1
|
Mari S, Lecomte CG, Merlet AN, Audet J, Yassine S, Arab RA, Harnie J, Rybak IA, Prilutsky BI, Frigon A. Changes in intra- and interlimb reflexes from forelimb cutaneous afferents after staggered thoracic lateral hemisections during locomotion in cats. J Physiol 2024. [PMID: 39340178 DOI: 10.1113/jp286808] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Accepted: 09/05/2024] [Indexed: 09/30/2024] Open
Abstract
In quadrupeds, such as cats, cutaneous afferents from the forepaw dorsum signal external perturbations and send inputs to spinal circuits to co-ordinate the activity in muscles of all four limbs. How these cutaneous reflex pathways from forelimb afferents are reorganized after an incomplete spinal cord injury is not clear. Using a staggered thoracic lateral hemisections paradigm, we investigated changes in intralimb and interlimb reflex pathways by electrically stimulating the left and right superficial radial nerves in seven adult cats and recording reflex responses in five forelimb and ten hindlimb muscles. After the first (right T5-T6) and second (left T10-T11) hemisections, forelimb-hindlimb co-ordination was altered and weakened. After the second hemisection, cats required balance assistance to perform quadrupedal locomotion. Short-, mid- and long-latency homonymous and crossed reflex responses in forelimb muscles and their phase modulation remained largely unaffected after staggered hemisections. The occurrence of homolateral and diagonal mid- and long-latency responses in hindlimb muscles evoked with left and right superficial radial nerve stimulation was significantly reduced at the first time point after the first hemisection, but partially recovered at the second time point with left superficial radial nerve stimulation. These responses were lost or reduced after the second hemisection. When present, all reflex responses, including homolateral and diagonal, maintained their phase-dependent modulation. Therefore, our results show a considerable loss in cutaneous reflex transmission from cervical to lumbar levels after incomplete spinal cord injury, albeit with preservation of phase modulation, probably affecting functional responses to external perturbations. KEY POINTS: Cutaneous afferent inputs co-ordinate muscle activity in the four limbs during locomotion when the forepaw dorsum contacts an obstacle. Thoracic spinal cord injury disrupts communication between spinal locomotor centres located at cervical and lumbar levels, impairing balance and limb co-ordination. We investigated cutaneous reflexes from forelimb afferents during quadrupedal locomotion by electrically stimulating the superficial radial nerve bilaterally, before and after staggered lateral thoracic hemisections in cats. We showed a loss/reduction of mid- and long-latency homolateral and diagonal reflex responses in hindlimb muscles early after the first hemisection that partially recovered with left superficial radial nerve stimulation, before being reduced after the second hemisection. Targeting cutaneous reflex pathways from forelimb afferents projecting to the four limbs could help develop therapeutic approaches aimed at restoring transmission in ascending and descending spinal pathways.
Collapse
Affiliation(s)
- Stephen Mari
- Department of Pharmacology-Physiology, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Centre de recherche du Centre Hospitalier Universitaire de Sherbrooke, Sherbrooke, QC, Canada
| | - Charly G Lecomte
- Department of Pharmacology-Physiology, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Centre de recherche du Centre Hospitalier Universitaire de Sherbrooke, Sherbrooke, QC, Canada
| | - Angèle N Merlet
- Department of Pharmacology-Physiology, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Centre de recherche du Centre Hospitalier Universitaire de Sherbrooke, Sherbrooke, QC, Canada
| | - Johannie Audet
- Department of Pharmacology-Physiology, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Centre de recherche du Centre Hospitalier Universitaire de Sherbrooke, Sherbrooke, QC, Canada
| | - Sirine Yassine
- Department of Pharmacology-Physiology, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Centre de recherche du Centre Hospitalier Universitaire de Sherbrooke, Sherbrooke, QC, Canada
| | - Rasha Al Arab
- Department of Pharmacology-Physiology, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Centre de recherche du Centre Hospitalier Universitaire de Sherbrooke, Sherbrooke, QC, Canada
| | - Jonathan Harnie
- Department of Pharmacology-Physiology, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Centre de recherche du Centre Hospitalier Universitaire de Sherbrooke, Sherbrooke, QC, Canada
| | - Ilya A Rybak
- Department of Neurobiology and Anatomy, Drexel University College of Medicine, Philadelphia, PA, USA
| | - Boris I Prilutsky
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA, USA
| | - Alain Frigon
- Department of Pharmacology-Physiology, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Centre de recherche du Centre Hospitalier Universitaire de Sherbrooke, Sherbrooke, QC, Canada
| |
Collapse
|
2
|
Mari S, Lecomte CG, Merlet AN, Audet J, Yassine S, Eddaoui O, Genois G, Nadeau C, Harnie J, Rybak IA, Prilutsky BI, Frigon A. Changes in intra- and interlimb reflexes from hindlimb cutaneous afferents after staggered thoracic lateral hemisections during locomotion in cats. J Physiol 2024; 602:1987-2017. [PMID: 38593215 PMCID: PMC11068482 DOI: 10.1113/jp286151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Accepted: 03/04/2024] [Indexed: 04/11/2024] Open
Abstract
When the foot dorsum contacts an obstacle during locomotion, cutaneous afferents signal central circuits to coordinate muscle activity in the four limbs. Spinal cord injury disrupts these interactions, impairing balance and interlimb coordination. We evoked cutaneous reflexes by electrically stimulating left and right superficial peroneal nerves before and after two thoracic lateral hemisections placed on opposite sides of the cord at 9- to 13-week interval in seven adult cats (4 males and 3 females). We recorded reflex responses in ten hindlimb and five forelimb muscles bilaterally. After the first (right T5-T6) and second (left T10-T11) hemisections, coordination of the fore- and hindlimbs was altered and/or became less consistent. After the second hemisection, cats required balance assistance to perform quadrupedal locomotion. Short-latency reflex responses in homonymous and crossed hindlimb muscles largely remained unaffected after staggered hemisections. However, mid- and long-latency homonymous and crossed responses in both hindlimbs occurred less frequently after staggered hemisections. In forelimb muscles, homolateral and diagonal mid- and long-latency response occurrence significantly decreased after the first and second hemisections. In all four limbs, however, when present, short-, mid- and long-latency responses maintained their phase-dependent modulation. We also observed reduced durations of short-latency inhibitory homonymous responses in left hindlimb extensors early after the first hemisection and delayed short-latency responses in the right ipsilesional hindlimb after the first hemisection. Therefore, changes in cutaneous reflex responses correlated with impaired balance/stability and interlimb coordination during locomotion after spinal cord injury. Restoring reflex transmission could be used as a biomarker to facilitate locomotor recovery. KEY POINTS: Cutaneous afferent inputs coordinate muscle activity in the four limbs during locomotion when the foot dorsum contacts an obstacle. Thoracic spinal cord injury disrupts communication between spinal locomotor centres located at cervical and lumbar levels, impairing balance and limb coordination. We investigated cutaneous reflexes during quadrupedal locomotion by electrically stimulating the superficial peroneal nerve bilaterally, before and after staggered lateral thoracic hemisections of the spinal cord in cats. We showed a loss/reduction of mid- and long-latency responses in all four limbs after staggered hemisections, which correlated with altered coordination of the fore- and hindlimbs and impaired balance. Targeting cutaneous reflex pathways projecting to the four limbs could help develop therapeutic approaches aimed at restoring transmission in ascending and descending spinal pathways.
