1
|
Parekh RU, Robidoux J, Sriramula S. Kinin B1 Receptor Blockade Prevents Angiotensin II-induced Neuroinflammation and Oxidative Stress in Primary Hypothalamic Neurons. Cell Mol Neurobiol 2019; 40:845-857. [PMID: 31865500 PMCID: PMC8112717 DOI: 10.1007/s10571-019-00778-1] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2019] [Accepted: 12/10/2019] [Indexed: 12/21/2022]
Abstract
Neuroinflammation has become an important underlying factor in many cardiovascular disorders, including hypertension. Previously we showed that elevated angiotensin II (Ang II) and angiotensin II type I receptor (AT1R) expression levels can increase neuroinflammation leading to hypertension. We also found that kinin B1 receptor (B1R) expression increased in the hypothalamic paraventricular neurons resulting in neuroinflammation and oxidative stress in neurogenic hypertension. However, whether there are any potential interactions between AT1R and B1R in neuroinflammation is not clear. In the present study, we aimed to determine whether Ang II-mediated effects on inflammation and oxidative stress are mediated by the activation of B1R in mouse neonatal primary hypothalamic neuronal cultures. Gene expression and immunostaining revealed that both B1R and AT1R are expressed on primary hypothalamic neurons. Ang II stimulation significantly increased the expression of B1R, decreased mitochondrial respiration, increased the expression of two NADPH oxidase subunits (Nox2 and Nox4), increased the oxidative potential, upregulated several proinflammatory genes (IL-1β, IL-6, and TNFα), and increased NF-kB p65 DNA binding activity. These changes were prevented by pretreatment with the B1R-specific peptide antagonist, R715. In summary, our study demonstrates a causal relationship between B1R expression after Ang II stimulation, suggesting a possible cross talk between AT1R and B1R in neuroinflammation and oxidative stress.
Collapse
Affiliation(s)
- Rohan Umesh Parekh
- Department of Pharmacology and Toxicology, Brody School of Medicine at East Carolina University, 600 Moye Blvd, Greenville, NC, 27834, USA
| | - Jacques Robidoux
- Department of Pharmacology and Toxicology, Brody School of Medicine at East Carolina University, 600 Moye Blvd, Greenville, NC, 27834, USA
| | - Srinivas Sriramula
- Department of Pharmacology and Toxicology, Brody School of Medicine at East Carolina University, 600 Moye Blvd, Greenville, NC, 27834, USA.
| |
Collapse
|
2
|
Crosson T, Roversi K, Balood M, Othman R, Ahmadi M, Wang JC, Seadi Pereira PJ, Tabatabaei M, Couture R, Eichwald T, Latini A, Prediger RD, Rangachari M, Seehus CR, Foster SL, Talbot S. Profiling of how nociceptor neurons detect danger - new and old foes. J Intern Med 2019; 286:268-289. [PMID: 31282104 DOI: 10.1111/joim.12957] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The host evolves redundant mechanisms to preserve physiological processing and homeostasis. These functions range from sensing internal and external threats, creating a memory of the insult and generating reflexes, which aim to resolve inflammation. Impairment in such functioning leads to chronic inflammatory diseases. By interacting through a common language of ligands and receptors, the immune and sensory nervous systems work in concert to accomplish such protective functions. Whilst this bidirectional communication helps to protect from danger, it can contribute to disease pathophysiology. Thus, the somatosensory nervous system is anatomically positioned within primary and secondary lymphoid tissues and mucosa to modulate immunity directly. Upstream of this interplay, neurons detect danger, which prompts the release of neuropeptides initiating (i) defensive reflexes (ranging from withdrawal response to coughing) and (ii) chemotaxis, adhesion and local infiltration of immune cells. The resulting outcome of such neuro-immune interplay is still ill-defined, but consensual findings start to emerge and support neuropeptides not only as blockers of TH 1-mediated immunity but also as drivers of TH 2 immune responses. However, the modalities detected by nociceptors revealed broader than mechanical pressure and temperature sensing and include signals as various as cytokines and pathogens to immunoglobulins and even microRNAs. Along these lines, we aggregated various dorsal root ganglion sensory neuron expression profiling datasets supporting such wide-ranging sensing capabilities to help identifying new danger detection modalities of these cells. Thus, revealing unexpected aspects of nociceptor neuron biology might prompt the identification of novel drivers of immunity, means to resolve inflammation and strategies to safeguard homeostasis.
