1
|
Unfolding the cognitive map: The role of hippocampal and extra-hippocampal substrates based on a systems analysis of spatial processing. Neurobiol Learn Mem 2018; 147:90-119. [DOI: 10.1016/j.nlm.2017.11.012] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2017] [Revised: 11/17/2017] [Accepted: 11/21/2017] [Indexed: 01/03/2023]
|
2
|
Foote MM, Careaga M, Berman RF. What has been learned from mouse models of the Fragile X Premutation and Fragile X-associated tremor/ataxia syndrome? Clin Neuropsychol 2016; 30:960-72. [PMID: 27355912 DOI: 10.1080/13854046.2016.1158254] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
OBJECTIVE To describe in this review how research using mouse models developed to study the Fragile X premutation (PM) and Fragile X-associated tremor/ataxia syndrome (FXTAS) have contributed to understanding these disorders. PM carriers bear an expanded CGG trinucleotide repeat on the Fragile X Mental Retardation 1 (FMR1) gene, and are at risk for developing the late onset neurodegenerative disorder FXTAS. CONCLUSIONS Much has been learned about these genetic disorders from the development and study of mouse models. This includes new insights into the early cellular and molecular events that occur in PM carriers and in FXTAS, the presence of multiorgan pathology beyond the CNS, immunological dysregulation, unexpected synthesis of a potentially toxic peptide in FXTAS (i.e., FMRpolyG), and evidence that the disease process may be halted or reversed by appropriate molecular therapies given early in the course of disease.
Collapse
Affiliation(s)
- Molly M Foote
- a Department of Neurological Surgery , University of California Davis , Davis , CA , USA
| | - Milo Careaga
- b Department of Psychiatry and UC Davis M.I.N.D. Institute , University of California Davis , Davis , CA , USA
| | - Robert F Berman
- c Department of Neurological Surgery and the UC Davis M.I.N.D. Institute , University of California Davis , Davis , CA , USA
| |
Collapse
|
3
|
Wong LM, Tassone F, Rivera SM, Simon TJ. Temporal dynamics of attentional selection in adult male carriers of the fragile X premutation allele and adult controls. Front Hum Neurosci 2015; 9:37. [PMID: 25698960 PMCID: PMC4318336 DOI: 10.3389/fnhum.2015.00037] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2014] [Accepted: 01/14/2015] [Indexed: 11/13/2022] Open
Abstract
Carriers of the fragile X premutation allele (fXPCs) have an expanded CGG trinucleotide repeat size within the FMR1 gene and are at increased risk of developing fragile x-associated tremor/ataxia syndrome (FXTAS). Previous research has shown that male fXPCs with FXTAS exhibit cognitive decline, predominantly in executive functions such as inhibitory control and working memory. Recent evidence suggests fXPCs may also exhibit impairments in processing temporal information. The attentional blink (AB) task is often used to examine the dynamics of attentional selection, but disagreements exist as to whether the AB is due to excessive or insufficient attentional control. In this study, we used a variant of the AB task and neuropsychological testing to explore the dynamics of attentional selection, relate AB performance to attentional control, and determine whether fXPCs exhibited temporal and/or attentional control impairments. Participants were adult male fXPCs, aged 18–48 years and asymptomatic for FXTAS (n = 19) and age-matched male controls (n = 20). We found that fXPCs did not differ from controls in the AB task, indicating that the temporal dynamics of attentional selection were intact. However, they were impaired in the letter-number sequencing task, a test of executive working memory. In the combined fXPC and control group, letter-number sequencing performance correlated positively with AB magnitude. This finding supports models that posit the AB is due to excess attentional control. In our two-pronged analysis approach, in control participants we replicated a previously observed effect and demonstrated that it persists under more stringent theoretical constraints, and we enhance our understanding of fXPCs by demonstrating that at least some aspects of temporal processing may be spared.
