1
|
Isparta S, Töre-Yargın G, Wagner SC, Mundorf A, Cinar Kul B, Da Graça Pereira G, Güntürkün O, Ocklenburg S, Freund N, Salgirli Demirbas Y. Measuring paw preferences in dogs, cats and rats: Design requirements and innovations in methodology. Laterality 2024; 29:246-282. [PMID: 38669348 DOI: 10.1080/1357650x.2024.2341459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Accepted: 04/04/2024] [Indexed: 04/28/2024]
Abstract
Studying behavioural lateralization in animals holds great potential for answering important questions in laterality research and clinical neuroscience. However, comparative research encounters challenges in reliability and validity, requiring new approaches and innovative designs to overcome. Although validated tests exist for some species, there is yet no standard test to compare lateralized manual behaviours between individuals, populations, and animal species. One of the main reasons is that different fine-motor abilities and postures must be considered for each species. Given that pawedness/handedness is a universal marker for behavioural lateralization across species, this article focuses on three commonly investigated species in laterality research: dogs, cats, and rats. We will present six apparatuses (two for dogs, three for cats, and one for rats) that enable an accurate assessment of paw preference. Design requirements and specifications such as zoometric fit for different body sizes and ages, reliability, robustness of the material, maintenance during and after testing, and animal welfare are extremely important when designing a new apparatus. Given that the study of behavioural lateralization yields crucial insights into animal welfare, laterality research, and clinical neuroscience, we aim to provide a solution to these challenges by presenting design requirements and innovations in methodology across species.
Collapse
Affiliation(s)
- Sevim Isparta
- Biopsychology, Institute of Cognitive Neuroscience, Department of Psychology, Ruhr University Bochum, Bochum, Germany
- Department of Genetics, Faculty of Veterinary Medicine, Ankara University, Ankara, Turkey
- Division of Experimental and Molecular Psychiatry, Department of Psychiatry, Psychotherapy and Preventive Medicine, LWL University Hospital, Ruhr University Bochum, Bochum, Germany
| | - Gülşen Töre-Yargın
- Brunel Design School College of Engineering Design & Physical Sciences, Brunel University London, Uxbridge, UK
- METU/BILTIR-UTEST Product Usability Unit, Department of Industrial Design, Middle East Technical University, Ankara, Turkey
| | - Selina C Wagner
- Division of Experimental and Molecular Psychiatry, Department of Psychiatry, Psychotherapy and Preventive Medicine, LWL University Hospital, Ruhr University Bochum, Bochum, Germany
| | - Annakarina Mundorf
- Institute for Systems Medicine and Department of Human Medicine, MSH Medical School Hamburg, Hamburg, Germany
- Department of Neurology, Division of Cognitive Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Bengi Cinar Kul
- Department of Genetics, Faculty of Veterinary Medicine, Ankara University, Ankara, Turkey
| | - Goncalo Da Graça Pereira
- Egas Moniz Center for Interdisciplinary Research (CiiEM), Egas Moniz School of Health & Science, Almada, Portugal
| | - Onur Güntürkün
- Biopsychology, Institute of Cognitive Neuroscience, Department of Psychology, Ruhr University Bochum, Bochum, Germany
- Research Center One Health Ruhr, Research Alliance Ruhr, Ruhr University Bochum, Bochum, Germany
| | - Sebastian Ocklenburg
- Biopsychology, Institute of Cognitive Neuroscience, Department of Psychology, Ruhr University Bochum, Bochum, Germany
- Department of Psychology, MSH Medical School Hamburg, Hamburg, Germany
- ICAN Institute for Cognitive and Affective Neuroscience, MSH Medical School Hamburg, Hamburg, Germany
| | - Nadja Freund
- Division of Experimental and Molecular Psychiatry, Department of Psychiatry, Psychotherapy and Preventive Medicine, LWL University Hospital, Ruhr University Bochum, Bochum, Germany
| | | |
Collapse
|
2
|
Huerta de la Cruz S, Santiago-Castañeda C, Rodríguez-Palma EJ, Rocha L, Sancho M. Lateral fluid percussion injury: A rat model of experimental traumatic brain injury. Methods Cell Biol 2024; 185:197-224. [PMID: 38556449 DOI: 10.1016/bs.mcb.2024.02.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/02/2024]
Abstract
Traumatic brain injury (TBI) represents one of the leading causes of disability and death worldwide. The annual economic impact of TBI-including direct and indirect costs-is high, particularly impacting low- and middle-income countries. Despite extensive research, a comprehensive understanding of the primary and secondary TBI pathophysiology, followed by the development of promising therapeutic approaches, remains limited. These fundamental caveats in knowledge have motivated the development of various experimental models to explore the molecular mechanisms underpinning the pathogenesis of TBI. In this context, the Lateral Fluid Percussion Injury (LFPI) model produces a brain injury that mimics most of the neurological and systemic aspects observed in human TBI. Moreover, its high reproducibility makes the LFPI model one of the most widely used rodent-based TBI models. In this chapter, we provide a detailed surgical protocol of the LFPI model used to induce TBI in adult Wistar rats. We further highlight the neuroscore test as a valuable tool for the evaluation of TBI-induced sensorimotor consequences and their severity in rats. Lastly, we briefly summarize the current knowledge on the pathological aspects and functional outcomes observed in the LFPI-induced TBI model in rodents.