Collapse
Affiliation(s)
- Stephen Mari
- Department of Pharmacology-Physiology, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Centre de recherche du Centre Hospitalier Universitaire de Sherbrooke, Sherbrooke, QC, Canada
| | - Charly G. Lecomte
- Department of Pharmacology-Physiology, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Centre de recherche du Centre Hospitalier Universitaire de Sherbrooke, Sherbrooke, QC, Canada
| | - Angèle N. Merlet
- Department of Pharmacology-Physiology, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Centre de recherche du Centre Hospitalier Universitaire de Sherbrooke, Sherbrooke, QC, Canada
| | - Johannie Audet
- Department of Pharmacology-Physiology, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Centre de recherche du Centre Hospitalier Universitaire de Sherbrooke, Sherbrooke, QC, Canada
| | - Sirine Yassine
- Department of Pharmacology-Physiology, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Centre de recherche du Centre Hospitalier Universitaire de Sherbrooke, Sherbrooke, QC, Canada
| | - Oussama Eddaoui
- Department of Pharmacology-Physiology, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Centre de recherche du Centre Hospitalier Universitaire de Sherbrooke, Sherbrooke, QC, Canada
| | - Gabriel Genois
- Department of Pharmacology-Physiology, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Centre de recherche du Centre Hospitalier Universitaire de Sherbrooke, Sherbrooke, QC, Canada
| | - Charlène Nadeau
- Department of Pharmacology-Physiology, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Centre de recherche du Centre Hospitalier Universitaire de Sherbrooke, Sherbrooke, QC, Canada
| | - Jonathan Harnie
- Department of Pharmacology-Physiology, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Centre de recherche du Centre Hospitalier Universitaire de Sherbrooke, Sherbrooke, QC, Canada
| | - Ilya A. Rybak
- Department of Neurobiology and Anatomy, Drexel University College of Medicine, Philadelphia, PA, United States
| | - Boris I. Prilutsky
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA, United States
| | - Alain Frigon
- Department of Pharmacology-Physiology, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Centre de recherche du Centre Hospitalier Universitaire de Sherbrooke, Sherbrooke, QC, Canada
| |
Collapse
|
3
|
Mari S, Lecomte CG, Merlet AN, Audet J, Yassine S, Eddaoui O, Genois G, Nadeau C, Harnie J, Rybak IA, Prilutsky BI, Frigon A. Changes in intra- and interlimb reflexes from hindlimb cutaneous afferents after staggered thoracic lateral hemisections during locomotion in cats. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.12.15.571869. [PMID: 38168183 PMCID: PMC10760189 DOI: 10.1101/2023.12.15.571869] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2024]
Abstract
When the foot dorsum contacts an obstacle during locomotion, cutaneous afferents signal central circuits to coordinate muscle activity in the four limbs. Spinal cord injury disrupts these interactions, impairing balance and interlimb coordination. We evoked cutaneous reflexes by electrically stimulating left and right superficial peroneal nerves before and after two thoracic lateral hemisections placed on opposite sides of the cord at 9-13 weeks interval in seven adult cats (4 males and 3 females). We recorded reflex responses in ten hindlimb and five forelimb muscles bilaterally. After the first (right T5-T6) and second (left T10-T11) hemisections, coordination of the fore- and hindlimbs was altered and/or became less consistent. After the second hemisection, cats required balance assistance to perform quadrupedal locomotion. Short-latency reflex responses in homonymous and crossed hindlimb muscles largely remained unaffected after staggered hemisections. However, mid- and long-latency homonymous and crossed responses in both hindlimbs occurred less frequently after staggered hemisections. In forelimb muscles, homolateral and diagonal mid- and long-latency response occurrence significantly decreased after the first and second hemisections. In all four limbs, however, when present, short-, mid- and long-latency responses maintained their phase-dependent modulation. We also observed reduced durations of short-latency inhibitory homonymous responses in left hindlimb extensors early after the first hemisection and delayed short-latency responses in the right ipsilesional hindlimb after the first hemisection. Therefore, changes in cutaneous reflex responses correlated with impaired balance/stability and interlimb coordination during locomotion after spinal cord injury. Restoring reflex transmission could be used as a biomarker to facilitate locomotor recovery.
Collapse
Affiliation(s)
- Stephen Mari
- Department of Pharmacology-Physiology, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Centre de recherche du Centre Hospitalier Universitaire de Sherbrooke, Sherbrooke, QC, Canada
| | - Charly G. Lecomte
- Department of Pharmacology-Physiology, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Centre de recherche du Centre Hospitalier Universitaire de Sherbrooke, Sherbrooke, QC, Canada
| | - Angèle N. Merlet
- Department of Pharmacology-Physiology, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Centre de recherche du Centre Hospitalier Universitaire de Sherbrooke, Sherbrooke, QC, Canada
| | - Johannie Audet
- Department of Pharmacology-Physiology, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Centre de recherche du Centre Hospitalier Universitaire de Sherbrooke, Sherbrooke, QC, Canada
| | - Sirine Yassine
- Department of Pharmacology-Physiology, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Centre de recherche du Centre Hospitalier Universitaire de Sherbrooke, Sherbrooke, QC, Canada
| | - Oussama Eddaoui
- Department of Pharmacology-Physiology, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Centre de recherche du Centre Hospitalier Universitaire de Sherbrooke, Sherbrooke, QC, Canada
| | - Gabriel Genois
- Department of Pharmacology-Physiology, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Centre de recherche du Centre Hospitalier Universitaire de Sherbrooke, Sherbrooke, QC, Canada
| | - Charlène Nadeau
- Department of Pharmacology-Physiology, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Centre de recherche du Centre Hospitalier Universitaire de Sherbrooke, Sherbrooke, QC, Canada
| | - Jonathan Harnie
- Department of Pharmacology-Physiology, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Centre de recherche du Centre Hospitalier Universitaire de Sherbrooke, Sherbrooke, QC, Canada
| | - Ilya A. Rybak
- Department of Neurobiology and Anatomy, Drexel University College of Medicine, Philadelphia, PA, United States
| | - Boris I. Prilutsky
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA, United States
| | - Alain Frigon
- Department of Pharmacology-Physiology, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Centre de recherche du Centre Hospitalier Universitaire de Sherbrooke, Sherbrooke, QC, Canada
| |
Collapse
|
4
|
Audet J, Yassine S, Lecomte CG, Mari S, Soucy F, Morency C, Merlet AN, Harnie J, Beaulieu C, Gendron L, Rybak IA, Prilutsky BI, Frigon A. Spinal Sensorimotor Circuits Play a Prominent Role in Hindlimb Locomotor Recovery after Staggered Thoracic Lateral Hemisections but Cannot Restore Posture and Interlimb Coordination during Quadrupedal Locomotion in Adult Cats. eNeuro 2023; 10:ENEURO.0191-23.2023. [PMID: 37328297 PMCID: PMC10288532 DOI: 10.1523/eneuro.0191-23.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 06/05/2023] [Accepted: 06/06/2023] [Indexed: 06/18/2023] Open
Abstract
Spinal sensorimotor circuits interact with supraspinal and peripheral inputs to generate quadrupedal locomotion. Ascending and descending spinal pathways ensure coordination between the forelimbs and hindlimbs. Spinal cord injury (SCI) disrupts these pathways. To investigate the control of interlimb coordination and hindlimb locomotor recovery, we performed two lateral thoracic hemisections on opposite sides of the cord (right T5-T6 and left T10-T11) at an interval of approximately two months in eight adult cats. In three cats, the spinal cord was transected at T12-T13. We collected electromyography (EMG) and kinematic data during quadrupedal and hindlimb-only locomotion before and after spinal lesions. We show that (1) cats spontaneously recover quadrupedal locomotion following staggered hemisections but require balance assistance after the second one, (2) coordination between the forelimbs and hindlimbs displays 2:1 patterns (two cycles of one forelimb within one hindlimb cycle) and becomes weaker and more variable after both hemisections, (3) left-right asymmetries in hindlimb stance and swing durations appear after the first hemisection and reverse after the second, and (4) support periods reorganize after staggered hemisections to favor support involving both forelimbs and diagonal limbs. Cats expressed hindlimb locomotion the day following spinal transection, indicating that lumbar sensorimotor circuits play a prominent role in hindlimb locomotor recovery after staggered hemisections. These results reflect a series of changes in spinal sensorimotor circuits that allow cats to maintain and recover some level of quadrupedal locomotor functionality with diminished motor commands from the brain and cervical cord, although the control of posture and interlimb coordination remains impaired.
