1
|
Place preferences induced by electrical stimulation of the external lateral parabrachial subnucleus in a sequential learning task: Place preferences induced by NLPBe stimulation. Behav Brain Res 2020; 381:112442. [PMID: 31862469 DOI: 10.1016/j.bbr.2019.112442] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2019] [Revised: 12/16/2019] [Accepted: 12/16/2019] [Indexed: 11/22/2022]
Abstract
It is known that electrical stimulation of the external lateral parabrachial nucleus (NLPBe) can sustain concurrent taste and place learning. Place preferences can be learned through different procedures. Previous studies demonstrated that electrical stimulation of the PBNLe can generate aversive and preference place learning using concurrent procedures. In the concurrent procedure, the animals can move freely in the maze, and intracranial electrical stimulation is associated with their voluntary stay in one of the two maze compartments. However, the rewarding properties of most stimuli, whether natural or drugs of abuse, have usually been investigated using the sequential procedure, in which animals are confined while receiving the unconditioned stimulus and then undergo a choice test without stimulation in a later phase. This study examined whether this stimulation can sustain place preference learning in sequential tasks. Results demonstrated that place preferences can also be induced by the electrical stimulation of the NLBe using sequential procedures. These findings suggest that the NLPBe may form part of a brain reward axis that shares certain characteristics with those observed in the processing of natural rewarding agents and especially of drugs of abuse.
Collapse
|
2
|
Simon MJ, Zafra MA, Puerto A. Differential rewarding effects of electrical stimulation of the lateral hypothalamus and parabrachial complex: Functional characterization and the relevance of opioid systems and dopamine. J Psychopharmacol 2019; 33:1475-1490. [PMID: 31282233 DOI: 10.1177/0269881119855982] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
BACKGROUND Since the discovery of rewarding intracranial self-stimulation by Olds and Milner, extensive data have been published on the biological basis of reward. Although participation of the mesolimbic dopaminergic system is well documented, its precise role has not been fully elucidated, and some authors have proposed the involvement of other neural systems in processing specific aspects of reinforced behaviour. AIMS AND METHODS We reviewed published data, including our own findings, on the rewarding effects induced by electrical stimulation of the lateral hypothalamus (LH) and of the external lateral parabrachial area (LPBe) - a brainstem region involved in processing the rewarding properties of natural and artificial substances - and compared its functional characteristics as observed in operant and non-operant behavioural procedures. RESULTS Brain circuits involved in the induction of preferences for stimuli associated with electrical stimulation of the LBPe appear to functionally and neurochemically differ from those activated by electrical stimulation of the LH. INTERPRETATION We discuss the possible involvement of the LPBe in processing emotional-affective aspects of the brain reward system.
Collapse
Affiliation(s)
- Maria J Simon
- Department of Psychobiology, Mind, Brain and Behaviour Research Center (CIMCYC), University of Granada, Granada, Spain
| | - Maria A Zafra
- Department of Psychobiology, Mind, Brain and Behaviour Research Center (CIMCYC), University of Granada, Granada, Spain
| | - Amadeo Puerto
- Department of Psychobiology, Mind, Brain and Behaviour Research Center (CIMCYC), University of Granada, Granada, Spain
| |
Collapse
|
3
|
Tolerance to rewarding brain electrical stimulation: Differential effects of contingent and non-contingent activation of parabrachial complex and lateral hypothalamus. Behav Brain Res 2018; 336:15-21. [DOI: 10.1016/j.bbr.2017.08.030] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2017] [Revised: 08/14/2017] [Accepted: 08/17/2017] [Indexed: 01/03/2023]
|
4
|
Zafra MA, Agüera AD, Molina F, Puerto A. Relevance of the nucleus of the solitary tract, gelatinous part, in learned preferences induced by intragastric nutrient administration. Appetite 2017; 118:90-96. [PMID: 28789870 DOI: 10.1016/j.appet.2017.08.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2017] [Revised: 08/02/2017] [Accepted: 08/03/2017] [Indexed: 12/18/2022]
Abstract
Food preferences have been investigated in Wistar rats utilizing a learned concurrent flavor preference behavioral procedure. Previous studies have demonstrated that the perivagal administration of neurotoxin capsaicin disrupts the learning of preferences induced by intragastric administration of rewarding nutrients (pre-digested milk). The vagus nerve projects almost exclusively towards the nucleus of the solitary tract (NST), a brain medullary gateway for visceral signals. The objective of this study was to investigate the participation of the lateral portion of the dorsomedial region, the gelatinous subnucleus (SolG), in the learning of a concurrent preference task. Results show that unlike neurologically intact animals, which learn this task correctly, animals lesioned in the gelatinous part of NST manifest a disruption of discrimination learning. Thus, intakes of the flavored stimulus paired with predigested liquid diet and of the flavored stimulus paired with physiological saline were virtually identical. However, SolG- and sham-lesioned groups consumed similar total amounts of both flavors. These findings suggest that SolG, as a relay of the vagus nerve, along with its anatomical projection, the external lateral parabrachial subnucleus (LPBe), may constitute an anatomical axis that is important in the induction of concurrent flavor/side preferences. It also appears to be relevant in other behavioral processes that require rapid processing of information from the upper gastrointestinal tract.