Collapse
Affiliation(s)
- T Crosson
- From the, Département de Pharmacologie et Physiologie, Faculté de Médecine, Université de Montréal, Montréal, QC, Canada
| | - K Roversi
- From the, Département de Pharmacologie et Physiologie, Faculté de Médecine, Université de Montréal, Montréal, QC, Canada.,Departamento de Farmacologia Centro de Ciências Biológicas, Universidade Federal de Santa Catarina, Florianópolis, Brazil
| | - M Balood
- From the, Département de Pharmacologie et Physiologie, Faculté de Médecine, Université de Montréal, Montréal, QC, Canada.,Axe Neurosciences, Centre de recherche du CHU, Université Laval, Québec, QC, Canada.,Département de Médecine Moléculaire, Faculté de Médecine, Université Laval, Québec, QC, Canada
| | - R Othman
- From the, Département de Pharmacologie et Physiologie, Faculté de Médecine, Université de Montréal, Montréal, QC, Canada
| | - M Ahmadi
- From the, Département de Pharmacologie et Physiologie, Faculté de Médecine, Université de Montréal, Montréal, QC, Canada
| | - J-C Wang
- From the, Département de Pharmacologie et Physiologie, Faculté de Médecine, Université de Montréal, Montréal, QC, Canada.,Graduate Institute of Microbiology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | | | - M Tabatabaei
- From the, Département de Pharmacologie et Physiologie, Faculté de Médecine, Université de Montréal, Montréal, QC, Canada
| | - R Couture
- From the, Département de Pharmacologie et Physiologie, Faculté de Médecine, Université de Montréal, Montréal, QC, Canada
| | - T Eichwald
- Departamento de Bioquímica, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina, Florianópolis, Brazil
| | - A Latini
- Departamento de Bioquímica, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina, Florianópolis, Brazil
| | - R D Prediger
- Departamento de Farmacologia Centro de Ciências Biológicas, Universidade Federal de Santa Catarina, Florianópolis, Brazil
| | - M Rangachari
- Axe Neurosciences, Centre de recherche du CHU, Université Laval, Québec, QC, Canada.,Département de Médecine Moléculaire, Faculté de Médecine, Université Laval, Québec, QC, Canada
| | - C R Seehus
- FM Kirby Neurobiology Center, Children's Hospital, Boston, MA, USA
| | - S L Foster
- Depression Clinical Research Program, Massachusetts General Hospital, Boston, MA, USA
| | - S Talbot
- From the, Département de Pharmacologie et Physiologie, Faculté de Médecine, Université de Montréal, Montréal, QC, Canada
| |
Collapse
|
3
|
Rajchgot T, Thomas SC, Wang JC, Ahmadi M, Balood M, Crosson T, Dias JP, Couture R, Claing A, Talbot S. Neurons and Microglia; A Sickly-Sweet Duo in Diabetic Pain Neuropathy. Front Neurosci 2019; 13:25. [PMID: 30766472 PMCID: PMC6365454 DOI: 10.3389/fnins.2019.00025] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2018] [Accepted: 01/11/2019] [Indexed: 12/11/2022] Open
Abstract
Diabetes is a common condition characterized by persistent hyperglycemia. High blood sugar primarily affects cells that have a limited capacity to regulate their glucose intake. These cells include capillary endothelial cells in the retina, mesangial cells in the renal glomerulus, Schwann cells, and neurons of the peripheral and central nervous systems. As a result, hyperglycemia leads to largely intractable complications such as retinopathy, nephropathy, hypertension, and neuropathy. Diabetic pain neuropathy is a complex and multifactorial disease that has been associated with poor glycemic control, longer diabetes duration, hypertension, advanced age, smoking status, hypoinsulinemia, and dyslipidemia. While many of the driving factors involved in diabetic pain are still being investigated, they can be broadly classified as either neuron -intrinsic or -extrinsic. In neurons, hyperglycemia impairs the polyol pathway, leading to an overproduction of reactive oxygen species and reactive nitrogen species, an enhanced formation of advanced glycation end products, and a disruption in Na+/K+ ATPase pump function. In terms of the extrinsic pathway, hyperglycemia leads to the generation of both overactive microglia and microangiopathy. The former incites a feed-forward inflammatory loop that hypersensitizes nociceptor neurons, as observed at the onset of diabetic pain neuropathy. The latter reduces neurons' access to oxygen, glucose and nutrients, prompting reductions in nociceptor terminal expression and losses in sensation, as observed in the later stages of diabetic pain neuropathy. Overall, microglia can be seen as potent and long-lasting amplifiers of nociceptor neuron activity, and may therefore constitute a potential therapeutic target in the treatment of diabetic pain neuropathy.