Collapse
Affiliation(s)
- Johannie Audet
- Department of Pharmacology-Physiology, Faculty of Medicine and Health Sciences, Centre de Recherche du Centre Hospitalier Universitaire de Sherbrooke, Université de Sherbrooke, Sherbrooke, Quebec J1H 5N4, Canada
| | - Sirine Yassine
- Department of Pharmacology-Physiology, Faculty of Medicine and Health Sciences, Centre de Recherche du Centre Hospitalier Universitaire de Sherbrooke, Université de Sherbrooke, Sherbrooke, Quebec J1H 5N4, Canada
| | - Charly G Lecomte
- Department of Pharmacology-Physiology, Faculty of Medicine and Health Sciences, Centre de Recherche du Centre Hospitalier Universitaire de Sherbrooke, Université de Sherbrooke, Sherbrooke, Quebec J1H 5N4, Canada
| | - Stephen Mari
- Department of Pharmacology-Physiology, Faculty of Medicine and Health Sciences, Centre de Recherche du Centre Hospitalier Universitaire de Sherbrooke, Université de Sherbrooke, Sherbrooke, Quebec J1H 5N4, Canada
| | - Félix Soucy
- Department of Pharmacology-Physiology, Faculty of Medicine and Health Sciences, Centre de Recherche du Centre Hospitalier Universitaire de Sherbrooke, Université de Sherbrooke, Sherbrooke, Quebec J1H 5N4, Canada
| | - Caroline Morency
- Department of Pharmacology-Physiology, Faculty of Medicine and Health Sciences, Centre de Recherche du Centre Hospitalier Universitaire de Sherbrooke, Université de Sherbrooke, Sherbrooke, Quebec J1H 5N4, Canada
| | - Angèle N Merlet
- Department of Pharmacology-Physiology, Faculty of Medicine and Health Sciences, Centre de Recherche du Centre Hospitalier Universitaire de Sherbrooke, Université de Sherbrooke, Sherbrooke, Quebec J1H 5N4, Canada
| | - Jonathan Harnie
- Department of Pharmacology-Physiology, Faculty of Medicine and Health Sciences, Centre de Recherche du Centre Hospitalier Universitaire de Sherbrooke, Université de Sherbrooke, Sherbrooke, Quebec J1H 5N4, Canada
| | - Claudie Beaulieu
- Department of Pharmacology-Physiology, Faculty of Medicine and Health Sciences, Centre de Recherche du Centre Hospitalier Universitaire de Sherbrooke, Université de Sherbrooke, Sherbrooke, Quebec J1H 5N4, Canada
| | - Louis Gendron
- Department of Pharmacology-Physiology, Faculty of Medicine and Health Sciences, Centre de Recherche du Centre Hospitalier Universitaire de Sherbrooke, Université de Sherbrooke, Sherbrooke, Quebec J1H 5N4, Canada
| | - Ilya A Rybak
- Department of Neurobiology and Anatomy, College of Medicine, Drexel University, Philadelphia, PA 19129
| | - Boris I Prilutsky
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA 30332
| | - Alain Frigon
- Department of Pharmacology-Physiology, Faculty of Medicine and Health Sciences, Centre de Recherche du Centre Hospitalier Universitaire de Sherbrooke, Université de Sherbrooke, Sherbrooke, Quebec J1H 5N4, Canada
| |
Collapse
|
5
|
Audet J, Yassine S, Lecomte CG, Mari S, Félix S, Caroline M, Merlet AN, Harnie J, Beaulieu C, Gendron L, Rybak IA, Prilutsky BI, Frigon A. Spinal sensorimotor circuits play a prominent role in hindlimb locomotor recovery after staggered thoracic lateral hemisections but cannot restore posture and interlimb coordination during quadrupedal locomotion in adult cats. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.03.23.533936. [PMID: 36993268 PMCID: PMC10055434 DOI: 10.1101/2023.03.23.533936] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
Spinal sensorimotor circuits interact with supraspinal and peripheral inputs to generate quadrupedal locomotion. Ascending and descending spinal pathways ensure coordination between the fore-and hindlimbs. Spinal cord injury disrupts these pathways. To investigate the control of interlimb coordination and hindlimb locomotor recovery, we performed two lateral thoracic hemisections placed on opposite sides of the cord (right T5-T6 and left T10-T11) at an interval of approximately two months in eight adult cats. In three cats, we then made a complete spinal transection caudal to the second hemisection at T12-T13. We collected electromyography and kinematic data during quadrupedal and hindlimb-only locomotion before and after spinal lesions. We show that 1) cats spontaneously recover quadrupedal locomotion following staggered hemisections but require balance assistance after the second one, 2) coordination between the fore-and hindlimbs displays 2:1 patterns and becomes weaker and more variable after both hemisections, 3) left-right asymmetries in hindlimb stance and swing durations appear after the first hemisection and reverse after the second, and 4) support periods reorganize after staggered hemisections to favor support involving both forelimbs and diagonal limbs. Cats expressed hindlimb locomotion the day following spinal transection, indicating that lumbar sensorimotor circuits play a prominent role in hindlimb locomotor recovery after staggered hemisections. These results reflect a series of changes in spinal sensorimotor circuits that allow cats to maintain and recover some level of quadrupedal locomotor functionality with diminished motor commands from the brain and cervical cord, although the control of posture and interlimb coordination remains impaired. Significance Statement Coordinating the limbs during locomotion depends on pathways in the spinal cord. We used a spinal cord injury model that disrupts communication between the brain and spinal cord by sectioning half of the spinal cord on one side and then about two months later, half the spinal cord on the other side at different levels of the thoracic cord in cats. We show that despite a strong contribution from neural circuits located below the second spinal cord injury in the recovery of hindlimb locomotion, the coordination between the forelimbs and hindlimbs weakens and postural control is impaired. We can use our model to test approaches to restore the control of interlimb coordination and posture during locomotion after spinal cord injury.