Collapse
Affiliation(s)
- María A Zafra
- Department of Psychobiology, University of Granada, Campus de Cartuja, Granada 18071, Spain; Mind, Brain, and Behavior Research Center (CIMCYC), University of Granada, Campus de Cartuja, Granada 18071, Spain.
| | - Antonio D Agüera
- Department of Psychobiology, University of Granada, Campus de Cartuja, Granada 18071, Spain
| | - Filomena Molina
- Department of Psychobiology, University of Granada, Campus de Cartuja, Granada 18071, Spain; Mind, Brain, and Behavior Research Center (CIMCYC), University of Granada, Campus de Cartuja, Granada 18071, Spain
| | - Amadeo Puerto
- Department of Psychobiology, University of Granada, Campus de Cartuja, Granada 18071, Spain; Mind, Brain, and Behavior Research Center (CIMCYC), University of Granada, Campus de Cartuja, Granada 18071, Spain
| |
Collapse
|
5
|
Hurtado MM, García R, Puerto A. Tiapride prevents the aversive but not the rewarding effect induced by parabrachial electrical stimulation in a place preference task. Acta Neurobiol Exp (Wars) 2017. [DOI: 10.21307/ane-2017-057] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
6
|
Naloxone blocks the aversive effects of electrical stimulation of the parabrachial complex in a place discrimination task. Neurobiol Learn Mem 2016; 136:21-27. [DOI: 10.1016/j.nlm.2016.09.011] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2016] [Revised: 09/12/2016] [Accepted: 09/18/2016] [Indexed: 01/02/2023]
|
7
|
Hurtado MM, Puerto A. Tolerance to repeated rewarding electrical stimulation of the parabrachial complex. Behav Brain Res 2016; 312:14-9. [PMID: 27283973 DOI: 10.1016/j.bbr.2016.06.005] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2016] [Revised: 05/29/2016] [Accepted: 06/02/2016] [Indexed: 12/29/2022]
Abstract
The parabrachial complex has been related to various rewarding behavioral processes. As previously shown, electrical stimulation of the lateral parabrachial external (LPBe) subnucleus induces opiate-dependent concurrent place preference. In this study, two groups of animals (and their respective controls) were subjected to sessions of rewarding brain stimulation daily or on alternate days. The rats stimulated every other day maintained a consistent preference for the place associated with the brain stimulation. However, as also found in the Insular Cortex, there was a progressive decay in the initial place preference of animals receiving daily stimulation. These data suggest that the rewarding effects induced by electrical stimulation of LPBe subnucleus may be subject to tolerance. These findings are discussed with respect to other anatomical areas showing reward decay and to the reinforcing effects induced by various electrical and chemical rewarding agents.
