1
|
Betlej G, Bator E, Koziorowska A, Koziorowski M, Rzeszutek I. The In Vitro Enhancement of Retinal Cell Viability via m 6A and m 5C RNA Methylation-Mediated Changes in the Levels of Heme Oxygenase (HO-1) and DNA Damage Repair Molecules Using a 50 Hz Sinusoidal Electromagnetic Field (EMF). Int J Mol Sci 2024; 25:13606. [PMID: 39769368 PMCID: PMC11677922 DOI: 10.3390/ijms252413606] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2024] [Revised: 12/12/2024] [Accepted: 12/17/2024] [Indexed: 01/11/2025] Open
Abstract
Degenerative retinal diseases can lead to blindness if left untreated. At present, there are no curative therapies for retinal diseases. Therefore, effective treatment strategies for slowing the progression of retinal diseases and thus improving patients' life standards are urgently needed. The present study aimed to assess the effect of sinusoidal electromagnetic field (EMF) (50 Hz, 1.3 mT) treatment for 15 and 30 min on spontaneously arising retinal pigment epithelial cells (ARPE-19) and retinal ganglion cells (RGC-5) and its short-term post-treatment significance. Our study indicated the beneficial impact of EMF treatment on the proliferative and migratory capacity of the tested cells. ARPE-19 and RGC-5 cells exposed to an EMF exhibited elevated levels of HO-1, increased N6-methyladenosine (m6A) and N5-methylcytosine (m5C) status mediated by METTL3 and NSUN2, respectively, and changes in levels of DNA damage repair factors, which may contribute to the regenerative properties of ARPE-19 and RGC-5 cells. Overall, this analysis showed that EMF (sinusoidal, 50 Hz, 1.3 mT) treatment may serve as a potential therapeutic strategy for retinal diseases.
Collapse
Affiliation(s)
- Gabriela Betlej
- Interdisciplinary Centre for Preclinical and Clinical Research, College of Natural Sciences, University of Rzeszow, Werynia 2a, 36-100 Kolbuszowa, Poland
| | - Ewelina Bator
- Interdisciplinary Centre for Preclinical and Clinical Research, College of Natural Sciences, University of Rzeszow, Werynia 2a, 36-100 Kolbuszowa, Poland
| | - Anna Koziorowska
- Interdisciplinary Centre for Preclinical and Clinical Research, College of Natural Sciences, University of Rzeszow, Werynia 2a, 36-100 Kolbuszowa, Poland
- Institute of Material Engineering, College of Natural Sciences, University of Rzeszow, Pigonia 1, 35-310 Rzeszow, Poland
| | - Marek Koziorowski
- Interdisciplinary Centre for Preclinical and Clinical Research, College of Natural Sciences, University of Rzeszow, Werynia 2a, 36-100 Kolbuszowa, Poland
- Institute of Biotechnology, College of Natural Sciences, University of Rzeszow, Pigonia 1, 35-310 Rzeszow, Poland
| | - Iwona Rzeszutek
- Interdisciplinary Centre for Preclinical and Clinical Research, College of Natural Sciences, University of Rzeszow, Werynia 2a, 36-100 Kolbuszowa, Poland
| |
Collapse
|
2
|
Moya-Gómez A, Font LP, Burlacu A, Alpizar YA, Cardonne MM, Brône B, Bronckaers A. Extremely Low-Frequency Electromagnetic Stimulation (ELF-EMS) Improves Neurological Outcome and Reduces Microglial Reactivity in a Rodent Model of Global Transient Stroke. Int J Mol Sci 2023; 24:11117. [PMID: 37446295 DOI: 10.3390/ijms241311117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 06/28/2023] [Accepted: 06/30/2023] [Indexed: 07/15/2023] Open
Abstract
Extremely low-frequency electromagnetic stimulation (ELF-EMS) was demonstrated to be significantly beneficial in rodent models of permanent stroke. The mechanism involved enhanced cerebrovascular perfusion and endothelial cell nitric oxide production. However, the possible effect on the neuroinflammatory response and its efficacy in reperfusion stroke models remains unclear. To evaluate ELF-EMS effectiveness and possible immunomodulatory response, we studied neurological outcome, behavior, neuronal survival, and glial reactivity in a rodent model of global transient stroke treated with 13.5 mT/60 Hz. Next, we studied microglial cells migration and, in organotypic hippocampal brain slices, we assessed neuronal survival and microglia reactivity. ELF-EMS improved the neurological score and behavior in the ischemia-reperfusion model. It also improved neuronal survival and decreased glia reactivity in the hippocampus, with microglia showing the first signs of treatment effect. In vitro ELF-EMS decreased (Lipopolysaccharide) LPS and ATP-induced microglia migration in both scratch and transwell assay. Additionally, in hippocampal brain slices, reduced microglial reactivity, improved neuronal survival, and modulation of inflammation-related markers was observed. Our study is the first to show that an EMF treatment has a direct impact on microglial migration. Furthermore, ELF-EMS has beneficial effects in an ischemia/reperfusion model, which indicates that this treatment has clinical potential as a new treatment against ischemic stroke.
