, Pará, CEP 66073-000, Brazil
| | - João Bento-Torres
- Laboratório de Investigações Em Neurodegeneração e Infecção, Instituto de Ciências Biológicas, Universidade Federal do Pará, Hospital Universitário João de Barros Barreto, Rua dos Mundurucus 4487, Guamá, Belém, Pará, CEP 66073-000, Brazil
| | | | - Daniel Clive Anthony
- Laboratory of Experimental Neuropathology, Department of Pharmacology, University of Oxford, Oxford, England, UK
| | - Cristovam Wanderley Picanço Diniz
- Laboratório de Investigações Em Neurodegeneração e Infecção, Instituto de Ciências Biológicas, Universidade Federal do Pará, Hospital Universitário João de Barros Barreto, Rua dos Mundurucus 4487, Guamá, Belém, Pará, CEP 66073-000, Brazil. .,Laboratory of Experimental Neuropathology, Department of Pharmacology, University of Oxford, Oxford, England, UK.
| |
Collapse
|
14
|
Darcy MJ, Jin SX, Feig LA. R-Ras contributes to LTP and contextual discrimination. Neuroscience 2014; 277:334-42. [PMID: 25043327 DOI: 10.1016/j.neuroscience.2014.07.010] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2014] [Revised: 07/07/2014] [Accepted: 07/08/2014] [Indexed: 11/17/2022]
Abstract
The ability to discriminate between closely related contexts is a specific form of hippocampal-dependent learning that may be impaired in certain neurodegenerative disorders such as Alzheimer's and Down Syndrome. However, signaling pathways regulating this form of learning are poorly understood. Previous studies have shown that the calcium-dependent exchange factor Ras-GRF1, an activator of Rac, Ras and R-Ras GTPases, is important for this form of learning and memory. Moreover, the ability to discriminate contexts was linked to the ability of Ras-GRF1 to promote high-frequency stimulation long-term potentiation (HFS-LTP) via the activation of p38 Map kinase. Here, we show that R-Ras is involved in this form of learning by using virally-delivered miRNAs targeting R-Ras into the CA1 region of the dorsal hippocampus and observing impaired contextual discrimination. Like the loss of GRF1, knockdown of R-Ras in the CA1 also impairs the induction of HFS-LTP and p38 Map kinase. Nevertheless, experiments indicate that this involvement of R-Ras in HFS-LTP that is required for contextual discrimination is independent of Ras-GRF1. Thus, R-Ras is a novel regulator of a form of hippocampal-dependent LTP as well as learning and memory that is affected in certain forms of neurodegenerative diseases.
Collapse
Affiliation(s)
- M J Darcy
- Department of Developmental, Molecular and Chemical Biology, Tufts University School of Medicine, Boston, MA, United States
| | - S-X Jin
- Department of Developmental, Molecular and Chemical Biology, Tufts University School of Medicine, Boston, MA, United States
| | - L A Feig
- Department of Developmental, Molecular and Chemical Biology, Tufts University School of Medicine, Boston, MA, United States; Department of Neuroscience, Tufts University School of Medicine, Boston, MA, United States.
| |
Collapse
|
15
|
Davis KE, Eacott MJ, Easton A, Gigg J. Episodic-like memory is sensitive to both Alzheimer's-like pathological accumulation and normal ageing processes in mice. Behav Brain Res 2013; 254:73-82. [DOI: 10.1016/j.bbr.2013.03.009] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2012] [Revised: 03/04/2013] [Accepted: 03/07/2013] [Indexed: 02/05/2023]
|
16
|
Pause BM, Zlomuzica A, Kinugawa K, Mariani J, Pietrowsky R, Dere E. Perspectives on episodic-like and episodic memory. Front Behav Neurosci 2013; 7:33. [PMID: 23616754 PMCID: PMC3629296 DOI: 10.3389/fnbeh.2013.00033] [Citation(s) in RCA: 79] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2013] [Accepted: 04/06/2013] [Indexed: 11/30/2022] Open
Abstract
Episodic memory refers to the conscious recollection of a personal experience that contains information on what has happened and also where and when it happened. Recollection from episodic memory also implies a kind of first-person subjectivity that has been termed autonoetic consciousness. Episodic memory is extremely sensitive to cerebral aging and neurodegenerative diseases. In Alzheimer’s disease deficits in episodic memory function are among the first cognitive symptoms observed. Furthermore, impaired episodic memory function is also observed in a variety of other neuropsychiatric diseases including dissociative disorders, schizophrenia, and Parkinson disease. Unfortunately, it is quite difficult to induce and measure episodic memories in the laboratory and it is even more difficult to measure it in clinical populations. Presently, the tests used to assess episodic memory function do not comply with even down-sized definitions of episodic-like memory as a memory for what happened, where, and when. They also require sophisticated verbal competences and are difficult to apply to patient populations. In this review, we will summarize the progress made in defining behavioral criteria of episodic-like memory in animals (and humans) as well as the perspectives in developing novel tests of human episodic memory which can also account for phenomenological aspects of episodic memory such as autonoetic awareness. We will also define basic behavioral, procedural, and phenomenological criteria which might be helpful for the development of a valid and reliable clinical test of human episodic memory.