Collapse
Affiliation(s)
- María M Hurtado
- Department of Psychobiology & Mind, Brain and Behavior Research Center (CIMCYC), Campus of Cartuja, University of Granada, Granada 18071, Spain.
| | - Amadeo Puerto
- Department of Psychobiology & Mind, Brain and Behavior Research Center (CIMCYC), Campus of Cartuja, University of Granada, Granada 18071, Spain
| |
Collapse
|
8
|
Nephew BC, Huang W, Poirier GL, Payne L, King JA. Altered neural connectivity in adult female rats exposed to early life social stress. Behav Brain Res 2016; 316:225-233. [PMID: 27594665 DOI: 10.1016/j.bbr.2016.08.051] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2016] [Revised: 08/24/2016] [Accepted: 08/25/2016] [Indexed: 01/21/2023]
Abstract
The use of a variety of neuroanatomical techniques has led to a greater understanding of the adverse effects of stress on psychiatric health. One recent advance that has been particularly valuable is the development of resting state functional connectivity (RSFC) in clinical studies. The current study investigates changes in RSFC in F1 adult female rats exposed to the early life chronic social stress (ECSS) of the daily introduction of a novel male intruder to the cage of their F0 mothers while the F1 pups are in the cage. This ECSS for the F1 animals consists of depressed maternal care from their F0 mothers and exposure to conflict between their F0 mothers and intruder males. Analyses of the functional connectivity data in ECSS exposed adult females versus control females reveal broad changes in the limbic and reward systems, the salience and introspective socioaffective networks, and several additional stress and social behavior associated nuclei. Substantial changes in connectivity were found in the prefrontal cortex, nucleus accumbens, hippocampus, and somatosensory cortex. The current rodent RSFC data support the hypothesis that the exposure to early life social stress has long term effects on neural connectivity in numerous social behavior, stress, and depression relevant brain nuclei. Future conscious rodent RSFC studies can build on the wealth of data generated from previous neuroanatomical studies of early life stress and enhance translational connectivity between animal and human fMRI studies in the development of novel preventative measures and treatments.
Collapse
Affiliation(s)
- Benjamin C Nephew
- Department of Biomedical Sciences, Tufts University Cummings School of Veterinary Medicine, Peabody Pavilion, North Grafton, MA, 01536, United States.
| | - Wei Huang
- Center for Comparative NeuroImaging, Department of Psychiatry, University of Massachusetts Medical School, 55 Lake Avenue North, Worcester, MA, 01655, United States
| | - Guillaume L Poirier
- Center for Comparative NeuroImaging, Department of Psychiatry, University of Massachusetts Medical School, 55 Lake Avenue North, Worcester, MA, 01655, United States
| | - Laurellee Payne
- Center for Comparative NeuroImaging, Department of Psychiatry, University of Massachusetts Medical School, 55 Lake Avenue North, Worcester, MA, 01655, United States
| | - Jean A King
- Center for Comparative NeuroImaging, Department of Psychiatry, University of Massachusetts Medical School, 55 Lake Avenue North, Worcester, MA, 01655, United States
| |
Collapse
|
9
|
Differential effects of naloxone on rewarding electrical stimulation of the central nucleus of the amygdala and parabrachial complex in a place preference study. Brain Res Bull 2016; 124:182-9. [PMID: 27173444 DOI: 10.1016/j.brainresbull.2016.04.021] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2015] [Revised: 04/11/2016] [Accepted: 04/28/2016] [Indexed: 12/29/2022]
Abstract
The central nucleus of the amygdala (CeA) is considered to be involved in different affective, sensory, regulatory, and acquisition processes. This study analyzed whether electrical stimulation of the PB-CeA system induces preferences in a concurrent place preference (cPP) task, as observed after stimulation of the parabrachial-insular cortex (PB-IC) axis. It also examined whether the rewarding effects are naloxone-dependent. The results show that electrical stimulation of the CeA and external lateral parabrachial subnucleus (LPBe) induces consistent preference behaviors in a cPP task. However, subcutaneous administration of an opiate antagonist (naloxone; 4mg/ml/kg) blocked the rewarding effect of the parabrachial stimulation but not that of the amygdala stimulation. These results are interpreted in the context of multiple brain reward systems that appear to differ both anatomically and neurochemically, notably with respect to the opiate system.