Collapse
Affiliation(s)
- Johannie Audet
- Department of Pharmacology-Physiology, Faculty of Medicine and Health Sciences, Centre de recherche du CHUS, Université de Sherbrooke, Sherbrooke, Quebec J1H 5N4, Canada
| | - Sirine Yassine
- Department of Pharmacology-Physiology, Faculty of Medicine and Health Sciences, Centre de recherche du CHUS, Université de Sherbrooke, Sherbrooke, Quebec J1H 5N4, Canada
| | - Charly G Lecomte
- Department of Pharmacology-Physiology, Faculty of Medicine and Health Sciences, Centre de recherche du CHUS, Université de Sherbrooke, Sherbrooke, Quebec J1H 5N4, Canada
| | - Stephen Mari
- Department of Pharmacology-Physiology, Faculty of Medicine and Health Sciences, Centre de recherche du CHUS, Université de Sherbrooke, Sherbrooke, Quebec J1H 5N4, Canada
| | - Soucy Félix
- Department of Pharmacology-Physiology, Faculty of Medicine and Health Sciences, Centre de recherche du CHUS, Université de Sherbrooke, Sherbrooke, Quebec J1H 5N4, Canada
| | - Morency Caroline
- Department of Pharmacology-Physiology, Faculty of Medicine and Health Sciences, Centre de recherche du CHUS, Université de Sherbrooke, Sherbrooke, Quebec J1H 5N4, Canada
| | - Angèle N Merlet
- Department of Pharmacology-Physiology, Faculty of Medicine and Health Sciences, Centre de recherche du CHUS, Université de Sherbrooke, Sherbrooke, Quebec J1H 5N4, Canada
| | - Jonathan Harnie
- Department of Pharmacology-Physiology, Faculty of Medicine and Health Sciences, Centre de recherche du CHUS, Université de Sherbrooke, Sherbrooke, Quebec J1H 5N4, Canada
| | - Claudie Beaulieu
- Department of Pharmacology-Physiology, Faculty of Medicine and Health Sciences, Centre de recherche du CHUS, Université de Sherbrooke, Sherbrooke, Quebec J1H 5N4, Canada
| | - Louis Gendron
- Department of Pharmacology-Physiology, Faculty of Medicine and Health Sciences, Centre de recherche du CHUS, Université de Sherbrooke, Sherbrooke, Quebec J1H 5N4, Canada
| | - Ilya A. Rybak
- Department of Neurobiology and Anatomy, College of Medicine, Drexel University, Philadelphia, Pennsylvania 19129, USA
| | - Boris I. Prilutsky
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, Georgia 30332, USA
| | - Alain Frigon
- Department of Pharmacology-Physiology, Faculty of Medicine and Health Sciences, Centre de recherche du CHUS, Université de Sherbrooke, Sherbrooke, Quebec J1H 5N4, Canada
| |
Collapse
|
6
|
Lecomte CG, Mari S, Audet J, Merlet AN, Harnie J, Beaulieu C, Abdallah K, Gendron L, Rybak IA, Prilutsky BI, Frigon A. Modulation of the gait pattern during split-belt locomotion after lateral spinal cord hemisection in adult cats. J Neurophysiol 2022; 128:1593-1616. [PMID: 36382895 PMCID: PMC9744650 DOI: 10.1152/jn.00230.2022] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 11/10/2022] [Accepted: 11/10/2022] [Indexed: 11/17/2022] Open
Abstract
Most previous studies investigated the recovery of locomotion in animals and people with incomplete spinal cord injury (SCI) during relatively simple tasks (e.g., walking in a straight line on a horizontal surface or a treadmill). We know less about the recovery of locomotion after incomplete SCI in left-right asymmetric conditions, such as turning or stepping along circular trajectories. To investigate this, we collected kinematic and electromyography data during split-belt locomotion at different left-right speed differences before and after a right thoracic lateral spinal cord hemisection in nine adult cats. After hemisection, although cats still performed split-belt locomotion, we observed several changes in the gait pattern compared with the intact state at early (1-2 wk) and late (7-8 wk) time points. Cats with larger lesions showed new coordination patterns between the fore- and hindlimbs, with the forelimbs taking more steps. Despite this change in fore-hind coordination, cats maintained consistent phasing between the fore- and hindlimbs. Adjustments in cycle and phase (stance and swing) durations between the slow and fast sides allowed animals to maintain 1:1 left-right coordination. Periods of triple support involving the right (ipsilesional) hindlimb decreased in favor of quad support and triple support involving the other limbs. Step and stride lengths decreased with concurrent changes in the right fore- and hindlimbs, possibly to avoid interference. The above adjustments in the gait pattern allowed cats to retain the ability to locomote in asymmetric conditions after incomplete SCI. We discuss potential plastic neuromechanical mechanisms involved in locomotor recovery in these conditions.NEW & NOTEWORTHY Everyday locomotion often involves left-right asymmetries, when turning, walking along circular paths, stepping on uneven terrains, etc. To show how incomplete spinal cord injury affects locomotor control in asymmetric conditions, we collected data before and after a thoracic lateral spinal hemisection on a split-belt treadmill with one side stepping faster than the other. We show that adjustments in kinematics and muscle activity allowed cats to retain the ability to perform asymmetric locomotion after hemisection.
Collapse
Affiliation(s)
- Charly G Lecomte
- Department of Pharmacology-Physiology, Faculty of Medicine and Health Sciences, Centre de Recherche du CHUS, Université de Sherbrooke, Sherbrooke, Quebec, Canada
| | - Stephen Mari
- Department of Pharmacology-Physiology, Faculty of Medicine and Health Sciences, Centre de Recherche du CHUS, Université de Sherbrooke, Sherbrooke, Quebec, Canada
| | - Johannie Audet
- Department of Pharmacology-Physiology, Faculty of Medicine and Health Sciences, Centre de Recherche du CHUS, Université de Sherbrooke, Sherbrooke, Quebec, Canada
| | - Angèle N Merlet
- Department of Pharmacology-Physiology, Faculty of Medicine and Health Sciences, Centre de Recherche du CHUS, Université de Sherbrooke, Sherbrooke, Quebec, Canada
| | - Jonathan Harnie
- Department of Pharmacology-Physiology, Faculty of Medicine and Health Sciences, Centre de Recherche du CHUS, Université de Sherbrooke, Sherbrooke, Quebec, Canada
| | - Claudie Beaulieu
- Department of Pharmacology-Physiology, Faculty of Medicine and Health Sciences, Centre de Recherche du CHUS, Université de Sherbrooke, Sherbrooke, Quebec, Canada
| | - Khaled Abdallah
- Department of Pharmacology-Physiology, Faculty of Medicine and Health Sciences, Centre de Recherche du CHUS, Université de Sherbrooke, Sherbrooke, Quebec, Canada
| | - Louis Gendron
- Department of Pharmacology-Physiology, Faculty of Medicine and Health Sciences, Centre de Recherche du CHUS, Université de Sherbrooke, Sherbrooke, Quebec, Canada
| | - Ilya A Rybak
- Department of Neurobiology and Anatomy, College of Medicine, Drexel University, Philadelphia, Pennsylvania
| | - Boris I Prilutsky
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, Georgia
| | - Alain Frigon
- Department of Pharmacology-Physiology, Faculty of Medicine and Health Sciences, Centre de Recherche du CHUS, Université de Sherbrooke, Sherbrooke, Quebec, Canada
| |
Collapse
|
7
|
Audet J, Harnie J, Lecomte CG, Mari S, Merlet AN, Prilutsky BI, Rybak IA, Frigon A. Control of Forelimb and Hindlimb Movements and Their Coordination during Quadrupedal Locomotion across Speeds in Adult Spinal Cats. J Neurotrauma 2022; 39:1113-1131. [PMID: 35343245 PMCID: PMC9347373 DOI: 10.1089/neu.2022.0042] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Coordinating the four limbs is critical for terrestrial mammalian locomotion. Thoracic spinal transection abolishes neural communication between the brain and spinal networks controlling hindlimb/leg movements. Several studies have shown that animal models of spinal transection (spinalization), such as mice, rats, cats, and dogs recover hindlimb locomotion with the forelimbs stationary or suspended. We know less on the ability to generate quadrupedal locomotion after spinal transection, however. We collected kinematic and electromyography data in four adult cats during quadrupedal locomotion at five treadmill speeds before (intact cats) and after low-thoracic spinal transection (spinal cats). We show that adult spinal cats performed quadrupedal treadmill locomotion and modulated their speed from 0.4 m/sec to 0.8 m/sec but required perineal stimulation. During quadrupedal locomotion, several compensatory strategies occurred, such as postural adjustments of the head and neck and the appearance of new coordination patterns between the forelimbs and hindlimbs, where the hindlimbs took more steps than the forelimbs. We also observed temporal changes, such as shorter forelimb cycle/swing durations and shorter hindlimb cycle/stance durations in the spinal state. Forelimb double support periods occupied a greater proportion of the cycle in the spinal state, and hindlimb stride length was shorter. Coordination between the forelimbs and hindlimbs was weakened and more variable in the spinal state. Changes in muscle activity reflected spatiotemporal changes in the locomotor pattern. Despite important changes in the pattern, our results indicate that biomechanical properties of the musculoskeletal system play an important role in quadrupedal locomotion and offset some of the loss in neural communication between networks controlling the forelimbs and hindlimbs after spinal transection.