Collapse
Affiliation(s)
- Saúl Huerta de la Cruz
- Department of Pharmacology, University of Vermont, Burlington, VT, United States; Departamento de Farmacobiología, Cinvestav Sede Sur, Ciudad de México, México.
| | | | - Erick J Rodríguez-Palma
- Neurobiology of Pain Laboratory, Departamento de Farmacobiología, Cinvestav, Sede Sur, Mexico City, Mexico
| | - Luisa Rocha
- Departamento de Farmacobiología, Cinvestav Sede Sur, Ciudad de México, México
| | - Maria Sancho
- Department of Pharmacology, University of Vermont, Burlington, VT, United States; Department of Physiology, Faculty of Medicine, Universidad Complutense de Madrid, Madrid, Spain.
| |
Collapse
|
3
|
O'Neill N, Mah KM, Badillo-Martinez A, Jann V, Bixby JL, Lemmon VP. Markerless tracking enables distinction between strategic compensation and functional recovery after spinal cord injury. Exp Neurol 2022; 354:114085. [PMID: 35460760 DOI: 10.1016/j.expneurol.2022.114085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Revised: 03/27/2022] [Accepted: 04/13/2022] [Indexed: 11/23/2022]
Abstract
Injuries to the cervical spinal cord represent around 60% of all spinal cord injuries (SCIs). A major priority for patients with cervical SCIs is the recovery of any hand or arm function. The similarities between human and rodent "reach-to-eat movements" indicate that analyzing mouse forelimb reaching behavior may be a method of identifying clinically relevant treatments for people with cervical SCIs. One popular behavioral measure of forelimb functional recovery comprises the Single Pellet Retrieval Task (SPRT). The most common outcome measure for this task, however (percentage of pellets successfully retrieved), cannot readily distinguish between recovery of pre-injury motor patterns and strategic compensation. Our objective was to establish outcome measures for the SPRT that are readily adopted by different investigators and capable of measuring recovery of limb function after SCI. We used a simple semi-automated approach to high-speed tracking of mouse forepaw movements during pellet retrieval. DeepLabCut™, a machine learning based computer vision software package, was used to track individual features of the mouse forepaw, allowing a more detailed assessment of reaching behavior after SCI. Interestingly, kinematic analysis of movements pre- and post-injury illuminated persistent deficits in specific features of the reaching motor patterns, namely pronation and paw trajectory, that were poorly correlated with recovery of the ability to successfully retrieve pellets. Thus, we have developed an inexpensive method for detailed analysis of mouse reach-to-eat behavior following SCI. Further, our results suggest that binary success/fail outcome measures primarily assess an animal's ability to compensate rather than a restoration of normal function in the injured pathways and networks.
Collapse
Affiliation(s)
- Nick O'Neill
- Miami Project to Cure Paralysis, University of Miami Miller School of Medicine, Miami, FL 33136, USA; Neuroscience Graduate Program, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Kar Men Mah
- Miami Project to Cure Paralysis, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Abdiel Badillo-Martinez
- Miami Project to Cure Paralysis, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | | | - John L Bixby
- Miami Project to Cure Paralysis, University of Miami Miller School of Medicine, Miami, FL 33136, USA; Institute for Data Science and Computing, University of Miami Miller School of Medicine, Miami, FL 33136, USA; Dept. of Molecular and Cellular Pharmacology, University of Miami Miller School of Medicine, Miami, FL 33136, USA; Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, FL 33136, USA.