Collapse
|
10
|
Hurtado MM, García R, Puerto A. Tolerance to repeated rewarding electrical stimulation of the insular cortex. Brain Res 2016; 1630:64-72. [PMID: 26562666 DOI: 10.1016/j.brainres.2015.11.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2015] [Revised: 09/29/2015] [Accepted: 11/01/2015] [Indexed: 12/29/2022]
Abstract
The insular cortex (IC) has been related to various reinforcing behavioral processes. This study examined the effect of electrical stimulation of the posterior agranular IC on concurrent place preferences. Two groups of animals and their respective controls underwent rewarding brain stimulation every day or on alternate days. While the rats stimulated every other day maintained their preference for the place associated with brain stimulation, those stimulated every day evidenced a reduction in their place preference, suggesting tolerance to the stimulation's rewarding effect. A 15% increase in the current intensity produced a recovery of the preferences of the daily-stimulated rats but had no effect on those stimulated on alternate days. These results are discussed in terms of the rewarding effects induced by different electrical and chemical rewarding agents.
Collapse
Affiliation(s)
- María M Hurtado
- Department of Psychobiology, and Mind, Brain and Behavior Research Center (CIMCYC), Campus of Cartuja, University of Granada, Granada 18071, Spain.
| | - Raquel García
- Department of Psychobiology, and Mind, Brain and Behavior Research Center (CIMCYC), Campus of Cartuja, University of Granada, Granada 18071, Spain
| | - Amadeo Puerto
- Department of Psychobiology, and Mind, Brain and Behavior Research Center (CIMCYC), Campus of Cartuja, University of Granada, Granada 18071, Spain
| |
Collapse
|
11
|
Simon MJ, Higuera-Matas A, Roura-Martinez D, Ucha M, Santos-Toscano R, Garcia-Lecumberri C, Ambrosio E, Puerto A. Changes in D1 but not D2 dopamine or mu-opioid receptor expression in limbic and motor structures after lateral hypothalamus electrical self-stimulation: A quantitative autoradiographic study. Neurobiol Learn Mem 2015; 127:17-26. [PMID: 26656274 DOI: 10.1016/j.nlm.2015.11.007] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2015] [Revised: 10/15/2015] [Accepted: 11/17/2015] [Indexed: 01/08/2023]
Abstract
Intracranial self-stimulation (ICSS) of the lateral hypothalamus (LH) is involved in the activation of neuroanatomical systems that are also associated with the processing of natural and other artificial rewarding stimuli. Specific components of this behavior (hedonic impact, learning, and motor behavior) may involve changes in different neurotransmitters, such as dopamine and opioids. In this study, quantitative autoradiography was used to examine changes in mu-opioid and D1/D2-dopamine receptor expression in various anatomical regions related to the motor and mesolimbic reward systems after intracranial self-stimulation of the LH. Results of the behavioral procedure and subsequent radiochemical assays show selective changes in D1 but not D2 or mu receptors in Accumbens-Shell, Ventral Pallidum, Caudate-Putamen, and Medial Globus Pallidus. These findings are discussed in relation to the different psychobiological components of the appetitive motivational system, identifying some dissociation among them, particularly with respect to the involvement of the D1-dopamine subsystem (but not D2 or mu receptors) in goal-directed behaviors.
Collapse
Affiliation(s)
- Maria J Simon
- Department of Psychobiology, University of Granada, Campus Cartuja s/n, 18071 Granada, Spain.
