1
|
Stress, memory, and implications for major depression. Behav Brain Res 2021; 412:113410. [PMID: 34116119 DOI: 10.1016/j.bbr.2021.113410] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Revised: 06/04/2021] [Accepted: 06/06/2021] [Indexed: 12/22/2022]
Abstract
The stress response comprises a phylogenetically conserved set of cognitive, physiological, and behavioral responses that evolved as a survival strategy. In this context, the memory of stressful events would be adaptive as it could avoid re-exposure to an adverse event, otherwise the event would be facilitated in positively stressful or non-distressful conditions. However, the interaction between stress and memory comprises complex responses, some of them which are not yet completely understood, and which depend on several factors such as the memory system that is recruited, the nature and duration of the stressful event, as well as the timing in which this interaction takes place. In this narrative review, we briefly discuss the mechanisms of the stress response, the main memory systems, and its neural correlates. Then, we show how stress, through the action of its biochemical mediators, influences memory systems and mnemonic processes. Finally, we make use of major depressive disorder to explore the possible implications of non-adaptive interactions between stress and memory to psychiatric disorders, as well as possible roles for memory studies in the field of psychiatry.
Collapse
|
2
|
Huang K, Hu Y, Sun Y, Yu Z, Liu W, Zhu P, Tao F. Elective caesarean delivery and offspring’s cognitive impairment: Implications of methylation alteration in hippocampus glucocorticoid signaling genes. Brain Res Bull 2019; 144:108-121. [DOI: 10.1016/j.brainresbull.2018.11.014] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2018] [Revised: 11/09/2018] [Accepted: 11/21/2018] [Indexed: 12/16/2022]
|
3
|
Passecker J, Islam MN, Hok V, O'Mara SM. Influences of photic stress on postsubicular head-directional processing. Eur J Neurosci 2018. [PMID: 29512927 PMCID: PMC5947620 DOI: 10.1111/ejn.13887] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
Abstract
The stress response serves vital adaptive functions. However, acute stress episodes often negatively impact cognitive processing. Here, we aimed to elucidate whether stress detrimentally affects the head‐direction cells of the postsubiculum, which may in turn impair downstream spatial information processing. We recorded neurons in the rats’ postsubiculum during a pellet‐chasing task during baseline non‐stress conditions and after a 30‐min acute photic stress exposure. Based on their baseline firing rate, we identified a subpopulation of head‐direction cells that drastically decreased its firing rate as a response to stress while preserving their head directionality. The remaining population of head‐direction cells as well as other neurons recorded in the postsubiculum were unaffected. The observed altered activity in the subpopulation might be the basis for spatial processing deficits observed following acute stress episodes.
Collapse
Affiliation(s)
- Johannes Passecker
- Trinity College Institute of Neuroscience, Trinity College Dublin, Dublin 2, Ireland
| | - Md Nurul Islam
- Trinity College Institute of Neuroscience, Trinity College Dublin, Dublin 2, Ireland
| | - Vincent Hok
- Aix-Marseille Université, CNRS, UMR 7291, Marseilles, France
| | - Shane M O'Mara
- Trinity College Institute of Neuroscience, Trinity College Dublin, Dublin 2, Ireland
| |
Collapse
|
4
|
Uribe-Mariño A, Gassen NC, Wiesbeck MF, Balsevich G, Santarelli S, Solfrank B, Dournes C, Fries GR, Masana M, Labermeier C, Wang XD, Hafner K, Schmid B, Rein T, Chen A, Deussing JM, Schmidt MV. Prefrontal Cortex Corticotropin-Releasing Factor Receptor 1 Conveys Acute Stress-Induced Executive Dysfunction. Biol Psychiatry 2016; 80:743-753. [PMID: 27318500 DOI: 10.1016/j.biopsych.2016.03.2106] [Citation(s) in RCA: 59] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/03/2016] [Revised: 03/30/2016] [Accepted: 03/31/2016] [Indexed: 10/22/2022]
Abstract
