1
|
On making (and turning adaptive to) maladaptive aversive memories in laboratory rodents. Neurosci Biobehav Rev 2023; 147:105101. [PMID: 36804263 DOI: 10.1016/j.neubiorev.2023.105101] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 02/03/2023] [Accepted: 02/14/2023] [Indexed: 02/18/2023]
Abstract
Fear conditioning and avoidance tasks usually elicit adaptive aversive memories. Traumatic memories are more intense, generalized, inflexible, and resistant to attenuation via extinction- and reconsolidation-based strategies. Inducing and assessing these dysfunctional, maladaptive features in the laboratory are crucial to interrogating posttraumatic stress disorder's neurobiology and exploring innovative treatments. Here we analyze over 350 studies addressing this question in adult rats and mice. There is a growing interest in modeling several qualitative and quantitative memory changes by exposing already stressed animals to freezing- and avoidance-related tests or using a relatively high aversive training magnitude. Other options combine aversive/fearful tasks with post-acquisition or post-retrieval administration of one or more drugs provoking neurochemical or epigenetic alterations reported in the trauma aftermath. It is potentially instructive to integrate these procedures and incorporate the measurement of autonomic and endocrine parameters. Factors to consider when defining the organismic and procedural variables, partially neglected aspects (sex-dependent differences and recent vs. remote data comparison) and suggestions for future research (identifying reliable individual risk and treatment-response predictors) are discussed.
Collapse
|
2
|
Effects of anisomycin infusions into the dorsal striatum on memory consolidation of intense training and neurotransmitter activity. Brain Res Bull 2019; 150:250-260. [DOI: 10.1016/j.brainresbull.2019.06.005] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2019] [Revised: 05/24/2019] [Accepted: 06/07/2019] [Indexed: 01/26/2023]
|
3
|
Hitchcock LN, Raybuck JD, Wood MA, Lattal KM. Effects of a histone deacetylase 3 inhibitor on extinction and reinstatement of cocaine self-administration in rats. Psychopharmacology (Berl) 2019; 236:517-529. [PMID: 30488346 PMCID: PMC6459190 DOI: 10.1007/s00213-018-5122-2] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/18/2018] [Accepted: 11/12/2018] [Indexed: 01/02/2023]
Abstract
RATIONALE A challenge in treating substance use disorder is that successful treatment often does not persist, resulting in relapse and continued drug seeking. One approach to persistently weaken drug-seeking behaviors is to pair exposure to drug-associated cues or behaviors with delivery of a compound that may strengthen the inhibition of the association between drug cues and behavior. OBJECTIVES We evaluated whether a selective histone deacetylase 3 (HDAC3) inhibitor could promote extinction and weaken contextual control of operant drug seeking after intravenous cocaine self-administration. METHODS Male Long-Evans rats received a systemic injection of the HDAC3 inhibitor RGFP966 either before or immediately after the first extinction session. Persistence of extinction was tested over subsequent extinction sessions, as well as tests of reinstatement that included cue-induced reinstatement, contextual renewal, and cocaine-primed reinstatement. Additional extinction sessions occurred between each reinstatement test. We also evaluated effects of RGFP966 on performance and motivation during stable fixed ratio operant responding for cocaine and during a progressive ratio of reinforcement. RESULTS RGFP966 administered before the first extinction session led to significantly less responding during subsequent extinction and reinstatement tests compared to vehicle-injected rats. Follow-up studies found that these effects were not likely due to a performance deficit or a change in motivation to self-administer cocaine, as injections of RGFP966 had no effect on stable responding during a fixed or progressive ratio schedule. In addition, RGFP966 administered just after the first extinction session had no effect during early extinction and reinstatement tests, but weakened long-term responding during later extinction sessions. CONCLUSIONS These results suggest that a systemic injection of a selective HDAC3 inhibitor can enhance extinction and suppress reinstatement after cocaine self-administration. The finding that behavioral and pharmacological manipulations can be combined to decrease drug seeking provides further potential for treatment by epigenetic modulation.