Collapse
Affiliation(s)
- Amanda Moya-Gómez
- BIOMED, UHasselt, Agoralaan, 3590 Diepenbeek, Belgium
- Biomedical Engineering Department, Facultad de Ingeniería Informática, Telecomunicaciones y Biomédica, Universidad de Oriente, Santiago de Cuba 90 400, Cuba
| | - Lena Pérez Font
- Centro Nacional de Electromagnetismo Aplicado, Universidad de Oriente, Santiago de Cuba 90 400, Cuba
| | | | | | - Miriam Marañón Cardonne
- Biomedical Engineering Department, Facultad de Ingeniería Informática, Telecomunicaciones y Biomédica, Universidad de Oriente, Santiago de Cuba 90 400, Cuba
| | - Bert Brône
- BIOMED, UHasselt, Agoralaan, 3590 Diepenbeek, Belgium
| | - Annelies Bronckaers
- Biomedical Engineering Department, Facultad de Ingeniería Informática, Telecomunicaciones y Biomédica, Universidad de Oriente, Santiago de Cuba 90 400, Cuba
| |
Collapse
|
3
|
Lai H. Neurological effects of static and extremely-low frequency electromagnetic fields. Electromagn Biol Med 2022; 41:201-221. [DOI: 10.1080/15368378.2022.2064489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Affiliation(s)
- Henry Lai
- Department of Bioengineering, University of Washington, Seattle, WA, USA
| |
Collapse
|
4
|
Moya Gómez A, Font LP, Brône B, Bronckaers A. Electromagnetic Field as a Treatment for Cerebral Ischemic Stroke. Front Mol Biosci 2021; 8:742596. [PMID: 34557522 PMCID: PMC8453690 DOI: 10.3389/fmolb.2021.742596] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Accepted: 08/04/2021] [Indexed: 11/24/2022] Open
Abstract
Cerebral stroke is a leading cause of death and adult-acquired disability worldwide. To this date, treatment options are limited; hence, the search for new therapeutic approaches continues. Electromagnetic fields (EMFs) affect a wide variety of biological processes and accumulating evidence shows their potential as a treatment for ischemic stroke. Based on their characteristics, they can be divided into stationary, pulsed, and sinusoidal EMF. The aim of this review is to provide an extensive literature overview ranging from in vitro to even clinical studies within the field of ischemic stroke of all EMF types. A thorough comparison between EMF types and their effects is provided, as well as an overview of the signal pathways activated in cell types relevant for ischemic stroke such as neurons, microglia, astrocytes, and endothelial cells. We also discuss which steps have to be taken to improve their therapeutic efficacy in the frame of the clinical translation of this promising therapy.
Collapse
Affiliation(s)
- Amanda Moya Gómez
- UHasselt Hasselt University, BIOMED, Diepenbeek, Belgium.,Department of Biomedical Engineering, Faculty of Telecommunications, Informatics and Biomedical Engineering, Universidad de Oriente, Santiago de Cuba, Cuba
| | - Lena Pérez Font
- Centro Nacional de Electromagnetismo Aplicado, Universidad de Oriente, Santiago de Cuba, Cuba
| | - Bert Brône
- UHasselt Hasselt University, BIOMED, Diepenbeek, Belgium
| | | |
Collapse
|
5
|
Rauš Balind S, Manojlović-Stojanoski M, Šošić-Jurjević B, Selaković V, Milošević V, Petković B. An Extremely Low Frequency Magnetic Field and Global Cerebral Ischemia Affect Pituitary ACTH and TSH Cells in Gerbils. Bioelectromagnetics 2019; 41:91-103. [PMID: 31828821 DOI: 10.1002/bem.22237] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2018] [Accepted: 11/28/2019] [Indexed: 11/10/2022]
Abstract
The neuroendocrine system can be modulated by a magnetic field and cerebral ischemia as external and internal stressors, respectively. This study deals with the separate or combined effects of an extremely low frequency (ELF) magnetic field (50 Hz, average magnetic field of 0.5 mT) for 7 days and global cerebral ischemia for 10 min on the morpho-functional features of pituitary adrenocorticotrophic (ACTH) and thyrotrophic (TSH) cells in 3-month-old gerbils. To determine the immediate and delayed effects of the applied stressors, measurements were made on the 7th and 14th days after the onset of the experiment. The ELF magnetic field and 10-min global cerebral ischemia, separately and particularly in combination, decreased (P < 0.05) the volume density of ACTH cells, while only in combination were intracellular ACTH content and plasma ACTH concentration increased (P < 0.05) on day 7. The ELF magnetic field elevated serum TSH concentration on day 7 and intracellular TSHβ content on day 14 (P < 0.05). Also, 10-min global cerebral ischemia alone increased serum TSH concentration (P < 0.05), while in combination with the ELF magnetic field it elevated (P < 0.05) intracellular TSHβ content on day 14. In conclusion, an ELF magnetic field and/or 10-min global cerebral ischemia can induce immediate and delayed stimulation of ACTH and TSH synthesis and secretion. Bioelectromagnetics. 2020;41:91-103. © 2019 Bioelectromagnetics Society.