Collapse
Affiliation(s)
- Ling M Wong
- MIND Institute, University of California Davis School of Medicine Sacramento, CA, USA ; Department of Psychiatry and Behavioral Sciences, University of California Davis School of Medicine Sacramento, CA, USA
| | - Flora Tassone
- MIND Institute, University of California Davis School of Medicine Sacramento, CA, USA ; Department of Biochemistry and Molecular Medicine, University of California Davis School of Medicine Sacramento, CA, USA
| | - Susan M Rivera
- MIND Institute, University of California Davis School of Medicine Sacramento, CA, USA ; Department of Psychology, University of California Davis Davis, CA, USA ; Center for Mind and Brain, University of California Davis Davis, CA, USA
| | - Tony J Simon
- MIND Institute, University of California Davis School of Medicine Sacramento, CA, USA ; Department of Psychiatry and Behavioral Sciences, University of California Davis School of Medicine Sacramento, CA, USA
| |
Collapse
|
4
|
|
5
|
Wong LM, Goodrich-Hunsaker NJ, McLennan Y, Tassone F, Zhang M, Rivera SM, Simon TJ. Eye movements reveal impaired inhibitory control in adult male fragile X premutation carriers asymptomatic for FXTAS. Neuropsychology 2014; 28:571-584. [PMID: 24773414 DOI: 10.1037/neu0000066] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
OBJECTIVE Fragile X premutation carriers (fXPCs) have an expansion of 55-200 CGG repeats in the FMR1 gene. Male fXPCs are at risk for developing a neurodegenerative motor disorder (FXTAS) often accompanied by inhibitory control impairments, even in fXPCs without motor symptoms. Inhibitory control impairments might precede, and thus indicate elevated risk for motor impairment associated with FXTAS. We tested whether inhibitory impairments are observable in fXPCs by assessing oculomotor performance. METHOD Participants were males aged 18-48 years asymptomatic for FXTAS. FXPCs (n = 21) and healthy age-matched controls (n = 22) performed four oculomotor tasks. In a Fixation task, participants fixated on a central cross and maintained gaze position when a peripheral stimulus appeared. In a Pursuit task, participants maintained gaze on a square moving at constant velocity. In a Prosaccade task, participants fixated on a central cross, then looked at a peripheral stimulus. An Antisaccade task was identical to the Prosaccade task, except participants looked in the direction opposite the stimulus. Inhibitory cost was the difference in saccade latency between the Antisaccade and Prosaccade tasks. RESULTS Relative to controls, fXPCs had longer saccade latency in the Antisaccade task. In fXPCs, inhibitory cost was positively associated with vermis area in lobules VI-VII. CONCLUSION Antisaccades require inhibitory control to inhibit reflexive eye movements. We found that eye movements are sensitive to impaired inhibitory control in fXPCs asymptomatic for FXTAS. Thus, eye movements may be useful in assessing FXTAS risk or disease progression.
Collapse
Affiliation(s)
- Ling M Wong
- Department of Psychiatry and Behavioral Sciences, University of California, Davis Medical Center
| | | | - Yingratana McLennan
- Department of Psychiatry and Behavioral Sciences, University of California, Davis Medical Center
| | - Flora Tassone
- Department of Biochemistry and Molecular Medicine, University of California, Davis Medical Center
| | - Melody Zhang
- Department of Neurobiology, Physiology, and Behavior, University of California, Davis
| | - Susan M Rivera
- Department of Psychology, University of California, Davis
| | - Tony J Simon
- Department of Psychiatry and Behavioral Sciences, University of California, Davis Medical Center
| |
Collapse
|
6
|
von Leden RE, Curley LC, Greenberg GD, Hunsaker MR, Willemsen R, Berman RF. Reduced activity-dependent protein levels in a mouse model of the fragile X premutation. Neurobiol Learn Mem 2014; 109:160-8. [PMID: 24462720 DOI: 10.1016/j.nlm.2014.01.011] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2013] [Revised: 01/13/2014] [Accepted: 01/16/2014] [Indexed: 11/26/2022]
Abstract
Environmental enrichment results in increased levels of Fmrp in brain and increased dendritic complexity. The present experiment evaluated activity-dependent increases in Fmrp levels in the motor cortex in response to training on a skilled forelimb reaching task in the CGG KI mouse model of the fragile X premutation. Fmrp, Arc, and c-Fos protein levels were quantified by Western blot in the contralateral motor cortex of mice following training to reach for sucrose pellets with a non-preferred paw and compared to levels in the ipsilateral motor cortex. After training, all mice showed increases in Fmrp, Arc, and c-Fos protein levels in the contralateral compared to the ipsilateral hemisphere; however, the increase in CGG KI mice was less than wildtype mice. Increases in Fmrp and Arc proteins scaled with learning, whereas this relationship was not observed with the c-Fos levels. These data suggest the possibility that reduced levels of activity-dependent proteins associated with synaptic plasticity such as Fmrp and Arc may contribute to the neurocognitive phenotype reported in the CGG KI mice and the fragile X premutation.