Collapse
Affiliation(s)
- Johannie Audet
- Department of Pharmacology-Physiology, Faculty of Medicine and Health Sciences, Centre de Recherche du CHUS, Université de Sherbrooke, Sherbrooke, Quebec, Canada
| | - Jonathan Harnie
- Department of Pharmacology-Physiology, Faculty of Medicine and Health Sciences, Centre de Recherche du CHUS, Université de Sherbrooke, Sherbrooke, Quebec, Canada
| | - Charly G. Lecomte
- Department of Pharmacology-Physiology, Faculty of Medicine and Health Sciences, Centre de Recherche du CHUS, Université de Sherbrooke, Sherbrooke, Quebec, Canada
| | - Stephen Mari
- Department of Pharmacology-Physiology, Faculty of Medicine and Health Sciences, Centre de Recherche du CHUS, Université de Sherbrooke, Sherbrooke, Quebec, Canada
| | - Angèle N. Merlet
- Department of Pharmacology-Physiology, Faculty of Medicine and Health Sciences, Centre de Recherche du CHUS, Université de Sherbrooke, Sherbrooke, Quebec, Canada
| | - Boris I. Prilutsky
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, Georgia, USA
| | - Ilya A. Rybak
- Department of Neurobiology and Anatomy, College of Medicine, Drexel University, Philadelphia, Pennsylvania, USA
| | - Alain Frigon
- Department of Pharmacology-Physiology, Faculty of Medicine and Health Sciences, Centre de Recherche du CHUS, Université de Sherbrooke, Sherbrooke, Quebec, Canada
| |
Collapse
|
8
|
Haspel G, Severi KE, Fauci LJ, Cohen N, Tytell ED, Morgan JR. Resilience of neural networks for locomotion. J Physiol 2021; 599:3825-3840. [PMID: 34187088 DOI: 10.1113/jp279214] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Accepted: 06/22/2021] [Indexed: 01/15/2023] Open
Abstract
Locomotion is an essential behaviour for the survival of all animals. The neural circuitry underlying locomotion is therefore highly robust to a wide variety of perturbations, including injury and abrupt changes in the environment. In the short term, fault tolerance in neural networks allows locomotion to persist immediately after mild to moderate injury. In the longer term, in many invertebrates and vertebrates, neural reorganization including anatomical regeneration can restore locomotion after severe perturbations that initially caused paralysis. Despite decades of research, very little is known about the mechanisms underlying locomotor resilience at the level of the underlying neural circuits and coordination of central pattern generators (CPGs). Undulatory locomotion is an ideal behaviour for exploring principles of circuit organization, neural control and resilience of locomotion, offering a number of unique advantages including experimental accessibility and modelling tractability. In comparing three well-characterized undulatory swimmers, lampreys, larval zebrafish and Caenorhabditis elegans, we find similarities in the manifestation of locomotor resilience. To advance our understanding, we propose a comparative approach, integrating experimental and modelling studies, that will allow the field to begin identifying shared and distinct solutions for overcoming perturbations to persist in orchestrating this essential behaviour.
Collapse
Affiliation(s)
- Gal Haspel
- Federated Department of Biological Sciences, New Jersey Institute of Technology, Newark, NJ, 07102, USA
| | - Kristen E Severi
- Federated Department of Biological Sciences, New Jersey Institute of Technology, Newark, NJ, 07102, USA
| | - Lisa J Fauci
- Department of Mathematics, Tulane University, New Orleans, LA, 70118, USA
| | - Netta Cohen
- School of Computing, University of Leeds, Leeds, LS2 9JT, UK
| | - Eric D Tytell
- Department of Biology, Tufts University, Medford, MA, 02155, USA
| | - Jennifer R Morgan
- The Eugene Bell Center for Regenerative Biology and Tissue Engineering, Marine Biological Laboratory, Woods Hole, MA, 02543, USA
| |
Collapse
|
9
|
Unusual Quadrupedal Locomotion in Rat during Recovery from Lumbar Spinal Blockade of 5-HT 7 Receptors. Int J Mol Sci 2021; 22:ijms22116007. [PMID: 34199392 PMCID: PMC8199611 DOI: 10.3390/ijms22116007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Revised: 05/27/2021] [Accepted: 05/28/2021] [Indexed: 01/18/2023] Open
Abstract
Coordination of four-limb movements during quadrupedal locomotion is controlled by supraspinal monoaminergic descending pathways, among which serotoninergic ones play a crucial role. Here we investigated the locomotor pattern during recovery from blockade of 5-HT7 or 5-HT2A receptors after intrathecal application of SB269970 or cyproheptadine in adult rats with chronic intrathecal cannula implanted in the lumbar spinal cord. The interlimb coordination was investigated based on electromyographic activity recorded from selected fore- and hindlimb muscles during rat locomotion on a treadmill. In the time of recovery after hindlimb transient paralysis, we noticed a presence of an unusual pattern of quadrupedal locomotion characterized by a doubling of forelimb stepping in relation to unaffected hindlimb stepping (2FL-1HL) after blockade of 5-HT7 receptors but not after blockade of 5-HT2A receptors. The 2FL-1HL pattern, although transient, was observed as a stable form of fore-hindlimb coupling during quadrupedal locomotion. We suggest that modulation of the 5-HT7 receptors on interneurons located in lamina VII with ascending projections to the forelimb spinal network can be responsible for the 2FL-1HL locomotor pattern. In support, our immunohistochemical analysis of the lumbar spinal cord demonstrated the presence of the 5-HT7 immunoreactive cells in the lamina VII, which were rarely 5-HT2A immunoreactive.