Collapse
Affiliation(s)
- Leah N. Hitchcock
- Department of Behavioral Neuroscience, Oregon Health & Science University
| | | | - Marcelo A. Wood
- Department of Neurobiology and Behavior, University of California, Irvine
| | - K. Matthew Lattal
- Department of Behavioral Neuroscience, Oregon Health & Science University
| |
Collapse
|
4
|
Mastrodonato A, Barbati SA, Leone L, Colussi C, Gironi K, Rinaudo M, Piacentini R, Denny CA, Grassi C. Olfactory memory is enhanced in mice exposed to extremely low-frequency electromagnetic fields via Wnt/β-catenin dependent modulation of subventricular zone neurogenesis. Sci Rep 2018; 8:262. [PMID: 29321633 PMCID: PMC5762682 DOI: 10.1038/s41598-017-18676-1] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2017] [Accepted: 12/15/2017] [Indexed: 12/03/2022] Open
Abstract
Exposure to extremely low-frequency electromagnetic fields (ELFEF) influences the expression of key target genes controlling adult neurogenesis and modulates hippocampus-dependent memory. Here, we assayed whether ELFEF stimulation affects olfactory memory by modulating neurogenesis in the subventricular zone (SVZ) of the lateral ventricle, and investigated the underlying molecular mechanisms. We found that 30 days after the completion of an ELFEF stimulation protocol (1 mT; 50 Hz; 3.5 h/day for 12 days), mice showed enhanced olfactory memory and increased SVZ neurogenesis. These effects were associated with upregulated expression of mRNAs encoding for key regulators of adult neurogenesis and were mainly dependent on the activation of the Wnt pathway. Indeed, ELFEF stimulation increased Wnt3 mRNA expression and nuclear localization of its downstream target β-catenin. Conversely, inhibition of Wnt3 by Dkk-1 prevented ELFEF-induced upregulation of neurogenic genes and abolished ELFEF’s effects on olfactory memory. Collectively, our findings suggest that ELFEF stimulation increases olfactory memory via enhanced Wnt/β-catenin signaling in the SVZ and point to ELFEF as a promising tool for enhancing SVZ neurogenesis and olfactory function.
Collapse
Affiliation(s)
- Alessia Mastrodonato
- Università Cattolica del Sacro Cuore, Institute of Human Physiology, Rome, 00168, Italy.,Columbia University, Department of Psychiatry, New York, NY, 10032, USA.,Research Foundation for Mental Hygiene Inc. (RFMH), Division of Integrative Neuroscience, New York State Psychiatric Institute (NYSPI), New York, NY, 10032, USA
| | | | - Lucia Leone
- Università Cattolica del Sacro Cuore, Institute of Human Physiology, Rome, 00168, Italy
| | - Claudia Colussi
- CNR, Institute of Cell Biology and Neurobiology, Monterotondo (RM), 00015, Italy
| | - Katia Gironi
- Università Cattolica del Sacro Cuore, Institute of Human Physiology, Rome, 00168, Italy
| | - Marco Rinaudo
- Università Cattolica del Sacro Cuore, Institute of Human Physiology, Rome, 00168, Italy
| | - Roberto Piacentini
- Università Cattolica del Sacro Cuore, Institute of Human Physiology, Rome, 00168, Italy
| | - Christine A Denny
- Columbia University, Department of Psychiatry, New York, NY, 10032, USA.,Research Foundation for Mental Hygiene Inc. (RFMH), Division of Integrative Neuroscience, New York State Psychiatric Institute (NYSPI), New York, NY, 10032, USA
| | - Claudio Grassi
- Università Cattolica del Sacro Cuore, Institute of Human Physiology, Rome, 00168, Italy. .,Fondazione Policlinico Universitario A. Gemelli, Rome, 00168, Italy.
| |
Collapse
|
5
|
Elsner VR, Basso C, Bertoldi K, de Meireles LCF, Cechinel LR, Siqueira IR. Differential effect of treadmill exercise on histone deacetylase activity in rat striatum at different stages of development. J Physiol Sci 2017; 67:387-394. [PMID: 27412385 PMCID: PMC10716973 DOI: 10.1007/s12576-016-0471-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2016] [Accepted: 07/04/2016] [Indexed: 10/21/2022]
Abstract
The study described herein aimed to evaluate the impact of exercise on histone acetylation markers in striatum from Wistar rats at different stages of development. Male Wistar rats were submitted to two different exercise protocols: a single session of treadmill (running 20 min) or a moderate daily exercise protocol (running 20 min for 2 weeks). Striata of rats aged 39 days postnatal (adolescents), 3 months (young adults), and 20 months (aged) were used. The single exercise session induced persistent effects on global HDAC activity only in the adolescent group, given that exercised rats showed decreased HDAC activity 1 and 18 h after training, without effect on histone H4 acetylation levels. However, the moderate daily exercise did not alter any histone acetylation marker in adolescent and mature groups in any time point evaluated after training. In sum, our data suggest that exercise impacts striatal HDAC activity in an age- and protocol-dependent manner. Specifically, this response seems to be more evident during the adolescent period and might suffer a molecular adaptation in response to chronic training.
Collapse
Affiliation(s)
- Viviane Rostirola Elsner
- Programa de Pós-Graduação em Ciências Biológicas: Fisiologia, Universidade Federal do Rio Grande do Sul , Porto Alegre, Rio Grande do Sul, Brasil
- Programa de Pós Graduação em Biociências e Reabilitação, Centro Universitário Metodista-IPA, Porto Alegre, Rio Grande do Sul, Brasil
| | - Carla Basso
- Programa de Pós-Graduação em Ciências Biológicas: Fisiologia, Universidade Federal do Rio Grande do Sul , Porto Alegre, Rio Grande do Sul, Brasil
| | - Karine Bertoldi
- Programa de Pós-Graduação em Ciências Biológicas: Fisiologia, Universidade Federal do Rio Grande do Sul , Porto Alegre, Rio Grande do Sul, Brasil
| | | | - Laura Reck Cechinel
- Programa de Pós-Graduação em Ciências Biológicas: Fisiologia, Universidade Federal do Rio Grande do Sul , Porto Alegre, Rio Grande do Sul, Brasil
| | - Ionara Rodrigues Siqueira
- Programa de Pós-Graduação em Ciências Biológicas: Fisiologia, Universidade Federal do Rio Grande do Sul , Porto Alegre, Rio Grande do Sul, Brasil.
