1
|
Li B, Zhang X, Qiao N, Chen J, Bi W, Zhi W, Ma L, Miao C, Wang L, Zou Y, Hu X. A real-time working memory evaluation system for macaques in microwave fields. Bioelectromagnetics 2024. [PMID: 39099158 DOI: 10.1002/bem.22519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Revised: 06/14/2024] [Accepted: 07/12/2024] [Indexed: 08/06/2024]
Abstract
With the development and widespread application of electromagnetic technology, the health hazards of electromagnetic radiation have attracted much attention and concern. The effect of electromagnetic radiation on the nervous system, especially on learning, memory, and cognitive functions, is an important research topic in the field of electromagnetic biological effects. Most previous studies were conducted with rodents, which are relatively mature. As research has progressed, studies using non-human primates as experimental subjects have been carried out. Compared to rodents, non-human primates such as macaques not only have brain structures more similar to those of humans but also exhibit learning and memory processes that are similar. In this paper, we present a behavioral test system for the real-time evaluation of the working memory (WM) of macaques in a microwave environment. The system consists of two parts: hardware and software. The hardware consists of four modules: the operation terminal, the control terminal, the optical signal transmission, and detection module and the reward feedback module. The software program can implement the feeding learning task, the button-pressing learning task, and the delayed match-to-sample task. The device is useful for the real-time evaluation of the WM of macaques in microwave environments, showing good electromagnetic compatibility, a simple and reliable structure, and easy operation.
Collapse
Affiliation(s)
- Bowen Li
- Beijing Institute of Radiation Medicine, Beijing, China
- College of Education, Hebei University, Baoding, China
| | - Xueyan Zhang
- Beijing Institute of Dental Research, Beijing Stomatological Hospital and School of Stomatology, Capital Medical University, Beijing, China
| | - Nan Qiao
- Beijing Institute of Radiation Medicine, Beijing, China
| | - Jiawei Chen
- Beijing Institute of Radiation Medicine, Beijing, China
| | - Weijie Bi
- Beijing Institute of Radiation Medicine, Beijing, China
| | - Weijia Zhi
- Beijing Institute of Radiation Medicine, Beijing, China
| | - Lizhen Ma
- Beijing Institute of Radiation Medicine, Beijing, China
| | - Congcong Miao
- Beijing Institute of Dental Research, Beijing Stomatological Hospital and School of Stomatology, Capital Medical University, Beijing, China
| | - Lifeng Wang
- Beijing Institute of Radiation Medicine, Beijing, China
| | - Yong Zou
- Beijing Institute of Radiation Medicine, Beijing, China
| | - Xiangjun Hu
- Beijing Institute of Radiation Medicine, Beijing, China
| |
Collapse
|
2
|
Upright NA, Baxter MG. Prefrontal cortex and cognitive aging in macaque monkeys. Am J Primatol 2021; 83:e23250. [PMID: 33687098 DOI: 10.1002/ajp.23250] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2020] [Revised: 02/17/2021] [Accepted: 02/21/2021] [Indexed: 11/11/2022]
Abstract
Cognitive impairments that accompany aging, even in the absence of neurodegenerative diseases, include deficits in executive function and memory mediated by the prefrontal cortex. Because of the unique differentiation and expansion of the prefrontal cortex in primates, investigations of the neurobiological basis of cognitive aging in nonhuman primates have been particularly informative about the potential basis for age-related cognitive decline in humans. We review the cognitive functions mediated by specific subregions of prefrontal cortex, and their corresponding connections, as well as the evidence for age-related alterations in specific regions of prefrontal cortex. We also discuss evidence for similarities and differences in the effects of aging on prefrontal cortex across species.
Collapse
Affiliation(s)
- Nicholas A Upright
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Mark G Baxter
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| |
Collapse
|
3
|
Moore TL, Bowley B, Shultz P, Calderazzo S, Shobin E, Killiany RJ, Rosene DL, Moss MB. Chronic curcumin treatment improves spatial working memory but not recognition memory in middle-aged rhesus monkeys. GeroScience 2017; 39:571-584. [PMID: 29047012 PMCID: PMC5745216 DOI: 10.1007/s11357-017-9998-2] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2017] [Accepted: 10/02/2017] [Indexed: 12/15/2022] Open
Abstract
Studies of both humans and non-human primates have demonstrated that aging is typically characterized by a decline in cognition that can occur as early as the fifth decade of life. Age-related changes in working memory are particularly evident and mediated, in part, by the prefrontal cortex, an area known to evidence age-related changes in myelin that is attributed to inflammation. In recent years, several nutraceuticals, including curcumin, by virtue of their anti-inflammatory and antioxidant effects, have received considerable attention as potential treatments for age-related cognitive decline and inflammation. Accordingly, we assessed for the first time in a non-human primate model of normal aging the efficacy of dietary intervention using the natural phenol curcumin to ameliorate the effects of aging on spatial working and recognition memory. Results revealed that monkeys receiving daily administration of curcumin over 14-18 months demonstrated a greater improvement in performance on repeated administration of a task of spatial working memory compared to monkeys that received a control substance.