Collapse
Affiliation(s)
- Ramona E von Leden
- Department of Neurological Surgery, School of Medicine, University of California, Davis, Davis, CA, USA
| | - Lindsey C Curley
- Department of Neurological Surgery, School of Medicine, University of California, Davis, Davis, CA, USA
| | - Gian D Greenberg
- Department of Psychology, University of California, Davis, Davis, CA, USA
| | - Michael R Hunsaker
- Department of Neurological Surgery, School of Medicine, University of California, Davis, Davis, CA, USA.
| | - Rob Willemsen
- CBG-Department of Clinical Genetics, Erasmus MC, Rotterdam, The Netherlands; NeuroTherapeutic Research Institute, University of California, Davis, Davis, CA, USA
| | - Robert F Berman
- Department of Neurological Surgery, School of Medicine, University of California, Davis, Davis, CA, USA; NeuroTherapeutic Research Institute, University of California, Davis, Davis, CA, USA
| |
Collapse
|
7
|
Kim SY, Tassone F, Simon TJ, Rivera SM. Altered neural activity in the 'when' pathway during temporal processing in fragile X premutation carriers. Behav Brain Res 2014; 261:240-8. [PMID: 24398265 DOI: 10.1016/j.bbr.2013.12.044] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2013] [Revised: 12/11/2013] [Accepted: 12/23/2013] [Indexed: 10/25/2022]
Abstract
Mutations of the fragile X mental retardation 1 (FMR1) gene are the genetic cause of fragile X syndrome (FXS). Large expansions of the CGG repeat (>200 repeats) consequently result in transcriptional silencing of the FMR1 gene and deficiency/absence of the FMR1 protein (FMRP). Carriers with a premutation allele (55-200 of CGG repeats) are often associated with mildly reduced levels of FMRP and/or elevated levels of FMR1 mRNA. Recent studies have shown that infants with FXS exhibit severely reduced resolution of temporal attention, whereas spatial resolution of attention is not impaired. Following from these findings in the full mutation, the current study used fMRI to examine whether premutation carriers would exhibit atypical temporal processing at behavioral and/or neural levels. Using spatial and temporal working memory (SWM and TWM) tasks, separately tagging spatial and temporal processing, we demonstrated that neurotypical adults showed greater activation in the 'when pathway' (i.e., the right temporoparietal junction: TPJ) during TWM retrieval than SWM retrieval. However, premutation carriers failed to show this increased involvement of the right TPJ during retrieval of temporal information. Further, multiple regression analyses on right TPJ activation and FMR1 gene expression (i.e., CGG repeat size and FMR1 mRNA) suggests that elevated FMR1 mRNA level is a powerful predictor accounting for reduced right TPJ activation associated with temporal processing in premutation carriers. In conclusion, the current study provides the first evidence on altered neural correlates of temporal processing in adults with the premutation, explained by their FMR1 gene expression.
Collapse
Affiliation(s)
- So-Yeon Kim
- Center for Mind and Brain, University of California, Davis, USA; MIND Institute, University of California, Davis, USA; Department of Psychiatry and Behavioral Sciences, University of California, Davis, USA
| | - Flora Tassone
- MIND Institute, University of California, Davis, USA
| | - Tony J Simon
- MIND Institute, University of California, Davis, USA; Department of Psychiatry and Behavioral Sciences, University of California, Davis, USA
| | - Susan M Rivera
- Center for Mind and Brain, University of California, Davis, USA; MIND Institute, University of California, Davis, USA; Department of Psychology, University of California, Davis, USA.