Collapse
|
10
|
Steiner R, Dhar M, Stephenson SM, Newby S, Bow A, Pedersen A, Anderson DE. Biometric Data Comparison Between Lewis and Sprague Dawley Rats. Front Vet Sci 2019; 6:469. [PMID: 31921924 PMCID: PMC6932974 DOI: 10.3389/fvets.2019.00469] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Accepted: 12/02/2019] [Indexed: 11/13/2022] Open
Abstract
Introduction: Pressure mapping systems are often used for indirect assessment of kinematic gait parameter differences after repair of critical peripheral nerve defects in small animal models. However, there does not appear to be any literature that studies the differences in normal gait pattern of Sprague Dawley rats compared to Lewis rats using a Tekscan VH4 pressure mat system. The purpose of this study is to assess the gait profile of Lewis and Sprague Dawley rats generated by Tekscan's VH4 system to detect similarities and/or differences in gait parameters involving both force and temporal variables. Materials and Methods: The gait profile of 14 Lewis and 14 Sprague Dawley rats was recorded using a Tekscan VH4 pressure map system with two successful walks per animal and gait parameter data was normalized for mean variance between the two rodent strains. Results: The results showed that temporal and normalized force parameters were not significantly different between the two types of rats. Maximum force, contact area, stride length, and adjusted pressure variables were significantly different between the two strains, likely attributed to the body size and weight differential between the strains. Variation in some of these parameters were considered due to differences in overall body size between the two strains, variations in gait kinematics between individual rodent subjects, and the limitations of the current experimental design. Conclusion: For future in vivo models, either Sprague Dawley or Lewis rat strains would be acceptable animal models when comparing base-line gait profiles using the Tekscan VH4 pressure map system when assessing critical defect repairs of peripheral nerves.
Collapse
Affiliation(s)
- Richard Steiner
- Veterinary Medical Center, College of Veterinary Medicine, University of Tennessee, Knoxville, Knoxville, TN, United States
| | - Madhu Dhar
- Veterinary Medical Center, College of Veterinary Medicine, University of Tennessee, Knoxville, Knoxville, TN, United States
| | - Stacy M Stephenson
- Department of Surgery, University of Tennessee Medical Center, Knoxville, Knoxville, TN, United States
| | - Steven Newby
- Veterinary Medical Center, College of Veterinary Medicine, University of Tennessee, Knoxville, Knoxville, TN, United States
| | - Austin Bow
- Veterinary Medical Center, College of Veterinary Medicine, University of Tennessee, Knoxville, Knoxville, TN, United States
| | - Alisha Pedersen
- Veterinary Medical Center, College of Veterinary Medicine, University of Tennessee, Knoxville, Knoxville, TN, United States
| | - David E Anderson
- Veterinary Medical Center, College of Veterinary Medicine, University of Tennessee, Knoxville, Knoxville, TN, United States
| |
Collapse
|
11
|
Diogo CC, da Costa LM, Pereira JE, Filipe V, Couto PA, Geuna S, Armada-da-Silva PA, Maurício AC, Varejão ASP. Kinematic and kinetic gait analysis to evaluate functional recovery in thoracic spinal cord injured rats. Neurosci Biobehav Rev 2019; 98:18-28. [PMID: 30611796 DOI: 10.1016/j.neubiorev.2018.12.027] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2018] [Revised: 11/16/2018] [Accepted: 12/24/2018] [Indexed: 12/29/2022]
Abstract
The recovery of walking function following spinal cord injury (SCI) is of major importance to patients and clinicians. In experimental SCI studies, a rat model is widely used to assess walking function, following thoracic spinal cord lesion. In an effort to provide a resource which investigators can refer to when seeking the most appropriate functional assay, the authors have compiled and categorized the behavioral assessments used to measure the deficits and recovery of the gait in thoracic SCI rats. These categories include kinematic and kinetic measurements. Within this categorization, we discuss the advantages and disadvantages of each type of measurement. The present review includes the type of outcome data that they produce, the technical difficulty and the time required to potentially train the animals to perform them, and the need for expensive or highly specialized equipment. The use of multiple kinematic and kinetic parameters is recommended to identify subtle deficits and processes involved in the compensatory mechanisms of walking function after experimental thoracic SCI in rats.
Collapse
Affiliation(s)
- Camila Cardoso Diogo
- Department of Veterinary Sciences, University of Trás-os-Montes e Alto Douro, UTAD, Quinta de Prados, 5000-801 Vila Real, Portugal
| | - Luís Maltez da Costa
- Department of Veterinary Sciences, University of Trás-os-Montes e Alto Douro, UTAD, Quinta de Prados, 5000-801 Vila Real, Portugal; CECAV, Centre for Animal Sciences and Veterinary Studies, University of Trás-os-Montes e Alto Douro, Quinta de Prados, 5000-801 Vila Real, Portugal
| | - José Eduardo Pereira
- Department of Veterinary Sciences, University of Trás-os-Montes e Alto Douro, UTAD, Quinta de Prados, 5000-801 Vila Real, Portugal; CECAV, Centre for Animal Sciences and Veterinary Studies, University of Trás-os-Montes e Alto Douro, Quinta de Prados, 5000-801 Vila Real, Portugal
| | - Vítor Filipe
- Department of Engineering, School of Science and Technology, University of Trás-os-Montes e Alto Douro, UTAD, Quinta de Prados, 5000-801 Vila Real, Portugal; INESC TEC, Rua Dr. Roberto Frias, 4200 - 465 Porto, Portugal
| | - Pedro Alexandre Couto
- Department of Engineering, School of Science and Technology, University of Trás-os-Montes e Alto Douro, UTAD, Quinta de Prados, 5000-801 Vila Real, Portugal; CITAB, Centre for the Research and Technology of Agro-Environmental and Biological Sciences, University of Trás-os-Montes e Alto Douro, Quinta de Prados, 5000-801 Vila Real, Portugal
| | - Stefano Geuna
- Department of Clinical and Biological Sciences, University of Turin, Italy
| | - Paulo A Armada-da-Silva
- Faculdade de Motricidade Humana (FMH), Universidade de Lisboa (ULisboa), Estrada da Costa, 1499-002, Dafundo, Cruz Quebrada, Portugal; CIPER-FMH: Centro Interdisciplinar de Estudo de Performance Humana, Faculdade de Motricidade Humana (FMH), Universidade de Lisboa (ULisboa), Estrada da Costa, 1499-002, Cruz Quebrada - Dafundo, Portugal
| | - Ana Colette Maurício
- Department of Veterinary Clinics, Institute of Biomedical Sciences Abel Salazar (ICBAS), University of Porto (UP), Rua de Jorge Viterbo Ferreira, nº 228, 4050-313 Porto, Portugal; Animal Science and Study Centre (CECA), Institute of Sciences, Technologies and Agroenvironment of the University of Porto (ICETA), Rua D. Manuel II, Apartado 55142, 4051-401, Porto, Portugal
| | - Artur S P Varejão
- Department of Veterinary Sciences, University of Trás-os-Montes e Alto Douro, UTAD, Quinta de Prados, 5000-801 Vila Real, Portugal; CECAV, Centre for Animal Sciences and Veterinary Studies, University of Trás-os-Montes e Alto Douro, Quinta de Prados, 5000-801 Vila Real, Portugal.
| |
Collapse
|
12
|
Strain in shock-loaded skeletal muscle and the time scale of muscular wobbling mass dynamics. Sci Rep 2017; 7:13266. [PMID: 29038526 PMCID: PMC5643554 DOI: 10.1038/s41598-017-13630-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2017] [Accepted: 09/29/2017] [Indexed: 11/08/2022] Open
Abstract
In terrestrial locomotion, muscles undergo damped oscillations in response to limb impacts with the ground. Muscles are also actuators that generate mechanical power to allow locomotion. The corresponding elementary contractile process is the work stroke of an actin-myosin cross-bridge, which may be forcibly detached by superposed oscillations. By experimentally emulating rat leg impacts, we found that full activity and non-fatigue must meet to possibly prevent forcible cross-bridge detachment. Because submaximal muscle force represents the ordinary locomotor condition, our results show that forcible, eccentric cross-bridge detachment is a common, physiological process even during isometric muscle contractions. We also calculated the stiffnesses of the whole muscle-tendon complex and the fibre material separately, as well as Young's modulus of the latter: 1.8 MPa and 0.75 MPa for fresh, fully active and passive fibres, respectively. Our inferred Young's modulus of the tendon-aponeurosis complex suggests that stiffness in series to the fibre material is determined by the elastic properties of the aponeurosis region, rather than the tendon material. Knowing these stiffnesses and the muscle mass, the complex' eigenfrequency for responses to impacts can be quantified, as well as the size-dependency of this time scale of muscular wobbling mass dynamics.