Collapse
Affiliation(s)
- Tara L Moore
- Department of Anatomy & Neurobiology, Boston University School of Medicine, 72 E. Concord Street, L-1004, Boston, MA, 02118, USA.
- Department of Neurology, Boston University School of Medicine, 725 Albany Street, Boston, MA, 02118, USA.
| | - Bethany Bowley
- Department of Anatomy & Neurobiology, Boston University School of Medicine, 72 E. Concord Street, L-1004, Boston, MA, 02118, USA
| | - Penny Shultz
- Department of Anatomy & Neurobiology, Boston University School of Medicine, 72 E. Concord Street, L-1004, Boston, MA, 02118, USA
| | - Samantha Calderazzo
- Department of Anatomy & Neurobiology, Boston University School of Medicine, 72 E. Concord Street, L-1004, Boston, MA, 02118, USA
| | - Eli Shobin
- Department of Anatomy & Neurobiology, Boston University School of Medicine, 72 E. Concord Street, L-1004, Boston, MA, 02118, USA
- Graduate Program in Neuroscience, Boston University School of Medicine, 72 E. Concord Street, Boston, MA, 02118, USA
| | - Ronald J Killiany
- Department of Anatomy & Neurobiology, Boston University School of Medicine, 72 E. Concord Street, L-1004, Boston, MA, 02118, USA
- Department of Neurology, Boston University School of Medicine, 725 Albany Street, Boston, MA, 02118, USA
| | - Douglas L Rosene
- Department of Anatomy & Neurobiology, Boston University School of Medicine, 72 E. Concord Street, L-1004, Boston, MA, 02118, USA
- Yerkes National Primate Research Center, Emory University, 201 Dowman Drive, Atlanta, GA, 30322, USA
| | - Mark B Moss
- Department of Anatomy & Neurobiology, Boston University School of Medicine, 72 E. Concord Street, L-1004, Boston, MA, 02118, USA
- Department of Neurology, Boston University School of Medicine, 725 Albany Street, Boston, MA, 02118, USA
- Yerkes National Primate Research Center, Emory University, 201 Dowman Drive, Atlanta, GA, 30322, USA
| |
Collapse
|
4
|
Schneider JS, Williams C, Ault M, Guilarte TR. Effects of chronic manganese exposure on attention and working memory in non-human primates. Neurotoxicology 2015; 48:217-22. [PMID: 25917687 DOI: 10.1016/j.neuro.2015.04.004] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2015] [Revised: 04/16/2015] [Accepted: 04/16/2015] [Indexed: 11/30/2022]
Abstract
Manganese (Mn) is essential for a variety of physiological processes, but at elevated levels, can be neurotoxic. While cognitive dysfunction has been recently appreciated to occur as a result of chronic Mn exposures, it is still unclear as to which cognitive domains are most susceptible to disruption by Mn exposure. We previously described early appearing Mn-induced changes in performance on a paired associate learning task in monkeys chronically exposed to Mn and suggested that performance of this task might be a sensitive tool for detecting cognitive dysfunction resulting from Mn exposure. As chronic Mn exposure has been suggested to be associated with attention, working memory and executive function deficits, the present study was conducted to assess the extent to which detrimental effects of chronic Mn exposure could be detected using tasks specifically designed to preferentially assess attention, working memory, and executive function. Six cynomolgus monkeys received Mn exposure over an approximate 12 month period and three served as control animals. All animals were trained to perform a self-ordered spatial search (SOSS) task and a five choice serial reaction time (5-CSRT) task. Deficits in performance of the SOSS task began to appear by the fourth month of Mn exposure but only became consistently significantly impaired beginning at the ninth month of Mn exposure. Performance on the 5-CSRT became significantly affected by the third month of Mn exposure. These data suggest that in addition to the paired associate learning task, cognitive processing speed (as measured by the 5-CSRT) may be a sensitive measure of Mn toxicity and that brain circuits involved in performance of the SOSS task may be somewhat less sensitive to disruption by chronic Mn exposure.
Collapse
Affiliation(s)
- J S Schneider
- Department of Pathology, Anatomy and Cell Biology, Thomas Jefferson University, Philadelphia, PA, United States.
| | - C Williams
- Department of Pathology, Anatomy and Cell Biology, Thomas Jefferson University, Philadelphia, PA, United States
| | - M Ault
- Department of Pathology, Anatomy and Cell Biology, Thomas Jefferson University, Philadelphia, PA, United States
| | - T R Guilarte
- Department of Environmental Health Sciences, Mailman School of Public Health, Columbia University, New York, NY, United States
| |
Collapse
|