Collapse
Affiliation(s)
- Snežana Rauš Balind
- Department of Neurophysiology, Institute for Biological Research "Siniša Stanković"-National Institute of Republic of Serbia, University of Belgrade, Belgrade, Serbia
| | - Milica Manojlović-Stojanoski
- Department of Cytology, Institute for Biological Research "Siniša Stanković"-National Institute of Republic of Serbia, University of Belgrade, Belgrade, Serbia
| | - Branka Šošić-Jurjević
- Department of Cytology, Institute for Biological Research "Siniša Stanković"-National Institute of Republic of Serbia, University of Belgrade, Belgrade, Serbia
| | - Vesna Selaković
- Institute for Medical Research, Military Medical Academy (MMA), Medical Faculty MMA, University of Defence, Belgrade, Serbia
| | - Verica Milošević
- Department of Cytology, Institute for Biological Research "Siniša Stanković"-National Institute of Republic of Serbia, University of Belgrade, Belgrade, Serbia
| | - Branka Petković
- Department of Neurophysiology, Institute for Biological Research "Siniša Stanković"-National Institute of Republic of Serbia, University of Belgrade, Belgrade, Serbia
| |
Collapse
|
6
|
Karimi SA, Salehi I, Shykhi T, Zare S, Komaki A. Effects of exposure to extremely low-frequency electromagnetic fields on spatial and passive avoidance learning and memory, anxiety-like behavior and oxidative stress in male rats. Behav Brain Res 2019; 359:630-638. [DOI: 10.1016/j.bbr.2018.10.002] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2018] [Revised: 09/14/2018] [Accepted: 10/01/2018] [Indexed: 12/11/2022]
|
7
|
Wang S, Feng D, Li Y, Wang Y, Sun X, Li X, Li C, Chen Z, Du X. The different baseline characteristics of cognitive behavior test between Mongolian gerbils and rats. Behav Brain Res 2018; 352:28-34. [PMID: 28963044 DOI: 10.1016/j.bbr.2017.09.042] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2017] [Revised: 09/19/2017] [Accepted: 09/25/2017] [Indexed: 02/07/2023]
Abstract
The Mongolian gerbil is a popular laboratory animal useful across many research fields. In the area of cognitive behavioral research the gerbil have been shown exhibit an anxiety-like profile on the elevated plus-maze, and they could be useful as an animal model for testing anxiolytics and antidepressants. However, there are few reports that thoroughly describe the behavioral characteristics of the gerbils in common cognitive behavior tests. In the present study, we used 7 behavior tests to detect the baseline characteristics of the gerbils and compare them to the Sprague Dawley rats. Collectively, the gerbils showed significantly different behavior characteristics in the open field test, elevated plus maze, grip strength, social interaction and fear conditioning compared to the rats. However, no difference was found between gerbils and rats in sucrose preference or Barnes maze test. The data showed that the Mongolian gerbil exhibited higher social interaction and exploratory activity, but lower conditioning fear and grip strength compared with the rats. These results indicate that the gerbil may be a sensitive animal model in behavioral brain research particularly in the areas of anxiety and fear.
Collapse
Affiliation(s)
- Shiyuan Wang
- School of Basic Medical Sciences, Capital Medical University, Beijing, 100069, China
| | - Dandan Feng
- School of Basic Medical Sciences, Capital Medical University, Beijing, 100069, China
| | - Yinyin Li
- School of Basic Medical Sciences, Capital Medical University, Beijing, 100069, China
| | - Ying Wang
- School of Basic Medical Sciences, Capital Medical University, Beijing, 100069, China; Department of Laboratory Animal, Capital Medical University, Beijing, 100069, China
| | - Xiuping Sun
- Institute of Laboratory Animal Sciences, Cams&Pumc, Beijing, 100021, China
| | - Xianglei Li
- Institute of Laboratory Animal Sciences, Cams&Pumc, Beijing, 100021, China
| | - Changlong Li
- School of Basic Medical Sciences, Capital Medical University, Beijing, 100069, China
| | - Zhenwen Chen
- School of Basic Medical Sciences, Capital Medical University, Beijing, 100069, China
| | - Xiaoyan Du
- School of Basic Medical Sciences, Capital Medical University, Beijing, 100069, China; Department of Laboratory Animal, Capital Medical University, Beijing, 100069, China.