| | - Vance P Lemmon
- Miami Project to Cure Paralysis, University of Miami Miller School of Medicine, Miami, FL 33136, USA; Dept. of Neurological Surgery, University of Miami Miller School of Medicine, Miami, FL 33136, USA; Institute for Data Science and Computing, University of Miami Miller School of Medicine, Miami, FL 33136, USA; Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, FL 33136, USA.
| |
Collapse
|
4
|
Manns M, Basbasse YE, Freund N, Ocklenburg S. Paw preferences in mice and rats: Meta-analysis. Neurosci Biobehav Rev 2021; 127:593-606. [PMID: 34004244 DOI: 10.1016/j.neubiorev.2021.05.011] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Revised: 05/10/2021] [Accepted: 05/11/2021] [Indexed: 10/21/2022]
Abstract
Mice and rats are among the most common animal model species in both basic and clinical neuroscience. Despite their ubiquity as model species, many clinically relevant brain-behaviour relationships in rodents are not well understood. In particular, data on hemispheric asymmetries, an important organizational principle in the vertebrate brain, are conflicting as existing studies are often statistically underpowered due to small sample sizes. Paw preference is one of the most frequently investigated forms of hemispheric asymmetries on the behavioural level. Here, we used meta-analysis to statistically integrate findings on paw preferences in rats and mice. For both species, results indicate significant hemispheric asymmetries on the individual level. In mice, 81 % of animals showed a preference for either the left or the right paw, while 84 % of rats showed this preference. However, contrary to what has been reported in humans, population level asymmetries were not observed. These results are particularly significant as they point out that paying attention to potential individual hemispheric differences is important in both basic and clinical neuroscience.
Collapse
Affiliation(s)
- Martina Manns
- Division of Experimental and Molecular Psychiatry, Department of Psychiatry, Psychotherapy and Preventive Medicine, LWL University Hospital, Ruhr-University Bochum, Germany.
| | - Yasmin El Basbasse
- Institute of Cognitive Neuroscience, Department Biopsychology, Faculty of Psychology, Ruhr University Bochum, Germany
| | - Nadja Freund
- Division of Experimental and Molecular Psychiatry, Department of Psychiatry, Psychotherapy and Preventive Medicine, LWL University Hospital, Ruhr-University Bochum, Germany
| | - Sebastian Ocklenburg
- Institute of Cognitive Neuroscience, Department Biopsychology, Faculty of Psychology, Ruhr University Bochum, Germany
| |
Collapse
|
5
|
Huerta de la Cruz S, Rocha L, Santiago-Castañeda C, Sánchez-López A, Pinedo-Rodríguez AD, Medina-Terol GJ, Centurión D. Hydrogen Sulfide Subchronic Treatment Improves Hypertension Induced by Traumatic Brain Injury in Rats through Vasopressor Sympathetic Outflow Inhibition. J Neurotrauma 2021; 39:181-195. [PMID: 33626966 DOI: 10.1089/neu.2020.7552] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Traumatic brain injury (TBI) represents a critical public health problem around the world. To date, there are no accurate therapeutic approaches for the management of cardiovascular impairments induce by TBI. In this regard, hydrogen sulfide (H2S), a novel gasotransmitter, has been proposed as a neuro- and cardioprotective molecule. This study was designed to determine the effect of subchronic management with sodium hydrosulfide (NaHS) on hemodynamic, vasopressor sympathetic outflow and sensorimotor alterations produced by TBI. Animals underwent a lateral fluid percussion injury, and changes in hemodynamic variables were measured by pletismographic methods. In addition, vasopressor sympathetic outflow was assessed by a pithed rat model. Last, sensorimotor impairments were evaluated by neuroscore test and beam-walking test. At seven, 14, 21, and 28 days after moderate-severe TBI, the animals showed: (1) a decrease on sensorimotor function in the neuroscore test and beam-walking test; (2) an increase in heart rate, systolic, diastolic, and mean blood pressure; (3) progressive sympathetic hyperactivity; and (4) a decrease in vasopressor responses induced by noradrenaline (α1/2-adrenoceptors agonist) and UK 14,304 (selective α2-adrenoceptor agonist). Interestingly, intraperitoneal daily injections of NaHS, an H2S donor (3.1 and 5.6 mg/kg), during seven days after TBI prevented the development of the impairments in hemodynamic variables, which were similar to those obtained in sham animals. Moreover, NaHS treatment prevented the sympathetic hyperactivity and decreased noradrenaline-induced vasopressor responses. No effects on sensorimotor dysfunction were observed, however. Taken together, our results suggest that H2S ameliorates the hemodynamic and sympathetic system impairments observed after TBI.