Collapse
Affiliation(s)
- Bettina M Pause
- Institute of Experimental Psychology, University of Düsseldorf Düsseldorf, Germany
| | | | | | | | | | | |
Collapse
|
17
|
Vandesquille M, Baudonnat M, Decorte L, Louis C, Lestage P, Béracochéa D. Working memory deficits and related disinhibition of the cAMP/PKA/CREB are alleviated by prefrontal α4β2*-nAChRs stimulation in aged mice. Neurobiol Aging 2013; 34:1599-609. [PMID: 23352115 DOI: 10.1016/j.neurobiolaging.2012.10.006] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2012] [Revised: 10/02/2012] [Accepted: 10/07/2012] [Indexed: 02/09/2023]
Abstract
The present study investigates in aged mice the working memory (WM) enhancing potential of the selective α4β2* nicotinic receptor agonist S 38232 as compared with the cholinesterase inhibitor donepezil, and their effect on cAMP response element binding protein (CREB) phosphorylation (pCREB) as a marker of neuronal activity. We first showed that aged mice exhibit a WM deficit and an increase of pCREB in the prelimbic cortex (PL) as compared with young mice, whereas no modification appears in the CA1. Further, we showed that systemic administration of S 38232 restored WM in aged mice and alleviated PL CREB overphosphorylation. Donepezil alleviated age-related memory deficits, however, by increasing pCREB in the CA1, while pCREB in PL remained unaffected. Finally, whereas neuronal inhibition by lidocaine infusion in the PL appeared deleterious in young mice, the infusion of Rp-cAMPS (a compound known to inhibit CREB phosphorylation) or S 38232 rescued WM in aged animals. Thus, by targeting the α4β2*-nicotinic receptor of the PL, S 38232 alleviates PL CREB overphosphorylation and restores WM in aged mice, which opens new pharmacologic perspectives of therapeutic strategy.
Collapse
|
18
|
Béracochéa D, Tronche C, Coutan M, Dorey R, Chauveau F, Piérard C. Interaction between Diazepam and Hippocampal Corticosterone after Acute Stress: Impact on Memory in Middle-Aged Mice. Front Behav Neurosci 2011; 5:14. [PMID: 21516247 PMCID: PMC3079857 DOI: 10.3389/fnbeh.2011.00014] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2010] [Accepted: 03/08/2011] [Indexed: 01/12/2023] Open
Abstract
Benzodiazepines (BDZ) are widely prescribed in the treatment of anxiety disorders associated to aging. Interestingly, whereas a reciprocal interaction between the GABAergic system and HPA axis has been evidenced, there is to our knowledge no direct evaluation of the impact of BDZ on both hippocampus (HPC) corticosterone concentrations and HPC-dependent memory in stressed middle-aged subjects. We showed previously that an acute stress induced in middle-aged mice severe memory impairments in a hippocampus-dependent task, and increased in parallel hippocampus corticosterone concentrations, as compared to non-stressed middle-aged controls (Tronche et al., 2010). Based on these findings, the aims of the present study were to evidence the impact of diazepam (a positive allosteric modulator of the GABA-A receptor) on HPC glucocorticoids concentrations and in parallel on HPC-dependent memory in acutely stressed middle-aged mice. Microdialysis experiments showed an interaction between diazepam doses and corticosterone concentrations into the HPC. From 0.25 to 0.5 mg/kg, diazepam dose-dependently reduces intra-HPC corticosterone concentrations and in parallel, dose-dependently increased hippocampal-dependent memory performance. In contrast, the highest (1.0 mg/kg) diazepam dose induces a reduction in HPC corticosterone concentration, which was of greater magnitude as compared to the two other diazepam doses, but however decreased the hippocampal-dependent memory performance. In summary, our study provides first evidence that diazepam restores in stressed middle-aged animals the hippocampus-dependent response, in relation with HPC corticosterone concentrations. Overall, our data illustrate how stress and benzodiazepines could modulate cognitive functions depending on hippocampus activity.
Collapse
Affiliation(s)
- Daniel Béracochéa
- UMR-CNRS 5287, Institut de Neurosciences Cognitives et Intégratives d'Aquitaine, Universités de Bordeaux Talence, France
| | | | | | | | | | | |
Collapse
|
19
|
Pierard C, Liscia P, Chauveau F, Coutan M, Corio M, Krazem A, Beracochea D. Differential effects of total sleep deprivation on contextual and spatial memory: Modulatory effects of modafinil. Pharmacol Biochem Behav 2011; 97:399-405. [DOI: 10.1016/j.pbb.2010.09.016] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/07/2010] [Revised: 09/21/2010] [Accepted: 09/21/2010] [Indexed: 10/19/2022]
|