| |
Collapse
|
8
|
Ya BL, Li HF, Wang HY, Wu F, Xin Q, Cheng HJ, Li WJ, Lin N, Ba ZH, Zhang RJ, Liu Q, Li YN, Bai B, Ge F. 5-HMF attenuates striatum oxidative damage via Nrf2/ARE signaling pathway following transient global cerebral ischemia. Cell Stress Chaperones 2017; 22:55-65. [PMID: 27812888 PMCID: PMC5225060 DOI: 10.1007/s12192-016-0742-0] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2016] [Revised: 10/10/2016] [Accepted: 10/11/2016] [Indexed: 12/20/2022] Open
Abstract
Recent studies have shown 5-hydroxymethyl-2-furfural (5-HMF) has favorable biological effects, and its neuroprotection in a variety of neurological diseases has been noted. Our previous study showed that treatment of 5-HMF led to protection against permanent global cerebral ischemia. However, the underlying mechanisms in cerebral ischemic injury are not fully understood. This study was conducted to investigate the neuroprotective effect of 5-HMF and elucidate the nuclear factor erythroid 2-related factor 2 (Nrf2)/antioxidant response element (ARE) signaling pathway mechanism in the striatum after transient global cerebral ischemia. C57BL/6 mice were subjected to bilateral common carotid artery occlusion for 20 min and sacrificed 24 h after reperfusion. 5-HMF (12 mg/kg) or an equal volume of vehicle was intraperitoneally injected 30 min before ischemia and 5 min after the onset of reperfusion. At 24 h after reperfusion, neurological function was evaluated by neurological disability status scale, locomotor activity test and inclined beam walking test. Histological injury of the striatum was observed by cresyl violet staining and terminal deoxynucleotidyl transferase (TdT)-mediated dNTP nick end labeling (TUNEL) staining. Oxidative stress was evaluated by the carbonyl groups introduced into proteins, and malondialdehyde (MDA) levels. An enzyme-linked immunosorbent assay (ELISA)-based measurement was used to detect Nrf2 DNA binding activity. Nrf2 and its downstream ARE pathway protein expression such as heme oxygenase-1, NAD (P)H:quinone oxidoreductase 1, glutamate-cysteine ligase catalytic subunit and glutamate-cysteine ligase modulatory subunit were detected by western blot. Our results showed that 5-HMF treatment significantly ameliorated neurological deficits, reduced brain water content, attenuated striatum neuronal damage, decreased the carbonyl groups and MDA levels, and activated Nrf2/ARE signaling pathway. Taken together, these results demonstrated that 5-HMF exerted significant antioxidant and neuroprotective effects following transient cerebral ischemia, possibly through the activation of the Nrf2/ARE signaling pathway.
Collapse
Affiliation(s)
- Bai-Liu Ya
- Department of Physiology, Jining Medical University, 16 He-hua Street, Bei-hu District, Jining, Shandong, 272067, People's Republic of China
| | - Hong-Fang Li
- Department of Neurology, Affiliated Hospital of Jining Medical University, Jining, Shandong, 272129, People's Republic of China
| | - Hai-Ying Wang
- Department of Physiology, Jining Medical University, 16 He-hua Street, Bei-hu District, Jining, Shandong, 272067, People's Republic of China
| | - Fei Wu
- Department of Physiology, Jining Medical University, 16 He-hua Street, Bei-hu District, Jining, Shandong, 272067, People's Republic of China
| | - Qing Xin
- Department of Physiology, Jining Medical University, 16 He-hua Street, Bei-hu District, Jining, Shandong, 272067, People's Republic of China
| | - Hong-Ju Cheng
- Department of Physiology, Jining Medical University, 16 He-hua Street, Bei-hu District, Jining, Shandong, 272067, People's Republic of China
| | - Wen-Juan Li
- School of Forensic and Laboratory Medicine, Jining Medical University, Jining, Shandong, 272067, People's Republic of China
| | - Na Lin
- Department of Physiology, Jining Medical University, 16 He-hua Street, Bei-hu District, Jining, Shandong, 272067, People's Republic of China
| | - Zai-Hua Ba
- Department of Physiology, Jining Medical University, 16 He-hua Street, Bei-hu District, Jining, Shandong, 272067, People's Republic of China
| | - Ru-Juan Zhang
- Jining First People's Hospital, Jining, Shandong, 272011, People's Republic of China
| | - Qian Liu
- School of Clinical Medicine, Jining Medical University, Jining, Shandong, 272067, People's Republic of China
| | - Ya-Nan Li
- School of Clinical Medicine, Jining Medical University, Jining, Shandong, 272067, People's Republic of China
| | - Bo Bai
- Department of Physiology, Jining Medical University, 16 He-hua Street, Bei-hu District, Jining, Shandong, 272067, People's Republic of China
| | - Feng Ge
- Department of Physiology, Jining Medical University, 16 He-hua Street, Bei-hu District, Jining, Shandong, 272067, People's Republic of China.
| |
Collapse
|
9
|
Kumar S, Dey S, Jain S. Extremely low-frequency electromagnetic fields: A possible non-invasive therapeutic tool for spinal cord injury rehabilitation. Electromagn Biol Med 2016; 36:88-101. [PMID: 27399648 DOI: 10.1080/15368378.2016.1194290] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Traumatic insults to the spinal cord induce both immediate mechanical damage and subsequent tissue degeneration. The latter involves a range of events namely cellular disturbance, homeostatic imbalance, ionic and neurotransmitters derangement that ultimately result in loss of sensorimotor functions. The targets for improving function after spinal cord injury (SCI) are mainly directed toward limiting these secondary injury events. Extremely low-frequency electromagnetic field (ELF-EMF) is a possible non-invasive therapeutic intervention for SCI rehabilitation which has the potential to constrain the secondary injury-induced events. In the present review, we discuss the effects of ELF-EMF on experimental and clinical SCI as well as on biological system.
