1
|
Pulido-Saavedra A, Oliva HNP, Prudente TP, Kitaneh R, Nunes EJ, Fogg C, Funaro MC, Weleff J, Nia AB, Angarita GA. Effects of psychedelics on opioid use disorder: a scoping review of preclinical studies. Cell Mol Life Sci 2025; 82:49. [PMID: 39833376 PMCID: PMC11747050 DOI: 10.1007/s00018-024-05519-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Revised: 11/01/2024] [Accepted: 11/19/2024] [Indexed: 01/22/2025]
Abstract
The current opioid crisis has had an unprecedented public health impact. Approved medications for opioid use disorder (OUD) exist, yet their limitations indicate a need for innovative treatments. Limited preliminary clinical studies suggest specific psychedelics might aid OUD treatment, though most clinical evidence remains observational, with few controlled trials. This review aims to bridge the gap between preclinical findings and potential clinical applications, following PRISMA-ScR guidelines. Searches included MEDLINE, Embase, Scopus, and Web of Science, focusing on preclinical in vivo studies involving opioids and psychedelics in animals, excluding pain studies and those lacking control groups. Forty studies met criteria, covering both classic and non-classic psychedelics. Most studies showed that 18-methoxycoronaridine (18-MC), ibogaine, noribogaine, and ketamine could reduce opioid self-administration, alleviate withdrawal symptoms, and change conditioned place preference. However, seven studies (two on 2,5-dimethoxy-4-methylamphetamine (DOM), three on ibogaine, one on 18-MC, and one on ketamine) showed no improvement over controls. A methodological quality assessment rated most of the studies as having unclear quality. Interestingly, most preclinical studies are limited to iboga derivatives, which were effective, but these agents may have higher cardiovascular risk than other psychedelics under-explored to date. This review strengthens support for translational studies testing psychedelics as potential innovative targets for OUD. It also suggests clinical studies need to include a broader range of agents beyond iboga derivatives but can also explore several ongoing questions in the field, such as the mechanism of action behind the potential therapeutic effect, safety profiles, doses, and frequency of administrations needed.
Collapse
Affiliation(s)
- Alejandra Pulido-Saavedra
- Department of Psychiatry, Yale University School of Medicine, 300 George Street, Suite 901, New Haven, CT, 06511, USA
- Clinical Neuroscience Research Unit, Connecticut Mental Health Center, Room 359, 34 Park Street, New Haven, CT, 06519, USA
| | - Henrique Nunes Pereira Oliva
- Department of Psychiatry, Yale University School of Medicine, 300 George Street, Suite 901, New Haven, CT, 06511, USA
- Clinical Neuroscience Research Unit, Connecticut Mental Health Center, Room 359, 34 Park Street, New Haven, CT, 06519, USA
| | - Tiago Paiva Prudente
- Faculdade de Medicina, Universidade Federal de Goiás, 235 Street, Goiânia, Brasil
| | - Razi Kitaneh
- Department of Psychiatry, Yale University School of Medicine, 300 George Street, Suite 901, New Haven, CT, 06511, USA
- Clinical Neuroscience Research Unit, Connecticut Mental Health Center, Room 359, 34 Park Street, New Haven, CT, 06519, USA
| | - Eric J Nunes
- Department of Psychiatry, Yale University School of Medicine, 300 George Street, Suite 901, New Haven, CT, 06511, USA
- Yale Tobacco Center of Regulatory Science, Yale University School of Medicine, New Haven, CT, USA
| | - Colleen Fogg
- Pharmacy Department, Yale-New Haven Health, Connecticut Mental Health Center, 34 Park Street, New Haven, CT, 06515, USA
| | - Melissa C Funaro
- Harvey Cushing/John Hay Whitney Medical Library, Yale University, 333 Cedar Street, New Haven, CT, 06510, USA
| | - Jeremy Weleff
- Department of Psychiatry, Yale University School of Medicine, 300 George Street, Suite 901, New Haven, CT, 06511, USA
- Department of Psychiatry, Faculty of Medicine & Dentistry, University of Alberta, Edmonton, AB, Canada
- Neuroscience and Mental Health Institute, University of Alberta, Edmonton, Canada
| | - Anahita Bassir Nia
- Department of Psychiatry, Yale University School of Medicine, 300 George Street, Suite 901, New Haven, CT, 06511, USA
- Clinical Neuroscience Research Unit, Connecticut Mental Health Center, Room 359, 34 Park Street, New Haven, CT, 06519, USA
| | - Gustavo A Angarita
- Department of Psychiatry, Yale University School of Medicine, 300 George Street, Suite 901, New Haven, CT, 06511, USA.