Collapse
Affiliation(s)
| | - Luisa Rocha
- Departamento de Farmacobiología, Cinvestav-Coapa, Mexico City, Mexico
| | | | | | | | | | - David Centurión
- Departamento de Farmacobiología, Cinvestav-Coapa, Mexico City, Mexico
| |
Collapse
|
6
|
Eckert MJ, McNaughton BL, Tatsuno M. Neural ensemble reactivation in rapid eye movement and slow-wave sleep coordinate with muscle activity to promote rapid motor skill learning. Philos Trans R Soc Lond B Biol Sci 2020; 375:20190655. [PMID: 32248776 DOI: 10.1098/rstb.2019.0655] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Neural activity patterns of recent experiences are reactivated during sleep in structures critical for memory storage, including hippocampus and neocortex. This reactivation process is thought to aid memory consolidation. Although synaptic rearrangement dynamics following learning involve an interplay between slow-wave sleep (SWS) and rapid eye movement (REM) sleep, most physiological evidence implicates SWS directly following experience as a preferred window for reactivation. Here, we show that reactivation occurs in both REM and SWS and that coordination of REM and SWS activation on the same day is associated with rapid learning of a motor skill. We performed 6 h recordings from cells in rats' motor cortex as they were trained daily on a skilled reaching task. In addition to SWS following training, reactivation occurred in REM, primarily during the pre-task rest period, and REM and SWS reactivation occurred on the same day in rats that acquired the skill rapidly. Both pre-task REM and post-task SWS activation were coordinated with muscle activity during sleep, suggesting a functional role for reactivation in skill learning. Our results provide the first demonstration that reactivation in REM sleep occurs during motor skill learning and that coordinated reactivation in both sleep states on the same day, although at different times, is beneficial for skill learning. This article is part of the Theo Murphy meeting issue 'Memory reactivation: replaying events past, present and future'.
Collapse
Affiliation(s)
- M J Eckert
- Department of Neuroscience, University of Lethbridge, Lethbridge, Alberta, Canada T1K 3M4
| | - B L McNaughton
- Department of Neuroscience, University of Lethbridge, Lethbridge, Alberta, Canada T1K 3M4.,Neurobiology and Behavior, University of California Irvine, Irvine, CA 92697, USA
| | - M Tatsuno
- Department of Neuroscience, University of Lethbridge, Lethbridge, Alberta, Canada T1K 3M4
| |
Collapse
|
7
|
Hammond T, Bombail V, Nielsen BL, Meddle SL, Lawrence AB, Brown SM. Relationships between play and responses to tickling in male juvenile rats. Appl Anim Behav Sci 2019. [DOI: 10.1016/j.applanim.2019.104879] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
8
|
Ndode-Ekane XE, Santana-Gomez C, Casillas-Espinosa PM, Ali I, Brady RD, Smith G, Andrade P, Immonen R, Puhakka N, Hudson MR, Braine EL, Shultz SR, Staba RJ, O'Brien TJ, Pitkänen A. Harmonization of lateral fluid-percussion injury model production and post-injury monitoring in a preclinical multicenter biomarker discovery study on post-traumatic epileptogenesis. Epilepsy Res 2019; 151:7-16. [PMID: 30711714 PMCID: PMC6812686 DOI: 10.1016/j.eplepsyres.2019.01.006] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2018] [Revised: 01/11/2019] [Accepted: 01/11/2019] [Indexed: 12/31/2022]
Abstract
Multi-center preclinical studies can facilitate the discovery of biomarkers of antiepileptogenesis and thus facilitate the diagnosis and treatment development of patients at risk of developing post-traumatic epilepsy. However, these studies are often limited by the difficulty in harmonizing experimental protocols between laboratories. Here, we assess whether the production of traumatic brain injury (TBI) using the lateral fluid-percussion injury (FPI) in adult male Sprague-Dawley rats (12 weeks at the time of injury) was harmonized between three laboratories - located in the University of Eastern Finland (UEF), Monash University in Melbourne, Australia (Melbourne) and The University of California, Los Angeles, USA (UCLA). These laboratories are part of the international multicenter-based project, the Epilepsy Bioinformatics Study for Antiepileptogenesis Therapy (EpiBioS4Rx). Lateral FPI was induced in adult male Sprague-Dawley rats. The success of methodological harmonization was assessed by performing inter-site comparison of injury parameters including duration of anesthesia during surgery, impact pressure, post-impact transient apnea, post-impact seizure-like behavior, acute