Collapse
Affiliation(s)
- Suneel Kumar
- a Department of Physiology , All India Institute of Medical Sciences , New Delhi , India.,b W. M. Keck Center for Collaborative Neuroscience, Rutgers, The State University of New Jersey , Piscataway , NJ , USA
| | - Soumil Dey
- a Department of Physiology , All India Institute of Medical Sciences , New Delhi , India
| | - Suman Jain
- a Department of Physiology , All India Institute of Medical Sciences , New Delhi , India
| |
Collapse
|
10
|
Trifunović S, Manojlović-Stojanoski M, Ristić N, Jurijević BŠ, Balind SR, Brajković G, Perčinić-Popovska F, Milošević V. Effects of prolonged alcohol exposure on somatotrophs and corticotrophs in adult rats: Stereological and hormonal study. Acta Histochem 2016; 118:353-60. [PMID: 27017477 DOI: 10.1016/j.acthis.2016.03.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2015] [Revised: 03/14/2016] [Accepted: 03/16/2016] [Indexed: 10/22/2022]
Abstract
Exposure to alcohol alters many physiological processes, including endocrine status. The present study examined whether prolonged alcohol (A) exposure could modulate selected stereological and hormonal aspects of pituitary somatotrophs (growth hormone-GH cells) and corticotrophs (adrenocorticotropic hormone-ACTH cells) in adult rats. Changes in pituitary gland volume; the volume density, total number and volume of GH and ACTH cells following alcohol exposure were evaluated using a stereological system (newCAST), while peripheral GH and ACTH levels were determined biochemically. Our results demonstrated the reduction (p<0.05) of the volume density (37%) and volume of GH cells (29%) in the group A. Also, there was a tendency for the total number of GH cells to be smaller in the group A. Serum GH level was significantly decreased (p<0.05; 70%) in the group A when compared to control values. Moreover, prolonged alcohol exposure induced declines (p<0.05) in volume density (24%) and volume of ACTH cells (29%). The total number of ACTH cells and ACTH level were higher (p<0.05; 42%) in the group A than in control rats. Collectively, these results indicate that prolonged alcohol exposure leads not only to changes in GH and ACTH hormone levels, but also to alterations of the morphological aspects of GH and ACTH cells within the pituitary.
Collapse
|
11
|
Rauš Balind S, Manojlović-Stojanoski M, Milošević V, Todorović D, Nikolić L, Petković B. Short- and long-term exposure to alternating magnetic field (50 Hz, 0.5 mT) affects rat pituitary ACTH cells: Stereological study. ENVIRONMENTAL TOXICOLOGY 2016; 31:461-468. [PMID: 25346405 DOI: 10.1002/tox.22059] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2014] [Revised: 09/19/2014] [Accepted: 10/01/2014] [Indexed: 06/04/2023]
Abstract
The aim of the present study was to determine does extremely low frequency magnetic field (ELF-MF, 50 Hz, 0.5 mT) affect pituitary adrenocorticotroph (ACTH) cells in adult animals. We performed two series of experiments: (1) short-term exposure of 3-month-old rats to ELF-MF for 1 and 7 days, and (2) long-term exposure of rats to ELF-MF from their conception to 3 months of age. Stereological study was performed on immunolabeled pituitary ACTH cells. The total number and volume of ACTH cells, the volume of their nuclei and pituitary volume were measured. ELF-MF exposure for 1 day significantly decreased total number and volume of ACTH cells, the volume of their nuclei, as well as pituitary volume. ELF-MF exposure for 7 days significantly reduced only the volume of ACTH cells. Life-long exposure to ELF-MF induced decrease in the volume of ACTH cells and pituitary volume. We can conclude that the applied ELF-MF has a strong influence on morphometrical parameters of the pituitary ACTH cells and could be considered as a stressogenic factor.
Collapse
Affiliation(s)
- Snežana Rauš Balind
- Institute for Biological Research Siniša Stanković, University of Belgrade, Belgrade, Serbia
| | | | - Verica Milošević
- Institute for Biological Research Siniša Stanković, University of Belgrade, Belgrade, Serbia
| | - Dajana Todorović
- Institute for Biological Research Siniša Stanković, University of Belgrade, Belgrade, Serbia
| | - Ljiljana Nikolić
- Institute for Biological Research Siniša Stanković, University of Belgrade, Belgrade, Serbia
| | - Branka Petković
- Institute for Biological Research Siniša Stanković, University of Belgrade, Belgrade, Serbia
| |
Collapse
|
12
|
Lai J, Zhang Y, Liu X, Zhang J, Ruan G, Chaugai S, Chen C, Wang DW. Effects of extremely low frequency electromagnetic fields (100μT) on behaviors in rats. Neurotoxicology 2015; 52:104-13. [PMID: 26593281 PMCID: PMC7127835 DOI: 10.1016/j.neuro.2015.11.010] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2015] [Revised: 10/20/2015] [Accepted: 11/17/2015] [Indexed: 11/16/2022]
Abstract
Prolonged exposure to ELF-EMF has no effect on the behavior of the adult male rats. Including anxiety/depression like behavior, and spatial/fear learning and memory. Exposure to ELF-EMF might be safe.
Recently, extremely low frequency electromagnetic fields (ELF-EMF) have received considerable attentions for their potential pathogenicity. In the present study, we explored the effects of ELF-EMF on behaviors of adult male rats. Sixty adult male rats were randomly divided into two groups, the sham exposure group and the 50 Hz/100 μT ELF-EMF exposure group. During the 24 weeks exposure, body weight, as well as food and water intake were recorded. Results showed that food and water intake and the body weight of the rats were not affected by the exposure. After 24 weeks exposure, open field test and elevated plus maze were conducted to evaluate the anxiety-like behavior, the tail suspension test and forced swim test were conducted to evaluate depression-like behavior and Morris water maze and fear conditioning tests were used to evaluate the cognitive and memory ability. Exposure to ELF-EMF did not induce any anxiety-like or depression-like behaviors compared with the sham exposure. Moreover, the cognitive and memory ability was not impaired by the ELF-EMF exposure. Furthermore, ELF-EMF exposure did not affect the morphology and histology of the brain. In conclusion, 24 weeks exposure to 50 Hz/100 μT ELF-EMF had no effect on the behaviors of the adult male rats.