Collapse
Affiliation(s)
- Trevor Rajchgot
- Département de Pharmacologie et Physiologie, Faculté de Médecine, Université de Montréal, Montréal, QC, Canada
| | - Sini Christine Thomas
- Département de Pharmacologie et Physiologie, Faculté de Médecine, Université de Montréal, Montréal, QC, Canada
| | - Jo-Chiao Wang
- Graduate Institute of Microbiology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Maryam Ahmadi
- Département de Pharmacologie et Physiologie, Faculté de Médecine, Université de Montréal, Montréal, QC, Canada
| | - Mohammad Balood
- Département de Pharmacologie et Physiologie, Faculté de Médecine, Université de Montréal, Montréal, QC, Canada
| | - Théo Crosson
- Département de Pharmacologie et Physiologie, Faculté de Médecine, Université de Montréal, Montréal, QC, Canada
| | - Jenny Pena Dias
- Johns Hopkins University School of Medicine, Division of Endocrinology, Diabetes and Metabolism, Baltimore, MD, United States
| | - Réjean Couture
- Département de Pharmacologie et Physiologie, Faculté de Médecine, Université de Montréal, Montréal, QC, Canada
| | - Audrey Claing
- Département de Pharmacologie et Physiologie, Faculté de Médecine, Université de Montréal, Montréal, QC, Canada
| | - Sébastien Talbot
- Département de Pharmacologie et Physiologie, Faculté de Médecine, Université de Montréal, Montréal, QC, Canada
| |
Collapse
|
4
|
Dias JP, Gariépy HDB, Ongali B, Couture R. Brain kinin B1 receptor is upregulated by the oxidative stress and its activation leads to stereotypic nociceptive behavior in insulin-resistant rats. Peptides 2015; 69:118-26. [PMID: 25959537 DOI: 10.1016/j.peptides.2015.04.022] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/12/2015] [Revised: 04/24/2015] [Accepted: 04/27/2015] [Indexed: 11/22/2022]
Abstract
Kinin B1 receptor (B1R) is virtually absent under physiological condition, yet it is highly expressed in models of diabetes mellitus. This study aims at determining: (1) whether B1R is induced in the brain of insulin-resistant rat through the oxidative stress; (2) the consequence of B1R activation on stereotypic nocifensive behavior; (3) the role of downstream putative mediators in B1R-induced behavioral activity. Sprague-Dawley rats were fed with 10% D-glucose in their drinking water or tap water (controls) for 4 or 12 weeks, combined either with a standard chow diet or a diet enriched with α-lipoic acid (1 g/kg feed) for 4 weeks. The distribution and density of brain B1R binding sites were assessed by autoradiography. Behavioral activity evoked by i.c.v. injection of the B1R agonist Sar-[D-Phe(8)]-des-Arg(9)-BK (10 μg) was measured before and after i.c.v. treatments with selective antagonists (10 μg) for kinin B1 (R-715, SSR240612), tachykinin NK1 (RP-67580) and glutamate NMDA (DL-AP5) receptors or with the inhibitor of NOS (L-NNA). Results showed significant increases of B1R binding sites in various brain areas of glucose-fed rats that could be prevented by the diet containing α-lipoic acid. The B1R agonist elicited head scratching, grooming, sniffing, rearing, digging, licking, face washing, wet dog shake, teeth chattering and biting in glucose-fed rats, which were absent after treatment with α-lipoic acid or antagonists/inhibitors. Data suggest that kinin B1R is upregulated by the oxidative stress in the brain of insulin-resistant rats and its activation causes stereotypic nocifensive behavior through the release of substance P, glutamate and NO.