mortality (<72 h post-injury), time to self-right after the impact, and severity of the injury (assessed with the neuroscore). The data was collected using Common Data Elements and Case Report Forms. The acute mortality was 15% (UEF), 50% (Melbourne) and 57% (UCLA) (p < 0.001). The sites differed in the duration of anesthesia, the shortest being at UEF < Melbourne < UCLA (p < 0.001). The impact pressure used also differed between the sites, the highest being in UEF > Melbourne > UCLA (p < 0.001). The impact pressure associated with the severity of the functional deficits (low neuroscore) (P < 0.05) only at UEF, but not at any of the other sites. Additionally, the sites differed in the duration of post-impact transient apnea (p < 0.001) and time to self-right (P < 0.001), the highest values in both parameters was registered in Melbourne. Post-impact seizure-like behavior was observed in 51% (UEF), 25% (Melbourne) and 2% (UCLA) of rats (p < 0.001). Despite the differences in means when all sites were compared there was significant overlap in injury parameters between the sites. The data reflects the technical difficulties in the production of lateral FPI across multiple sites. On the other hand, the data can be used to model the heterogeneity in human cohorts with closed-head injury. Our animal cohort will provide a good starting point to investigate the factors associated with epileptogenesis after lateral FPI.
Collapse
Affiliation(s)
| | - Cesar Santana-Gomez
- Department of Neurology, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| | - Pablo M Casillas-Espinosa
- The Department of Neuroscience, Central Clinical School, Monash University, Melbourne, Australia; Department of Medicine, The Royal Melbourne Hospital, The University of Melbourne, VIC, 3052, Australia
| | - Idrish Ali
- The Department of Neuroscience, Central Clinical School, Monash University, Melbourne, Australia; Department of Medicine, The Royal Melbourne Hospital, The University of Melbourne, VIC, 3052, Australia
| | - Rhys D Brady
- The Department of Neuroscience, Central Clinical School, Monash University, Melbourne, Australia; Department of Medicine, The Royal Melbourne Hospital, The University of Melbourne, VIC, 3052, Australia
| | - Gregory Smith
- Department of Neurosurgery, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| | - Pedro Andrade
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Finland
| | - Riikka Immonen
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Finland
| | - Noora Puhakka
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Finland
| | - Matthew R Hudson
- The Department of Neuroscience, Central Clinical School, Monash University, Melbourne, Australia; Department of Medicine, The Royal Melbourne Hospital, The University of Melbourne, VIC, 3052, Australia
| | - Emma L Braine
- The Department of Neuroscience, Central Clinical School, Monash University, Melbourne, Australia; Department of Medicine, The Royal Melbourne Hospital, The University of Melbourne, VIC, 3052, Australia
| | - Sandy R Shultz
- The Department of Neuroscience, Central Clinical School, Monash University, Melbourne, Australia; Department of Medicine, The Royal Melbourne Hospital, The University of Melbourne, VIC, 3052, Australia
| | - Richard J Staba
- Department of Neurology, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| | - Terence J O'Brien
- The Department of Neuroscience, Central Clinical School, Monash University, Melbourne, Australia; Department of Medicine, The Royal Melbourne Hospital, The University of Melbourne, VIC, 3052, Australia; Department of Neurology, The Alfred Hospital, Commercial Road, Melbourne, Victoria, 3004, Australia; Department of Neurology, The Royal Melbourne Hospital, Grattan Street, Parkville, Victoria, 3050, Australia
| | - Asla Pitkänen
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Finland
| |
Collapse
|
9
|
Kim SY, Hsu JE, Husbands LC, Kleim JA, Jones TA. Coordinated Plasticity of Synapses and Astrocytes Underlies Practice-Driven Functional Vicariation in Peri-Infarct Motor Cortex. J Neurosci 2018; 38:93-107. [PMID: 29133435 PMCID: PMC5761439 DOI: 10.1523/jneurosci.1295-17.2017] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2017] [Revised: 10/05/2017] [Accepted: 11/03/2017] [Indexed: 01/05/2023] Open
Abstract