Collapse
Affiliation(s)
- Jinsheng Lai
- Department of Internal Medicine and Gene Therapy Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, People's Republic of China
| | - Yemao Zhang
- High Voltage Research Institute, China Electric Power Research Institute, Wuhan 430074, People's Republic of China
| | - Xingfa Liu
- High Voltage Research Institute, China Electric Power Research Institute, Wuhan 430074, People's Republic of China
| | - Jiangong Zhang
- High Voltage Research Institute, China Electric Power Research Institute, Wuhan 430074, People's Republic of China
| | - Guoran Ruan
- Department of Internal Medicine and Gene Therapy Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, People's Republic of China
| | - Sandip Chaugai
- Department of Internal Medicine and Gene Therapy Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, People's Republic of China
| | - Chen Chen
- Department of Internal Medicine and Gene Therapy Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, People's Republic of China.
| | - Dao Wen Wang
- Department of Internal Medicine and Gene Therapy Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, People's Republic of China
| |
Collapse
|
13
|
Belyaev I, Dean A, Eger H, Hubmann G, Jandrisovits R, Johansson O, Kern M, Kundi M, Lercher P, Mosgöller W, Moshammer H, Müller K, Oberfeld G, Ohnsorge P, Pelzmann P, Scheingraber C, Thill R. EUROPAEM EMF Guideline 2015 for the prevention, diagnosis and treatment of EMF-related health problems and illnesses. REVIEWS ON ENVIRONMENTAL HEALTH 2015; 30:337-371. [PMID: 26613329 DOI: 10.1515/reveh-2015-0033] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2015] [Accepted: 10/13/2015] [Indexed: 06/05/2023]
Abstract
Chronic diseases and illnesses associated with unspecific symptoms are on the rise. In addition to chronic stress in social and work environments, physical and chemical exposures at home, at work, and during leisure activities are causal or contributing environmental stressors that deserve attention by the general practitioner as well as by all other members of the health care community. It seems certainly necessary now to take "new exposures" like electromagnetic field (EMF) into account. Physicians are increasingly confronted with health problems from unidentified causes. Studies, empirical observations, and patient reports clearly indicate interactions between EMF exposure and health problems. Individual susceptibility and environmental factors are frequently neglected. New wireless technologies and applications have been introduced without any certainty about their health effects, raising new challenges for medicine and society. For instance, the issue of so-called non-thermal effects and potential long-term effects of low-dose exposure were scarcely investigated prior to the introduction of these technologies. Common EMF sources include Wi-Fi access points, routers and clients, cordless and mobile phones including their base stations, Bluetooth devices, ELF magnetic fields from net currents, ELF electric fields from electric lamps and wiring close to the bed and office desk. On the one hand, there is strong evidence that long-term-exposure to certain EMF exposures is a risk factor for diseases such as certain cancers, Alzheimer's disease and male infertility. On the other hand, the emerging electromagnetic hypersensitivity (EHS) is more and more recognized by health authorities, disability administrators and case workers, politicians, as well as courts of law. We recommend treating EHS clinically as part of the group of chronic multisystem illnesses (CMI) leading to a functional impairment (EHS), but still recognizing that the underlying cause remains the environment. In the beginning, EHS symptoms often occur only occasionally, but over time they may increase in frequency and severity. Common EHS symptoms include headaches, concentration difficulties, sleeping problems, depression, lack of energy, fatigue and flu-like symptoms. A comprehensive medical history, which should include all symptoms and their occurrences in spatial and temporal terms and in the context of EMF exposures, is the key to the diagnosis. The EMF exposure can be assessed by asking for typical sources like Wi-Fi access points, routers and clients, cordless and mobile phones and measurements at home and at work. It is very important to take the individual susceptibility into account. The primary method of treatment should mainly focus on the prevention or reduction of EMF exposure, that is, reducing or eliminating all sources of EMF at home and in the workplace. The reduction of EMF exposure should also be extended to public spaces such as schools, hospitals, public transport, and libraries to enable persons with EHS an unhindered use (accessibility measure). If a detrimental EMF exposure is reduced sufficiently, the body has a chance to recover and EHS symptoms will be reduced or even disappear. Many examples have shown that such measures can prove effective. Also the survival rate of children with leukemia depends on ELF magnetic field exposure at home. To increase the effectiveness of the treatment, the broad range of other environmental factors that contribute to the total body burden should also be addressed. Anything that supports a balanced homeostasis will increase a person's resilience against disease and thus against the adverse effects of EMF exposure. There is increasing evidence that EMF exposure has a major impact on the oxidative and nitrosative regulation capacity in affected individuals. This concept also may explain why the level of susceptibility to EMF can change and why the number of symptoms reported in the context of EMF exposures is so large. Based on our current understanding, a treatment approach that minimizes the adverse effects of peroxynitrite - as has been increasingly used in the treatment of multisystem disorders - works best. This EMF Guideline gives an overview of the current knowledge regarding EMF-related health risks and provides concepts for the diagnosis and treatment and accessibility measures of EHS to improve and restore individual health outcomes as well as for the development of strategies for prevention.