Collapse
Affiliation(s)
- Jenny Pena Dias
- Department of Molecular and Integrative Physiology, Faculty of Medicine, Université de Montréal, C.P. 6128, Succursale Centre-ville, Montréal, QC H3C 3J7, Canada
| | - Helaine De Brito Gariépy
- Department of Molecular and Integrative Physiology, Faculty of Medicine, Université de Montréal, C.P. 6128, Succursale Centre-ville, Montréal, QC H3C 3J7, Canada
| | - Brice Ongali
- Department of Molecular and Integrative Physiology, Faculty of Medicine, Université de Montréal, C.P. 6128, Succursale Centre-ville, Montréal, QC H3C 3J7, Canada
| | - Réjean Couture
- Department of Molecular and Integrative Physiology, Faculty of Medicine, Université de Montréal, C.P. 6128, Succursale Centre-ville, Montréal, QC H3C 3J7, Canada.
| |
Collapse
|
5
|
Non-canonical signalling and roles of the vasoactive peptides angiotensins and kinins. Clin Sci (Lond) 2014; 126:753-74. [DOI: 10.1042/cs20130414] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
GPCRs (G-protein-coupled receptors) are among the most important targets for drug discovery due to their ubiquitous expression and participation in cellular events under both healthy and disease conditions. These receptors can be activated by a plethora of ligands, such as ions, odorants, small ligands and peptides, including angiotensins and kinins, which are vasoactive peptides that are classically involved in the pathophysiology of cardiovascular events. These peptides and their corresponding GPCRs have been reported to play roles in other systems and under pathophysiological conditions, such as cancer, central nervous system disorders, metabolic dysfunction and bone resorption. More recently, new mechanisms have been described for the functional regulation of GPCRs, including the transactivation of other signal transduction receptors and the activation of G-protein-independent pathways. The existence of such alternative mechanisms for signal transduction and the discovery of agonists that can preferentially trigger one signalling pathway over other pathways (called biased agonists) have opened new perspectives for the discovery and development of drugs with a higher specificity of action and, therefore, fewer side effects. The present review summarizes the current knowledge on the non-canonical signalling and roles of angiotensins and kinins.
Collapse
|
6
|
Bhat M, Pouliot M, Couture R, Vaucher E. The kallikrein-kinin system in diabetic retinopathy. PROGRESS IN DRUG RESEARCH. FORTSCHRITTE DER ARZNEIMITTELFORSCHUNG. PROGRES DES RECHERCHES PHARMACEUTIQUES 2014; 69:111-43. [PMID: 25130041 DOI: 10.1007/978-3-319-06683-7_5] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Diabetic retinopathy (DR) is a major microvascular complication associated with type 1 and type 2 diabetes mellitus, which can lead to visual impairment and blindness. Current treatment strategies for DR are mostly limited to laser therapies, steroids, and anti-VEGF agents, which are often associated with unwanted side effects leading to further complications. Recent evidence suggests that kinins play a primary role in the development of DR through enhanced vascular permeability, leukocytes infiltration, and other inflammatory mechanisms. These deleterious effects are mediated by kinin B1 and B2 receptors, which are expressed in diabetic human and rodent retina. Importantly, kinin B1 receptor is virtually absent in sane tissue, yet it is induced and upregulated in diabetic retina. These peptides belong to the kallikrein-kinin system (KKS), which contains two separate and independent pathways of regulated serine proteases, namely plasma kallikrein (PK) and tissue kallikrein (TK) that are involved in the biosynthesis of bradykinin (BK) and kallidin (Lys-BK), respectively. Hence, ocular inhibition of kallikreins or antagonism of kinin receptors offers new therapeutic avenues in the treatment and management of DR. Herein, we present an overview of the principal features and known inflammatory mechanisms associated with DR along with the current therapeutic approaches and put special emphasis on the KKS as a new and promising therapeutic target due to its link with key pathways directly associated with the development of DR.
Collapse
|