Motor rehabilitative training after stroke can improve motor function and promote topographical reorganization of remaining motor cortical movement representations, but this reorganization follows behavioral improvements. A more detailed understanding of the neural bases of rehabilitation efficacy is needed to inform therapeutic efforts to improve it. Using a rat model of upper extremity impairments after ischemic stroke, we examined effects of motor rehabilitative training at the ultrastructural level in peri-infarct motor cortex. Extensive training in a skilled reaching task promoted improved performance and recovery of more normal movements. This was linked with greater axodendritic synapse density and ultrastructural characteristics of enhanced synaptic efficacy that were coordinated with changes in perisynaptic astrocytic processes in the border region between head and forelimb areas of peri-infarct motor cortex. Disrupting synapses and motor maps by infusions of anisomycin (ANI) into anatomically reorganized motor, but not posterior parietal, cortex eliminated behavioral gains from rehabilitative training. In contrast, ANI infusion in the equivalent cortical region of intact animals had no effect on reaching skills. These results suggest that rehabilitative training efficacy for improving manual skills is mediated by synaptic plasticity in a region of motor cortex that, before lesions, is not essential for manual skills, but becomes so as a result of the training. These findings support that experience-driven synaptic structural reorganization underlies functional vicariation in residual motor cortex after motor cortical infarcts.SIGNIFICANCE STATEMENT Stroke is a leading cause of long-term disability. Motor rehabilitation, the main treatment for physical disability, is of variable efficacy. A better understanding of neural mechanisms underlying effective motor rehabilitation would inform strategies for improving it. Here, we reveal synaptic underpinnings of effective motor rehabilitation. Rehabilitative training improved manual skill in the paretic forelimb and induced the formation of special synapse subtypes in coordination with structural changes in astrocytes, a glial cell that influences neural communication. These changes were found in a region that is nonessential for manual skill in intact animals, but came to mediate this skill due to training after stroke. Therefore, motor rehabilitation efficacy depends on synaptic changes that enable remaining brain regions to assume new functions.
Collapse
Affiliation(s)
- Soo Young Kim
- Department of Integrative Biology, University of California, Berkeley, California 94720,
| | - J Edward Hsu
- Department of Neurosurgery, McGovern Medical School, University of Texas Health Science Center, Houston, Texas 77030
- Institute for Neuroscience
| | | | - Jeffrey A Kleim
- School of Biological and Health Systems Engineering, Arizona State University, Tempe, Arizona 85287
| | - Theresa A Jones
- Institute for Neuroscience
- Psychology Department, University of Texas, Austin, Texas 78712, and
| |
Collapse
|
10
|
The effect of surgery and intracerebral injections on motor skill learning in rats: results from a database analysis. Behav Brain Res 2016; 313:310-314. [DOI: 10.1016/j.bbr.2016.07.040] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2016] [Revised: 07/18/2016] [Accepted: 07/22/2016] [Indexed: 11/17/2022]
|
11
|
The standardized functional observational battery: Its intrinsic value remains in the instrument of measure: The rat. J Pharmacol Toxicol Methods 2016; 82:90-108. [PMID: 27534836 DOI: 10.1016/j.vascn.2016.08.001] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2016] [Revised: 07/10/2016] [Accepted: 08/01/2016] [Indexed: 12/13/2022]
Abstract
The International Conference on Harmonisation's (ICH) Tripartite Guideline on Safety Pharmacology Studies for Human Pharmaceuticals has adopted the requirement that each new test substance must be tested for effects on the central nervous system prior to "first dose in man". This assessment is required to measure, at a minimum, the effects of the substance on general motor activity, behavioral changes, coordination, sensory/motor reflex responses, and body temperatures. To achieve this goal, ICH S7A recommends a neurobehavioral assessment (usually a functional observational battery (FOB) or modified Irwin test), which is generally undertaken in the rat. There seems to be a growing lack of consensus on the value of the FOB to determine CNS safety. This review highlights the importance of the time, effort and cost of training technicians to familiarize with their instrument of measure, so that each observer is better able to identify and document very subtle changes in behavior that will serve to increase the reliability and validity of these assays with respect to CNS safety assessments.