Collapse
|
13
|
Frigon A. The neural control of interlimb coordination during mammalian locomotion. J Neurophysiol 2017; 117:2224-2241. [PMID: 28298308 DOI: 10.1152/jn.00978.2016] [Citation(s) in RCA: 101] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2016] [Revised: 03/02/2017] [Accepted: 03/15/2017] [Indexed: 01/06/2023] Open
Abstract
Neuronal networks within the spinal cord directly control rhythmic movements of the arms/forelimbs and legs/hindlimbs during locomotion in mammals. For an effective locomotion, these networks must be flexibly coordinated to allow for various gait patterns and independent use of the arms/forelimbs. This coordination can be accomplished by mechanisms intrinsic to the spinal cord, somatosensory feedback from the limbs, and various supraspinal pathways. Incomplete spinal cord injury disrupts some of the pathways and structures involved in interlimb coordination, often leading to a disruption in the coordination between the arms/forelimbs and legs/hindlimbs in animal models and in humans. However, experimental spinal lesions in animal models to uncover the mechanisms coordinating the limbs have limitations due to compensatory mechanisms and strategies, redundant systems of control, and plasticity within remaining circuits. The purpose of this review is to provide a general overview and critical discussion of experimental studies that have investigated the neural mechanisms involved in coordinating the arms/forelimbs and legs/hindlimbs during mammalian locomotion.
Collapse
Affiliation(s)
- Alain Frigon
- Department of Pharmacology-Physiology, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, Quebec, Canada
| |
Collapse
|
14
|
Thibaudier Y, Hurteau MF, Dambreville C, Chraibi A, Goetz L, Frigon A. Interlimb Coordination during Tied-Belt and Transverse Split-Belt Locomotion before and after an Incomplete Spinal Cord Injury. J Neurotrauma 2016; 34:1751-1765. [PMID: 27219842 DOI: 10.1089/neu.2016.4421] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Coordination between the arms/forelimbs and legs/hindlimbs is often impaired in humans and quadrupedal mammals after incomplete spinal cord injury. In quadrupeds, the forelimbs often take more steps than the hindlimbs, producing a two-to-one forelimb-hindlimb (2-1 FL-HL) coordination. In locomotor performance scales, this is generally considered a loss of FL-HL coordination. Here, FL-HL coordination was quantified before and 8 weeks after a lateral spinal hemisection at the sixth thoracic segment in six adult cats. Cats were tested during tied-belt locomotion (equal front and rear speeds) and transverse split-belt locomotion with the forelimbs or hindlimbs stepping faster. The results show that consistent phasing between forelimb and hindlimb movements was maintained after hemisection, even with the appearance of 2-1 FL-HL coordination, indicating that new stable forms of coordination emerge. Moreover, transverse split-belt locomotion potently modulated interlimb coordination and was capable of restoring a one-to-one FL-HL coordination with a faster treadmill speed for the hindlimbs. In conclusion, the results suggest that neural communication persists after an incomplete spinal cord injury, despite an unequal number of steps between the forelimbs and hindlimbs, and that interlimb coordination can be modulated by having the forelimbs or hindlimbs move at a faster frequency. We propose that locomotor recovery scales incorporate more sensitive methods to quantify FL-HL coordination, to better reflect residual functional capacity and possible cervicolumbar neural communication. Lastly, devising training protocols that make use of the bidirectional influences of the cervical and lumbar locomotor pattern generators could strengthen interlimb coordination and promote locomotor recovery.
Collapse
Affiliation(s)
- Yann Thibaudier
- 1 Department of Pharmacology-Physiology, Faculty of Medicine and Health Sciences, Centre de Recherche du CHUS, Université de Sherbrooke , Sherbrooke, Quebec, Canada
| | - Marie-France Hurteau
- 1 Department of Pharmacology-Physiology, Faculty of Medicine and Health Sciences, Centre de Recherche du CHUS, Université de Sherbrooke , Sherbrooke, Quebec, Canada
| | - Charline Dambreville
- 1 Department of Pharmacology-Physiology, Faculty of Medicine and Health Sciences, Centre de Recherche du CHUS, Université de Sherbrooke , Sherbrooke, Quebec, Canada
| | - Anass Chraibi
- 1 Department of Pharmacology-Physiology, Faculty of Medicine and Health Sciences, Centre de Recherche du CHUS, Université de Sherbrooke , Sherbrooke, Quebec, Canada
| | - Laurent Goetz
- 2 Centre de Recherche de l'Institut Universitaire en Santé Mentale de Québec , Quebec, Canada
| | - Alain Frigon
- 1 Department of Pharmacology-Physiology, Faculty of Medicine and Health Sciences, Centre de Recherche du CHUS, Université de Sherbrooke , Sherbrooke, Quebec, Canada
| |
Collapse
|
15
|
Leszczyńska AN, Majczyński H, Wilczyński GM, Sławińska U, Cabaj AM. Thoracic Hemisection in Rats Results in Initial Recovery Followed by a Late Decrement in Locomotor Movements, with Changes in Coordination Correlated with Serotonergic Innervation of the Ventral Horn. PLoS One 2015; 10:e0143602. [PMID: 26606275 PMCID: PMC4659566 DOI: 10.1371/journal.pone.0143602] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2015] [Accepted: 11/06/2015] [Indexed: 11/18/2022] Open
Abstract
Lateral thoracic hemisection of the rodent spinal cord is a popular model of spinal cord injury, in which the effects of various treatments, designed to encourage locomotor recovery, are tested. Nevertheless, there are still inconsistencies in the literature concerning the details of spontaneous locomotor recovery after such lesions, and there is a lack of data concerning the quality of locomotion over a long time span after the lesion. In this study, we aimed to address some of these issues. In our experiments, locomotor recovery was assessed using EMG and CatWalk recordings and analysis. Our results showed that after hemisection there was paralysis in both hindlimbs, followed by a substantial recovery of locomotor movements, but even at the peak of recovery, which occurred about 4 weeks after the lesion, some deficits of locomotion remained present. The parameters that were abnormal included abduction, interlimb coordination and speed of locomotion. Locomotor performance was stable for several weeks, but about 3-4 months after hemisection secondary locomotor impairment was observed with changes in parameters, such as speed of locomotion, interlimb coordination, base of hindlimb support, hindlimb abduction and relative foot print distance. Histological analysis of serotonergic innervation at the lumbar ventral horn below hemisection revealed a limited restoration of serotonergic fibers on the ipsilateral side of the spinal cord, while on the contralateral side of the spinal cord it returned to normal. In addition, the length of these fibers on both sides of the spinal cord correlated with inter- and intralimb coordination. In contrast to data reported in the literature, our results show there is not full locomotor recovery after spinal cord hemisection. Secondary deterioration of certain locomotor functions occurs with time in hemisected rats, and locomotor recovery appears partly associated with reinnervation of spinal circuitry by serotonergic fibers.