| | - A Higuera-Matas
- Department of Psychobiology, National Distance Education University (UNED), C/ Juan del Rosal 10, 28040 Madrid, Spain
| | - D Roura-Martinez
- Department of Psychobiology, National Distance Education University (UNED), C/ Juan del Rosal 10, 28040 Madrid, Spain
| | - M Ucha
- Department of Psychobiology, National Distance Education University (UNED), C/ Juan del Rosal 10, 28040 Madrid, Spain
| | - R Santos-Toscano
- Department of Psychobiology, National Distance Education University (UNED), C/ Juan del Rosal 10, 28040 Madrid, Spain
| | - C Garcia-Lecumberri
- Department of Psychobiology, National Distance Education University (UNED), C/ Juan del Rosal 10, 28040 Madrid, Spain
| | - E Ambrosio
- Department of Psychobiology, National Distance Education University (UNED), C/ Juan del Rosal 10, 28040 Madrid, Spain
| | - A Puerto
- Department of Psychobiology, University of Granada, Campus Cartuja s/n, 18071 Granada, Spain
| |
Collapse
|
12
|
García R, Zafra MA, Puerto A. Rewarding effects of electrical stimulation of the insular cortex: Decayed effectiveness after repeated tests and subsequent increase in vertical behavioral activity and conditioned place aversion after naloxone administration. Neurobiol Learn Mem 2015; 118:64-73. [DOI: 10.1016/j.nlm.2014.11.008] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2014] [Revised: 10/21/2014] [Accepted: 11/07/2014] [Indexed: 12/30/2022]
|
13
|
García R, Simon MJ, Puerto A. Rewarding effects of the electrical stimulation of the parabrachial complex: taste or place preference? Neurobiol Learn Mem 2013; 107:101-7. [PMID: 24291574 DOI: 10.1016/j.nlm.2013.11.010] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2013] [Revised: 11/05/2013] [Accepted: 11/18/2013] [Indexed: 11/24/2022]
Abstract
The lateral parabrachial complex has been related to various emotional-affective processes. It has been shown that electrical stimulation of the external Lateral Parabrachial (LPBe) nucleus can induce reinforcing effects in place preference and taste discrimination tasks but does not appear to support self-stimulation. This study examined the relative relevance of place and taste stimuli after electrical stimulation of the LPBe nucleus. A learning discrimination task was conducted that simultaneously included both sensory indexes (taste and place) in order to determine the preference of animals for one or the other. After a taste stimulus reversal task, the rewarding effect of stimulation was found to be preferentially associated with place. These results are discussed in the context of the rewarding action and biological constraints induced by different natural and artificial reinforcing agents.
Collapse
Affiliation(s)
- Raquel García
- Department of Psychobiology, University of Granada, Campus of Cartuja, Granada 18071, Spain.
| | - Maria J Simon
- Department of Psychobiology, University of Granada, Campus of Cartuja, Granada 18071, Spain
| | - Amadeo Puerto
- Department of Psychobiology, University of Granada, Campus of Cartuja, Granada 18071, Spain
| |
Collapse
|
14
|
Conditioned place preference induced by electrical stimulation of the insular cortex: effects of naloxone. Exp Brain Res 2013; 226:165-74. [DOI: 10.1007/s00221-013-3422-7] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2012] [Accepted: 01/14/2013] [Indexed: 12/13/2022]
|
15
|
Abstract
This paper is the thirty-fourth consecutive installment of the annual review of research concerning the endogenous opioid system. It summarizes papers published during 2011 that studied the behavioral effects of molecular, pharmacological and genetic manipulation of opioid peptides, opioid receptors, opioid agonists and opioid antagonists. The particular topics that continue to be covered include the molecular-biochemical effects and neurochemical localization studies of endogenous opioids and their receptors related to behavior (Section 2), and the roles of these opioid peptides and receptors in pain and analgesia (Section 3); stress and social status (Section 4); tolerance and dependence (Section 5); learning and memory (Section 6); eating and drinking (Section 7); alcohol and drugs of abuse (Section 8); sexual activity and hormones, pregnancy, development and endocrinology (Section 9); mental illness and mood (Section 10); seizures and neurologic disorders (Section 11); electrical-related activity and neurophysiology (Section 12); general activity and locomotion (Section 13); gastrointestinal, renal and hepatic functions (Section 14); cardiovascular responses (Section 15); respiration (Section 16); and immunological responses (Section 17).
Collapse
Affiliation(s)
- Richard J Bodnar
- Department of Psychology and Neuropsychology Doctoral Sub-Program, Queens College, City University of New York, Flushing, NY 11367, United States.
| |
Collapse
|