Collapse
|
12
|
O'Bryant AJ, Adkins DL, Sitko AA, Combs HL, Nordquist SK, Jones TA. Enduring Poststroke Motor Functional Improvements by a Well-Timed Combination of Motor Rehabilitative Training and Cortical Stimulation in Rats. Neurorehabil Neural Repair 2016; 30:143-54. [PMID: 25527486 PMCID: PMC4474792 DOI: 10.1177/1545968314562112] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
BACKGROUND In animal stroke models, peri-infarct cortical stimulation (CS) combined with rehabilitative reach training (RT) enhances motor functional outcome and cortical reorganization, compared with RT alone. It was unknown whether the effects of CS + RT (a) persist long after treatment, (b) can be enhanced by forcing greater use of the paretic limb, and (C) vary with treatment onset time. OBJECTIVE To test the endurance, time sensitivity, and the potential for augmentation by forced forelimb use of CS + RT treatment effects following ischemic stroke. METHODS Adult rats that were proficient in skilled reaching received unilateral ischemic motor cortical lesions. RT was delivered for 3 weeks alone or concurrently with 100-Hz cathodal epidural CS, delivered at 50% of movement thresholds. In study 1, this treatment was initiated at 14 days postinfarct, with some subgroups receiving an overlapping period of continuous constraint of the nonparetic forelimb to force use of the paretic limb. The function of the paretic limb was assessed weekly for 9 to 10 months posttreatment. In study 2, rats underwent CS, RT, and the combination during the chronic postinfarct period. RESULTS Early onset CS + RT resulted in greater functional improvements than RT alone. The CS-related gains persisted for 9 to 10 months posttreatment and were not significantly influenced by forced use of the paretic limb. When treatment onset was delayed until 3 months post-infarct, RT alone improved function, but CS + RT was no more effective than RT alone. CONCLUSION CS can enhance the persistence, as well as the magnitude of RT-driven functional improvements, but its effectiveness in doing so may vary with time postinfarct.
Collapse
|
13
|
Opioid receptor-dependent sex differences in synaptic plasticity in the hippocampal mossy fiber pathway of the adult rat. J Neurosci 2015; 35:1723-38. [PMID: 25632146 DOI: 10.1523/jneurosci.0820-14.2015] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The mossy fiber (MF) pathway is critical to hippocampal function and influenced by gonadal hormones. Physiological data are limited, so we asked whether basal transmission and long-term potentiation (LTP) differed in slices of adult male and female rats. The results showed small sex differences in basal transmission but striking sex differences in opioid receptor sensitivity and LTP. When slices were made from females on proestrous morning, when serum levels of 17β-estradiol peak, the nonspecific opioid receptor antagonist naloxone (1 μm) enhanced MF transmission but there was no effect in males, suggesting preferential opioid receptor-dependent inhibition in females when 17β-estradiol levels are elevated. The μ-opioid receptor (MOR) antagonist Cys2,Tyr3,Orn5,Pen7-amide (CTOP; 300 nm) had a similar effect but the δ-opioid receptor (DOR) antagonist naltrindole (NTI; 1 μm) did not, implicating MORs in female MF transmission. The GABAB receptor antagonist saclofen (200 μm) occluded effects of CTOP but the GABAA receptor antagonist bicuculline (10 μm) did not. For LTP, a low-frequency (LF) protocol was used because higher frequencies elicited hyperexcitability in females. Proestrous females exhibited LF-LTP but males did not, suggesting a lower threshold for synaptic plasticity when 17β-estradiol is elevated. NTI blocked LF-LTP in proestrous females, but CTOP did not. Electron microscopy revealed more DOR-labeled spines of pyramidal cells in proestrous females than males. Therefore, we suggest that increased postsynaptic DORs mediate LF-LTP in proestrous females. The results show strong MOR regulation of MF transmission only in females and identify a novel DOR-dependent form of MF LTP specific to proestrus.
Collapse
|
14
|
Quantitative Kinematic Characterization of Reaching Impairments in Mice After a Stroke. Neurorehabil Neural Repair 2014; 29:382-92. [DOI: 10.1177/1545968314545174] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Background and Objective. Kinematic analysis of reaching movements is increasingly used to evaluate upper extremity function after cerebrovascular insults in humans and has also been applied to rodent models. Such analyses can require time-consuming frame-by-frame inspections and are affected by the experimenter’s bias. In this study, we introduce a semi-automated algorithm for tracking forepaw movements in mice. This methodology allows us to calculate several kinematic measures for the quantitative assessment of performance in a skilled reaching task before and after a focal cortical stroke. Methods. Mice were trained to reach for food pellets with their preferred paw until asymptotic performance was achieved. Photothrombosis was then applied to induce a focal ischemic injury in the motor cortex, contralateral to the trained limb. Mice were tested again once a week for 30 days. A high frame rate camera was used to record the movements of the paw, which was painted with a nontoxic dye. An algorithm was then applied off-line to track the trajectories and to compute kinematic measures for motor performance evaluation. Results. The tracking algorithm proved to be fast, accurate, and robust. A number of kinematic measures were identified as sensitive indicators of poststroke modifications. Based on end-point measures, ischemic mice appeared to improve their motor performance after 2 weeks. However, kinematic analysis revealed the persistence of specific trajectory adjustments up to 30 days poststroke, indicating the use of compensatory strategies. Conclusions. These results support the use of kinematic analysis in mice as a tool for both detection of poststroke functional impairments and tracking of motor improvements following rehabilitation. Similar studies could be performed in parallel with human studies to exploit the translational value of this skilled reaching analysis.