Collapse
|
14
|
Chung YH, Lee YJ, Lee HS, Chung SJ, Lim CH, Oh KW, Sohn UD, Park ES, Jeong JH. Extremely low frequency magnetic field modulates the level of neurotransmitters. THE KOREAN JOURNAL OF PHYSIOLOGY & PHARMACOLOGY : OFFICIAL JOURNAL OF THE KOREAN PHYSIOLOGICAL SOCIETY AND THE KOREAN SOCIETY OF PHARMACOLOGY 2014; 19:15-20. [PMID: 25605992 PMCID: PMC4297757 DOI: 10.4196/kjpp.2015.19.1.15] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/02/2014] [Revised: 10/27/2014] [Accepted: 11/22/2014] [Indexed: 12/02/2022]
Abstract
This study was aimed to observe that extremely low frequency magnetic field (ELF-MF) may be relevant to changes of major neurotransmitters in rat brain. After the exposure to ELF-MF (60 Hz, 2.0 mT) for 2 or 5 days, we measured the levels of biogenic amines and their metabolites, amino acid neurotransmitters and nitric oxide (NO) in the cortex, striatum, thalamus, cerebellum and hippocampus. The exposure of ELF-MF for 2 or 5 days produced significant differences in norepinephrine and vanillyl mandelic acid in the striatum, thalamus, cerebellum and hippocampus. Significant increases in the levels of serotonin and 5-hydroxyindoleacetic acid were also observed in the striatum, thalamus or hippocampus. ELF-MF significantly increased the concentration of dopamine in the thalamus. ELF-MF tended to increase the levels of amino acid neurotransmitters such as glutamine, glycine and γ -aminobutyric acid in the striatum and thalamus, whereas it decreased the levels in the cortex, cerebellum and hippocampus. ELF-MF significantly increased NO concentration in the striatum, thalamus and hippocampus. The present study has demonstrated that exposure to ELF-MFs may evoke the changes in the levels of biogenic amines, amino acid and NO in the brain although the extent and property vary with the brain areas. However, the mechanisms remain further to be characterized.
Collapse
Affiliation(s)
- Yoon Hee Chung
- Department of Anatomy, College of Medicine, Chung-Ang University, Seoul 156-756, Korea
| | - Young Joo Lee
- Department of Pharmacology, College of Medicine, Chung-Ang University, Seoul 156-756, Korea
| | - Ho Sung Lee
- Department of Pharmacology, College of Medicine, Chung-Ang University, Seoul 156-756, Korea
| | - Su Jin Chung
- Department of Pharmacology, College of Medicine, Chung-Ang University, Seoul 156-756, Korea
| | - Cheol Hee Lim
- Department of Pharmacology, College of Medicine, Chung-Ang University, Seoul 156-756, Korea
| | | | - Uy Dong Sohn
- Department of Pharmacology, College of Pharmacy, Chung-Ang University, Seoul 156-756, Korea
| | - Eon Sub Park
- Department of Pathology, College of Medicine, Chung-Ang University, Seoul 156-756, Korea
| | - Ji Hoon Jeong
- Department of Pharmacology, College of Medicine, Chung-Ang University, Seoul 156-756, Korea
| |
Collapse
|
15
|
Saliev T, Mustapova Z, Kulsharova G, Bulanin D, Mikhalovsky S. Therapeutic potential of electromagnetic fields for tissue engineering and wound healing. Cell Prolif 2014; 47:485-93. [PMID: 25319486 DOI: 10.1111/cpr.12142] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2014] [Accepted: 08/01/2014] [Indexed: 01/07/2023] Open
Abstract
Ability of electromagnetic fields (EMF) to stimulate cell proliferation and differentiation has attracted the attention of many laboratories specialized in regenerative medicine over the past number of decades. Recent studies have shed light on bio-effects induced by the EMF and how they might be harnessed to help control tissue regeneration and wound healing. Number of recent reports suggests that EMF has a positive impact at different stages of healing. Processes impacted by EMF include, but are not limited to, cell migration and proliferation, expression of growth factors, nitric oxide signalling, cytokine modulation, and more. These effects have been detected even during application of low frequencies (range: 30-300 kHz) and extremely low frequencies (range: 3-30 Hz). In this regard, special emphasis of this review is the applications of extremely low-frequency EMFs due to their bio-safety and therapeutic efficacy. The article also discusses combinatorial effect of EMF and mesenchymal stem cells for treatment of neurodegenerative diseases and bone tissue engineering. In addition, we discuss future perspectives of application of EMF for tissue engineering and use of metal nanoparticles activated by EMF for drug delivery and wound dressing.