BACKGROUND The medial prefrontal cortex (mPFC) subserves complex cognition and is impaired by stress. Corticotropin-releasing factor (CRF), through CRF receptor 1 (CRFR1), constitutes a key element of the stress response. However, its contribution to the effects of stress in the mPFC remains unclear. METHODS Mice were exposed to acute social defeat stress and subsequently to either the temporal order memory (n = 11-12) or reversal learning (n = 9-11) behavioral test. Changes in mPFC Crhr1 messenger RNA levels were measured in acutely stressed mice (n = 12). Crhr1loxP/loxP mice received either intra-mPFC adeno-associated virus-Cre or empty microinjections (n = 17-20) and then were submitted to acute stress and later to the behavioral tests. Co-immunoprecipitation was used to detect activation of the protein kinase A (PKA) signaling pathway in the mPFC of acutely stressed mice (n = 8) or intra-mPFC CRF injected mice (n = 7). Finally, mice received intra-mPFC CRF (n = 11) and/or Rp-isomer cyclic adenosine 3',5' monophosphorothioate (Rp-cAMPS) (n = 12) microinjections and underwent behavioral testing. RESULTS We report acute stress-induced effects on mPFC-mediated cognition, identify CRF-CRFR1-containing microcircuits within the mPFC, and demonstrate stress-induced changes in Crhr1 messenger RNA expression. Importantly, intra-mPFC CRFR1 deletion abolishes acute stress-induced executive dysfunction, whereas intra-mPFC CRF mimics acute stress-induced mPFC dysfunction. Acute stress and intra-mPFC CRF activate the PKA signaling pathway in the mPFC, leading to cyclic AMP response element binding protein phosphorylation in intra-mPFC CRFR1-expressing neurons. Finally, PKA blockade reverses the intra-mPFC CRF-induced executive dysfunction. CONCLUSIONS Taken together, these results unravel a molecular mechanism linking acute stress to executive dysfunction via CRFR1. This will aid in the development of novel therapeutic targets for stress-induced cognitive dysfunction.
Collapse
Affiliation(s)
- Andrés Uribe-Mariño
- Department of Stress Neurobiology and Neurogenetics, Max Planck Institute of Psychiatry, Munich, Germany
| | - Nils C Gassen
- Department of Translational Research in Psychiatry, Max Planck Institute of Psychiatry, Munich, Germany
| | - Maximilian F Wiesbeck
- Department of Stress Neurobiology and Neurogenetics, Max Planck Institute of Psychiatry, Munich, Germany
| | - Georgia Balsevich
- Department of Stress Neurobiology and Neurogenetics, Max Planck Institute of Psychiatry, Munich, Germany
| | - Sara Santarelli
- Department of Stress Neurobiology and Neurogenetics, Max Planck Institute of Psychiatry, Munich, Germany
| | - Beate Solfrank
- Department of Stress Neurobiology and Neurogenetics, Max Planck Institute of Psychiatry, Munich, Germany
| | - Carine Dournes
- Department of Stress Neurobiology and Neurogenetics, Max Planck Institute of Psychiatry, Munich, Germany
| | - Gabriel R Fries
- Department of Translational Research in Psychiatry, Max Planck Institute of Psychiatry, Munich, Germany; INCT for Translational Medicine, Porto Alegre, Brazil
| | - Merce Masana
- Department of Stress Neurobiology and Neurogenetics, Max Planck Institute of Psychiatry, Munich, Germany
| | - Christiana Labermeier
- Department of Stress Neurobiology and Neurogenetics, Max Planck Institute of Psychiatry, Munich, Germany
| | - Xiao-Dong Wang
- Department of Stress Neurobiology and Neurogenetics, Max Planck Institute of Psychiatry, Munich, Germany; Department of Neurobiology, Key Laboratory of Medical Neurobiology of Ministry of Health of China, Zhejiang Province Key Laboratory of Neurobiology, Zhejiang University School of Medicine, Hangzhou, China
| | - Kathrin Hafner
- Department of Translational Research in Psychiatry, Max Planck Institute of Psychiatry, Munich, Germany
| | - Bianca Schmid
- Department of Stress Neurobiology and Neurogenetics, Max Planck Institute of Psychiatry, Munich, Germany
| | - Theo Rein
- Department of Translational Research in Psychiatry, Max Planck Institute of Psychiatry, Munich, Germany
| | - Alon Chen
- Department of Stress Neurobiology and Neurogenetics, Max Planck Institute of Psychiatry, Munich, Germany
| | - Jan M Deussing
- Department of Stress Neurobiology and Neurogenetics, Max Planck Institute of Psychiatry, Munich, Germany
| | - Mathias V Schmidt
- Department of Stress Neurobiology and Neurogenetics, Max Planck Institute of Psychiatry, Munich, Germany.
| |
Collapse
|
5
|
Zlomuzica A, Preusser F, Totzeck C, Dere E, Margraf J. The impact of different emotional states on the memory for what, where and when features of specific events. Behav Brain Res 2016; 298:181-7. [DOI: 10.1016/j.bbr.2015.09.037] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2015] [Revised: 09/22/2015] [Accepted: 09/27/2015] [Indexed: 12/26/2022]
|