Collapse
|
15
|
Warren PM, Alilain WJ. The challenges of respiratory motor system recovery following cervical spinal cord injury. PROGRESS IN BRAIN RESEARCH 2014; 212:173-220. [DOI: 10.1016/b978-0-444-63488-7.00010-0] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
16
|
Fouad K, Hurd C, Magnuson DSK. Functional testing in animal models of spinal cord injury: not as straight forward as one would think. Front Integr Neurosci 2013; 7:85. [PMID: 24324414 PMCID: PMC3840303 DOI: 10.3389/fnint.2013.00085] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2013] [Accepted: 11/08/2013] [Indexed: 12/17/2022] Open
Abstract
When exploring potential treatments for spinal cord injury (SCI), functional recovery is deemed the most relevant outcome measure when it comes to translational considerations. Yet, assessing such recovery and potential treatment effects is challenging and the pitfalls are frequently underestimated. The consequences are that in many cases positive results cannot be reliably replicated, and likely treatments that appear to lack effects have been dismissed prematurely. In this article we review the relationships between lesion location/severity and functional outcomes with specific consideration given to floor and ceiling effects. The roles of compensatory strategies, the challenges of distinguishing them from bona fide recovery, and of comparing function to pre-injury levels given the variability inherent in animal testing are discussed. Ultimately, we offer a series of considerations to enhance the power of functional analysis in animal models of SCI.
Collapse
Affiliation(s)
- Karim Fouad
- Faculty of Rehabilitation Medicine, Centre for Neuroscience, University of Alberta Edmonton, AB, Canada
| | | | | |
Collapse
|
17
|
Hurd C, Weishaupt N, Fouad K. Anatomical correlates of recovery in single pellet reaching in spinal cord injured rats. Exp Neurol 2013; 247:605-14. [DOI: 10.1016/j.expneurol.2013.02.013] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2012] [Revised: 02/20/2013] [Accepted: 02/23/2013] [Indexed: 10/27/2022]
|
18
|
Palm S, Roman E, Nylander I. Differences in basal and ethanol-induced levels of opioid peptides in Wistar rats from five different suppliers. Peptides 2012; 36:1-8. [PMID: 22564490 DOI: 10.1016/j.peptides.2012.04.016] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/17/2012] [Revised: 04/20/2012] [Accepted: 04/20/2012] [Indexed: 11/23/2022]
Abstract
One major cause for discrepancies in results from animal experimental studies is the use of different animal strains and suppliers. We have previously reported that Wistar rats from five different suppliers display profound differences in ethanol intake and behavior. One of the neurobiological processes that could be underlying these differences is the endogenous opioid system, which has been implicated in the rewarding and reinforcing effects of alcohol. We therefore hypothesized that the differences between the supplier groups would also be evident in the endogenous opioid system. Radioimmunoassay was used to determine the levels of the opioid peptides Met-enkephalin-Arg(6)Phe(7) and dynorphin B in several brain areas of ethanol-drinking and ethanol naïve Wistar rats from five different suppliers. In the ethanol naïve animals, differences between the supplier groups were found in the pituitary gland, hypothalamus, frontal cortex, dorsal striatum and hippocampus. In the ethanol-drinking rats, differences were found in the same structures, with the addition of medial prefrontal cortex and substantia nigra. Correlations between ethanol intake and peptide levels were also found in several of the areas examined. The structures in which differences were found have all been implicated in the transition from drug use to addiction and these differences may lead to different propensities and vulnerability to this transition. Because the endogenous opioids have been suggested to be involved in a number of neurobiological disorders the results do not only have implications for research on alcohol or drug addiction, but many other fields as well.
Collapse
Affiliation(s)
- Sara Palm
- Department of Pharmaceutical Biosciences, Division of Neuropharmacology, Addiction & Behavior, Uppsala University, Uppsala, Sweden.
| | | | | |
Collapse
|