| |
Collapse
|
8
|
Wong LM, Goodrich-Hunsaker NJ, McLennan YA, Tassone F, Rivera SM, Simon TJ. A cross-sectional analysis of orienting of visuospatial attention in child and adult carriers of the fragile X premutation. J Neurodev Disord 2014; 6:45. [PMID: 25937844 PMCID: PMC4416306 DOI: 10.1186/1866-1955-6-45] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/16/2013] [Accepted: 11/15/2014] [Indexed: 11/13/2022] Open
Abstract
Background Fragile X premutation carriers (fXPCs) have an expansion of 55–200 CGG repeats in the FMR1 gene. Male fXPCs are at risk for developing a neurodegenerative motor disorder (fragile X-associated tremor/ataxia syndrome (FXTAS)) often accompanied by cognitive decline. Several broad domains are implicated as core systems of dysfunction in fXPCs, including perceptual processing of spatial information, orienting of attention to space, and inhibiting attention to irrelevant distractors. We tested whether orienting of spatial attention is impaired in fXPCs. Methods Participants were fXPCs or healthy controls (HCs) asymptomatic for FXTAS. In experiment 1, they were male and female children and adults (aged 7–45 years). They oriented attention in response to volitional (endogenous) and reflexive (exogenous) cues. In experiment 2, the participants were men (aged 18–48 years). They oriented attention in an endogenous cueing task that manipulated the amount of information in the cue. Results In women, fXPCs exhibited slower reaction times than HCs in both the endogenous and exogenous conditions. In men, fXPCs exhibited slower reaction times than HCs in the exogenous condition and in the challenging endogenous cueing task with probabilistic cues. In children, fXPCs did not differ from HCs. Conclusions Because adult fXPCs were slower even when controlling for psychomotor speed, results support the interpretation that a core dysfunction in fXPCs is the allocation of spatial attention, while perceptual processing and attention orienting are intact. These findings indicate the importance of considering age and sex when interpreting and generalizing studies of fXPCs.
Collapse
Affiliation(s)
- Ling M Wong
- Davis Medical Center, MIND Institute, University of California, Sacramento, CA 95817 USA ; War Related Illness and Injury Study Center, Veterans Affairs Medical Center, Washington, DC 20422 USA
| | | | - Yingratana A McLennan
- Davis Medical Center, MIND Institute, University of California, Sacramento, CA 95817 USA
| | - Flora Tassone
- Davis Medical Center, MIND Institute, University of California, Sacramento, CA 95817 USA ; Department of Biochemistry and Molecular Medicine, University of California, Davis Medical Center, Sacramento, CA 95817 USA
| | - Susan M Rivera
- Davis Medical Center, MIND Institute, University of California, Sacramento, CA 95817 USA ; Department of Psychology, University of California, Davis, CA 95616 USA ; Center for Mind and Brain, University of California, Davis, CA 95616 USA
| | - Tony J Simon
- Davis Medical Center, MIND Institute, University of California, Sacramento, CA 95817 USA ; Department of Psychiatry and Behavioral Sciences, University of California, Davis Medical Center, Sacramento, CA 95817 USA
| |
Collapse
|
9
|
Hunsaker MR. Neurocognitive endophenotypes in CGG KI and Fmr1 KO mouse models of Fragile X-Associated disorders: an analysis of the state of the field. F1000Res 2013; 2:287. [PMID: 24627796 PMCID: PMC3945770 DOI: 10.12688/f1000research.2-287.v1] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 12/23/2013] [Indexed: 12/31/2022] Open
Abstract
It has become increasingly important that the field of behavioral genetics identifies not only the gross behavioral phenotypes associated with a given mutation, but also the behavioral endophenotypes that scale with the dosage of the particular mutation being studied. Over the past few years, studies evaluating the effects of the polymorphic CGG trinucleotide repeat on the
FMR1 gene underlying Fragile X-Associated Disorders have reported preliminary evidence for a behavioral endophenotype in human Fragile X Premutation carrier populations as well as the CGG knock-in (KI) mouse model. More recently, the behavioral experiments used to test the CGG KI mouse model have been extended to the
Fmr1 knock-out (KO) mouse model. When combined, these data provide compelling evidence for a clear neurocognitive endophenotype in the mouse models of Fragile X-Associated Disorders such that behavioral deficits scale predictably with genetic dosage. Similarly, it appears that the CGG KI mouse effectively models the histopathology in Fragile X-Associated Disorders across CGG repeats well into the full mutation range, resulting in a reliable histopathological endophenotype. These endophenotypes may influence future research directions into treatment strategies for not only Fragile X Syndrome, but also the Fragile X Premutation and Fragile X-Associated Tremor/Ataxia Syndrome (FXTAS).