- Laboratório de Neuropsicofarmacologia, Departamento de Farmacologia, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brasil.
| |
Collapse
|
6
|
Kurdyukov S, Bullock M. DNA Methylation Analysis: Choosing the Right Method. BIOLOGY 2016; 5:biology5010003. [PMID: 26751487 PMCID: PMC4810160 DOI: 10.3390/biology5010003] [Citation(s) in RCA: 356] [Impact Index Per Article: 44.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/08/2015] [Revised: 12/16/2015] [Accepted: 12/22/2015] [Indexed: 01/10/2023]
Abstract
In the burgeoning field of epigenetics, there are several methods available to determine the methylation status of DNA samples. However, choosing the method that is best suited to answering a particular biological question still proves to be a difficult task. This review aims to provide biologists, particularly those new to the field of epigenetics, with a simple algorithm to help guide them in the selection of the most appropriate assay to meet their research needs. First of all, we have separated all methods into two categories: those that are used for: (1) the discovery of unknown epigenetic changes; and (2) the assessment of DNA methylation within particular regulatory regions/genes of interest. The techniques are then scrutinized and ranked according to their robustness, high throughput capabilities and cost. This review includes the majority of methods available to date, but with a particular focus on commercially available kits or other simple and straightforward solutions that have proven to be useful.
Collapse
Affiliation(s)
- Sergey Kurdyukov
- Genomics Core facility, Kolling Institute of Medical Research, University of Sydney, Sydney 2065, Australia.
| | - Martyn Bullock
- Cancer Genetics Laboratory, Kolling Institute of Medical Research, University of Sydney, Sydney 2065, Australia.
| |
Collapse
|
7
|
Manganese-Disrupted Interaction of Dopamine D1 and NMDAR in the Striatum to Injury Learning and Memory Ability of Mice. Mol Neurobiol 2015; 53:6745-6758. [PMID: 26660110 DOI: 10.1007/s12035-015-9602-7] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2015] [Accepted: 12/01/2015] [Indexed: 10/22/2022]
Abstract
Manganese (Mn) is widely regarded as a neurotoxic heavy metal that causes learning and memory deficits. Recently, it has been proved that the striatum is related to memory and learning ability. However, no previous study focused on the effect of Mn-induced learning and memory deficits on the striatum. This study aims to investigate the probable interaction of dopamine D1 receptor (DR1) and N-methyl-D-aspartate receptor (NMDAR), two cognition-related receptors in the striatum during Mn exposure. Mice are randomly divided into four groups, including control group, 12.5 mg/kg MnCl2 group, 25 mg/kg MnCl2 group, and 50 mg/kg MnCl2 group. The mice receive intraperitoneal injections of 0, 12.5, 25, and 50 mg/kg MnCl2 once daily for 2 weeks. Then, learning and memory ability, pathological changes, expression, and interaction of DR1 and NMDAR are determined. It has been found that Mn disrupted spatial learning and memory ability of mice by Morris water maze test and the passive avoidance test. Pathological and ultrastructure were injured. Mn decreased the immunohistochemical activities, protein levels, and messenger RNA (mRNA) expression of DR1, NR1, and NR2A. Mn exposure inhibited interaction between DR1 and NMDAR in striatum by double immunofluorescent staining and co-immunoprecipitation. In conclusion, our study illustrated that Mn caused learning and memory dysfunction via injury of striatum and inhibition of interaction between DR1 and NMDAR in striatum.
Collapse
|
8
|
Morris MJ, Monteggia LM. Role of DNA methylation and the DNA methyltransferases in learning and memory. DIALOGUES IN CLINICAL NEUROSCIENCE 2015. [PMID: 25364286 PMCID: PMC4214178 DOI: 10.31887/dcns.2014.16.3/mmorris] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Dynamic regulation of chromatin structure in postmitotic neurons plays an important role in learning and memory. Methylation of cytosine nucleotides has historically been considered the strongest and least modifiable of epigenetic marks. Accumulating recent data suggest that rapid and dynamic methylation and demethylation of specific genes in the brain may play a fundamental role in learning, memory formation, and behavioral plasticity. The current review focuses on the emergence of data that support the role of DNA methylation and demethylation, and its molecular mediators in memory formation.
Collapse
Affiliation(s)
- Michael J Morris
- Department of Biological Sciences, University of Michigan-Dearborn, Dearborn, Michigan, USA
| | - Lisa M Monteggia
- Department of Neuroscience, UT Southwestern Medical Center, Dallas, Texas, USA
| |
Collapse
|