Collapse
Affiliation(s)
- T Saliev
- Department of Regenerative Medicine and Artificial Organs, Centre for Life Sciences, Nazarbayev University, Astana, 010000, Kazakhstan; Institute for Medical Sciences and Technology, University of Dundee, Dundee, DD2 1FD, UK
| | | | | | | | | |
Collapse
|
16
|
Expression of neurogranin in hippocampus of rat offspring exposed to restraint stress and pulsed magnetic fields. Brain Res 2014; 1570:26-34. [DOI: 10.1016/j.brainres.2014.05.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2014] [Revised: 04/28/2014] [Accepted: 05/02/2014] [Indexed: 11/23/2022]
|
17
|
Dimitrijević D, Savić T, Anđelković M, Prolić Z, Janać B. Extremely low frequency magnetic field (50 Hz, 0.5 mT) modifies fitness components and locomotor activity ofDrosophila subobscura. Int J Radiat Biol 2014; 90:337-43. [DOI: 10.3109/09553002.2014.888105] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
18
|
Rauš Balind S, Selaković V, Radenović L, Prolić Z, Janać B. Extremely low frequency magnetic field (50 Hz, 0.5 mT) reduces oxidative stress in the brain of gerbils submitted to global cerebral ischemia. PLoS One 2014; 9:e88921. [PMID: 24586442 PMCID: PMC3929496 DOI: 10.1371/journal.pone.0088921] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2013] [Accepted: 01/16/2014] [Indexed: 11/04/2022] Open
Abstract
Magnetic field as ecological factor has influence on all living beings. The aim of this study was to determine if extremely low frequency magnetic field (ELF-MF, 50 Hz, 0.5 mT) affects oxidative stress in the brain of gerbils submitted to 10-min global cerebral ischemia. After occlusion of both carotid arteries, 3-month-old gerbils were continuously exposed to ELF-MF for 7 days. Nitric oxide and superoxide anion production, superoxide dismutase activity and index of lipid peroxidation were examined in the forebrain cortex, striatum and hippocampus on the 7th (immediate effect of ELF-MF) and 14th day after reperfusion (delayed effect of ELF-MF). Ischemia per se increased oxidative stress in the brain on the 7th and 14th day after reperfusion. ELF-MF also increased oxidative stress, but to a greater extent than ischemia, only immediately after cessation of exposure. Ischemic gerbils exposed to ELF-MF had increased oxidative stress parameters on the 7th day after reperfusion, but to a lesser extent than ischemic or ELF-MF-exposed animals. On the 14th day after reperfusion, oxidative stress parameters in the brain of these gerbils were mostly at the control levels. Applied ELF-MF decreases oxidative stress induced by global cerebral ischemia and thereby reduces possible negative consequences which free radical species could have in the brain. The results presented here indicate a beneficial effect of ELF-MF (50 Hz, 0.5 mT) in the model of global cerebral ischemia.
Collapse
Affiliation(s)
- Snežana Rauš Balind
- Institute for Biological Research, University of Belgrade, Belgrade, Serbia
- * E-mail:
| | - Vesna Selaković
- Institute for Medical Research, Military Medical Academy, Belgrade, Serbia
| | - Lidija Radenović
- Department of Physiology and Biochemistry, Faculty of Biology, University of Belgrade, Belgrade, Serbia
| | - Zlatko Prolić
- Institute for Biological Research, University of Belgrade, Belgrade, Serbia
| | - Branka Janać
- Institute for Biological Research, University of Belgrade, Belgrade, Serbia
| |
Collapse
|
19
|
Rauš S, Selaković V, Manojlović-Stojanoski M, Radenović L, Prolić Z, Janać B. Response of hippocampal neurons and glial cells to alternating magnetic field in gerbils submitted to global cerebral ischemia. Neurotox Res 2012; 23:79-91. [PMID: 22669750 DOI: 10.1007/s12640-012-9333-8] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2012] [Revised: 05/07/2012] [Accepted: 05/17/2012] [Indexed: 12/19/2022]
Abstract
The purpose of this study was to determine whether exposure to an extremely low-frequency magnetic field (ELF-MF, 50 Hz) affects the outcome of postischemic damage in the hippocampus of Mongolian gerbils. After 10-min bilateral carotid occlusion, the gerbils were continuously exposed to ELF-MF (average magnetic induction at the center of the cage was 0.5 mT) for 7 days. The impact of ELF-MF was estimated immediately (the 7th day after reperfusion) and 7 days after cessation of exposure (the 14th day after reperfusion) compared with ischemic gerbils without ELF-MF exposure. Applying stereological methods, histological evaluation of changes in the hippocampus was done for determining its volume, volume densities of degenerating neurons and astrocytes, as well as the number of microglial cells per unit area. ELF-MF per se did not induce any morphological changes, while 10-min global cerebral ischemia led to neuronal death, especially in CA1 region of the hippocampus, as expected. Ischemic gerbils exposed to ELF-MF had significantly a lower degree of cell loss in the examined structure and greater responses of astrocytes and microglial cells than postischemic gerbils without exposure on the seventh day after reperfusion (immediate effect of ELF-MF). Similar response was observed on the 14th day after reperfusion (delayed effect of ELF-MF); however, differences in measured parameters were low and insignificant. Applied ELF-MF has possible neuroprotective function in the hippocampus, as the most sensitive brain structure in the model of global cerebral ischemia, through reduction of neuronal death and activation of astrocytes and microglial cells.
Collapse
Affiliation(s)
- Snežana Rauš
- Institute for Biological Research, University of Belgrade, Despota Stefana Blvd. 142, 11060 Belgrade, Serbia.
| | | | | | | | | | | |
Collapse
|