Collapse
Affiliation(s)
- Michael R Hunsaker
- Scientific Computing and Imaging Institute, University of Utah, Salt Lake City, UT, USA
| |
Collapse
|
10
|
Fragile X-associated tremor/ataxia syndrome (FXTAS): pathology and mechanisms. Acta Neuropathol 2013; 126:1-19. [PMID: 23793382 DOI: 10.1007/s00401-013-1138-1] [Citation(s) in RCA: 104] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2013] [Accepted: 05/30/2013] [Indexed: 12/17/2022]
Abstract
Since its discovery in 2001, our understanding of fragile X-associated tremor/ataxia syndrome (FXTAS) has undergone a remarkable transformation. Initially characterized rather narrowly as an adult-onset movement disorder, the definition of FXTAS is broadening; moreover, the disorder is now recognized as only one facet of a much broader clinical pleiotropy among children and adults who carry premutation alleles of the FMR1 gene. Furthermore, the intranuclear inclusions of FXTAS, once thought to be a CNS-specific marker of the disorder, are now known to be widely distributed in multiple non-CNS tissues; this observation fundamentally changes our concept of the disease, and may provide the basis for understanding the diverse medical problems associated with the premutation. Recent work on the pathogenic mechanisms underlying FXTAS indicates that the origins of the late-onset neurodegenerative disorder actually lie in early development, raising the likelihood that all forms of clinical involvement among premutation carriers have a common underlying mechanistic basis. There has also been great progress in our understanding of the triggering event(s) in FXTAS pathogenesis, which is now thought to involve sequestration of one or more nuclear proteins involved with microRNA biogenesis. Moreover, there is mounting evidence that mitochondrial dysregulation contributes to the decreased cell function and loss of viability, evident in mice even during the neonatal period. Taken together, these recent findings offer hope for early interventions for FXTAS, well before the onset of overt disease, and for the treatment of other forms of clinical involvement among premutation carriers.
Collapse
|
11
|
Neurobehavioural evidence for the involvement of the FMR1 gene in female carriers of fragile X syndrome. Neurosci Biobehav Rev 2013; 37:522-47. [DOI: 10.1016/j.neubiorev.2013.01.010] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2012] [Revised: 12/11/2012] [Accepted: 01/06/2013] [Indexed: 12/19/2022]
|
12
|
Young adult male carriers of the fragile X premutation exhibit genetically modulated impairments in visuospatial tasks controlled for psychomotor speed. J Neurodev Disord 2012; 4:26. [PMID: 23148490 PMCID: PMC3506571 DOI: 10.1186/1866-1955-4-26] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/23/2012] [Accepted: 10/25/2012] [Indexed: 02/04/2023] Open
Abstract
Background A previous study reported enhanced psychomotor speed, and subtle but significant cognitive impairments, modulated by age and by mutations in the fragile X mental retardation 1 (FMR1) gene in adult female fragile X premutation carriers (fXPCs). Because male carriers, unlike females, do not have a second, unaffected FMR1 allele, male fXPCs should exhibit similar, if not worse, impairments. Understanding male fXPCs is of particular significance because of their increased risk of developing fragile X-associated tremor/ataxia syndrome (FXTAS). Methods Male fXPCs (n = 18) and healthy control (HC) adults (n = 26) aged less than 45 years performed two psychomotor speed tasks (manual and oral) and two visuospatial tasks (magnitude comparison and enumeration). In the magnitude comparison task, participants were asked to compare and judge which of two bars was larger. In the enumeration task, participants were shown between one and eight green bars in the center of the screen, and asked to state the total number displayed. Enumeration typically proceeds in one of two modes: subitizing, a fast and accurate process that works only with a small set of items, and counting, which requires accurate serial-object detection and individuation during visual search. We examined the associations between the performance on all tasks and the age, full-scale intelligent quotient, and CGG repeat length of participants. Results We found that in the magnitude comparison and enumeration tasks, male fXPCs exhibited slower reaction times relative to HCs, even after controlling for simple reaction time. Conclusions Our results indicate that male fXPCs as a group show impairments (slower reaction times) in numerical visuospatial tasks, which are consistent with previous findings. This adds to a growing body of literature characterizing the phenotype in fXPCs who are asymptomatic for FXTAS. Future longitudinal studies are needed to determine how these impairments relate to risk of developing FXTAS.
Collapse
|