Collapse
Affiliation(s)
| | | | | | | | - Anna M Cabaj
- Nencki Insitute of Experimental Biology, PAS, Warsaw, Poland.,Nałęcz Institute of Biocybernetics and Biomedical Engineering, PAS, Warsaw, Poland
| |
Collapse
|
16
|
Xu N, Åkesson E, Holmberg L, Sundström E. A sensitive and reliable test instrument to assess swimming in rats with spinal cord injury. Behav Brain Res 2015; 291:172-183. [PMID: 25986406 DOI: 10.1016/j.bbr.2015.05.004] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2015] [Revised: 05/02/2015] [Accepted: 05/07/2015] [Indexed: 12/22/2022]
Abstract
For clinical translation of experimental spinal cord injury (SCI) research, evaluation of animal SCI models should include several sensorimotor functions. Validated and reliable assessment tools should be applicable to a wide range of injury severity. The BBB scale is the most widely used test instrument, but similar to most others it is used to assess open field ambulation. We have developed an assessment tool for swimming in rats with SCI, with high discriminative power and sensitivity to functional recovery after mild and severe injuries, without need for advanced test equipment. We studied various parameters of swimming in four groups of rats with thoracic SCI of different severity and a control group, for 8 weeks after surgery. Six parameters were combined in a multiple item scale, the Karolinska Institutet Swim Assessment Tool (KSAT). KSAT scores for all SCI groups showed consistent functional improvement after injury, and significant differences between the five experimental groups. The internal consistency, the inter-rater and the test-retest reliability were very high. The KSAT score was highly correlated to the cross-section area of white matter spared at the injury epicenter. Importantly, even after 8 weeks of recovery the KSAT score reliably discriminated normal animals from those inflicted by the mildest injury, and also displayed the recovery of the most severely injured rats. We conclude that this swim scale is an efficient and reliable tool to assess motor activity during swimming, and an important addition to the methods available for evaluating rat models of SCI.
Collapse
Affiliation(s)
- Ning Xu
- Division of Neurodegeneration, Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, Stockholm, Sweden
| | - Elisabet Åkesson
- Division of Neurodegeneration, Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, Stockholm, Sweden; Stockholms Sjukhem Foundation, Stockholm, Sweden
| | - Lena Holmberg
- Division of Neurodegeneration, Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, Stockholm, Sweden
| | - Erik Sundström
- Division of Neurodegeneration, Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, Stockholm, Sweden; Stockholms Sjukhem Foundation, Stockholm, Sweden.
| |
Collapse
|
17
|
Thibaudier Y, Frigon A. Spatiotemporal control of interlimb coordination during transverse split-belt locomotion with 1:1 or 2:1 coupling patterns in intact adult cats. J Neurophysiol 2014; 112:2006-18. [PMID: 25057143 DOI: 10.1152/jn.00236.2014] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Interlimb coordination must be flexible to adjust to an ever-changing environment. Here adjustments in interlimb coordination were quantified during tied-belt (equal speed of the fore- and hindlimbs) and transverse split-belt (unequal speed of the fore- and hindlimbs) locomotion in five intact adult cats. Cats performed tied-belt locomotion at 0.4 m/s and 0.8 m/s. For transverse split-belt locomotion, the forelimbs stepped at 0.4 m/s and 0.8 m/s while the hindlimbs stepped at 0.8 m/s (4F8H condition) and 0.4 m/s (8F4H condition), respectively. In the 8F4H condition, the forelimbs could take two steps within one hindlimb cycle, or a 2:1 forelimb-hindlimb relationship. The sequence of limbs contacting the ground and the duration of support periods were differentially modified if the forelimbs stepped faster or slower than the hindlimbs. During transverse split-belt locomotion, the hindlimbs performed longer strides when the forelimbs took shorter strides. In the 8F4H condition with a 2:1 forelimb-hindlimb relationship, phase and gap intervals for the first and second steps were found around certain values and were not randomly distributed, indicating that a new coupling pattern was established. However, temporal and spatial coordination indexes revealed that bilateral coordination between hindlimbs was less accurate and more variable with a 2:1 coupling pattern. Importantly, the animals did not stumble, indicating that spatial and temporal adjustments in interlimb coordination allowed the animals to maintain dynamic stability. The results provide a better understanding of the spatiotemporal adjustments that take place among the four limbs during locomotion when interlimb coordination is challenged.
Collapse
Affiliation(s)
- Yann Thibaudier
- Department of Physiology and Biophysics, Faculty of Medicine and Health Sciences, Centre Hospitalier Universitaire de Sherbrooke, Université de Sherbrooke, Sherbrooke, Quebec, Canada
| | - Alain Frigon
- Department of Physiology and Biophysics, Faculty of Medicine and Health Sciences, Centre Hospitalier Universitaire de Sherbrooke, Université de Sherbrooke, Sherbrooke, Quebec, Canada
| |
Collapse
|
18
|
Olby NJ, Lim JH, Babb K, Bach K, Domaracki C, Williams K, Griffith E, Harris T, Muguet-Chanoit A. Gait scoring in dogs with thoracolumbar spinal cord injuries when walking on a treadmill. BMC Vet Res 2014; 10:58. [PMID: 24597771 PMCID: PMC3996037 DOI: 10.1186/1746-6148-10-58] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2013] [Accepted: 02/15/2014] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND An inexpensive method of generating continuous data on hind limb function in dogs with spinal cord injury is needed to facilitate multicentre clinical trials. This study aimed to define normal fore limb, hind limb coordination in dogs walking on a treadmill and then to determine whether reliable data could be generated on the frequency of hind limb stepping and the frequency of coordinated stepping in dogs with a wide range of severities of thoracolumbar spinal cord injury. RESULTS Sixty-nine neurologically normal dogs of different body sizes including seven lame dogs were videotaped walking on the treadmill without prior training and all used the lateral gait of right fore, left hind, left fore, right hind (RF-LH-LF-RH). Severely paraparetic dogs were able to walk on the treadmill for a minimum of 75 seconds, scoring of which generated data representative of function in animals with extremely variable gaits. Fifty consecutive stepping cycles were scored by three observers in 18 dogs with a wide range of disability due to acute thoracolumbar spinal cord injury using a stepping score (hind limb steps/fore limb steps ×100), and a coordination score (coordinated hind limb steps/total hind limb steps ×100). Dogs were also scored using a previously validated ordinal open field score (OFS). Inter- and intraobserver agreement was high as assessed with Cronbach's alpha test for internal reliability. The stepping and coordination scores were significantly correlated to each other and to the OFS. CONCLUSIONS Dogs with naturally occurring spinal cord injury can walk on a treadmill without prior training and their hind limb function can be scored reliably using a stepping score and coordination score. The only requirements for data acquisition are a treadmill and appropriately positioned video camera and so the system can be used in multicentre clinical trials to generate continuous data on neurologic recovery in dogs.
Collapse
Affiliation(s)
- Natasha J Olby
- College of Veterinary Medicine, North Carolina State University, Raleigh, North Carolina, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|