- Clinical Neuroscience Research Unit, Connecticut Mental Health Center, Room 359, 34 Park Street, New Haven, CT, 06519, USA.
| |
Collapse
|
2
|
Erkizia-Santamaría I, Horrillo I, Meana JJ, Ortega JE. Clinical and preclinical evidence of psilocybin as antidepressant. A narrative review. Prog Neuropsychopharmacol Biol Psychiatry 2025:111249. [PMID: 39778644 DOI: 10.1016/j.pnpbp.2025.111249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Revised: 01/02/2025] [Accepted: 01/03/2025] [Indexed: 01/11/2025]
Abstract
In the rapidly growing field of psychedelic research, psilocybin (and active metabolite psilocin) has been proposed as a promising candidate in the search for novel treatments for neuropsychiatric disorders. Clinical trials have revealed that psilocybin has a large, rapid, and persistent effect in the improvement of symptoms of depression and anxiety. The safety profile is considered favourable, with low toxicity and good tolerance. Several preclinical studies have also been carried out to determine the long-term mechanism of action of this drug. In this sense, preclinical studies in naïve animals as well as in animal models of disease have shown somewhat discrepant results in conventional tests for assessment of depression- and anxiety-like phenotype in response to psilocybin, but overall suggest positive outcomes. Additionally, several valuable assays in rodent models have been developed over the years to elucidate the neurochemical correlates of serotonin 2A receptor (5HT2AR) activation in the brain, primary molecular target of psilocin. This review aims to provide a general overview of the current and most recent literature in the therapeutic potential of psilocybin through a description of clinical trials of psilocybin-assisted psychotherapy, and to showcase the scene in the up-to-date preclinical research. A detailed description of preclinical rodent models and experimental approaches that have been used to study the neurobiological and behavioural actions of psilocybin is provided, and potential therapeutic mechanisms of action are discussed.
Collapse
Affiliation(s)
| | - Igor Horrillo
- Department of Pharmacology, University of the Basque Country UPV/EHU, Leioa, Bizkaia, Spain; Centro de Investigación Biomédica en Red de Salud Mental, Instituto de Salud Carlos III, Spain; Biobizkaia Health Research Institute, Barakaldo, Bizkaia, Spain
| | - J Javier Meana
- Department of Pharmacology, University of the Basque Country UPV/EHU, Leioa, Bizkaia, Spain; Centro de Investigación Biomédica en Red de Salud Mental, Instituto de Salud Carlos III, Spain; Biobizkaia Health Research Institute, Barakaldo, Bizkaia, Spain
| | - Jorge E Ortega
- Department of Pharmacology, University of the Basque Country UPV/EHU, Leioa, Bizkaia, Spain; Centro de Investigación Biomédica en Red de Salud Mental, Instituto de Salud Carlos III, Spain; Biobizkaia Health Research Institute, Barakaldo, Bizkaia, Spain.
| |
Collapse
|
3
|
Xing C, Chen H, Bi W, Lei T, Hang Z, Du H. Targeting 5-HT Is a Potential Therapeutic Strategy for Neurodegenerative Diseases. Int J Mol Sci 2024; 25:13446. [PMID: 39769209 PMCID: PMC11679250 DOI: 10.3390/ijms252413446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2024] [Revised: 12/07/2024] [Accepted: 12/13/2024] [Indexed: 01/11/2025] Open
Abstract
There is increasing interest in the potential therapeutic role of 5-HT (serotonin) in the treatment of neurodegenerative diseases, which are characterized by the progressive degeneration and death of nerve cells. 5-HT is a vital neurotransmitter that plays a central role in regulating mood, cognition, and various physiological processes in the body. Disruptions in the 5-HT system have been linked to several neurological and psychiatric disorders, making it an attractive target for therapeutic intervention. Although the exact causes of neurodegenerative diseases such as Alzheimer's disease (AD), Parkinson's disease (PD), and amyotrophic lateral sclerosis (ALS) are not fully understood, researchers believe that regulating the 5-HT system could help alleviate symptoms and potentially slow the progression of these diseases. Here, we delve into the potential of harnessing 5-HT as a therapeutic target for the treatment of neurodegenerative diseases. It is important to note that the current clinical drugs targeting 5-HT are still limited in the treatment of these complex diseases. Therefore, further research and clinical trials are needed to evaluate the feasibility and effectiveness of its clinical application.
Collapse
Affiliation(s)
- Cencan Xing
- Daxing Research Institute, University of Science and Technology Beijing, Beijing 100083, China; (C.X.); (H.C.); (W.B.); (Z.H.)
- School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing 100083, China;
| | - Hongyu Chen
- Daxing Research Institute, University of Science and Technology Beijing, Beijing 100083, China; (C.X.); (H.C.); (W.B.); (Z.H.)
- School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing 100083, China;
| | - Wangyu Bi
- Daxing Research Institute, University of Science and Technology Beijing, Beijing 100083, China; (C.X.); (H.C.); (W.B.); (Z.H.)
- School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing 100083, China;
| | - Tong Lei
- School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing 100083, China;
| | - Zhongci Hang
- Daxing Research Institute, University of Science and Technology Beijing, Beijing 100083, China; (C.X.); (H.C.); (W.B.); (Z.H.)
- School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing 100083, China;
| | - Hongwu Du
- Daxing Research Institute, University of Science and Technology Beijing, Beijing 100083, China; (C.X.); (H.C.); (W.B.); (Z.H.)
- School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing 100083, China;
| |
Collapse
|
4
|
Akhmirov R, Mitiureva D, Zaichenko M, Smirnov K, Sysoeva O. The Role of the Serotonergic System in Time Perception: A Systematic Review. Int J Mol Sci 2024; 25:13305. [PMID: 39769070 PMCID: PMC11679555 DOI: 10.3390/ijms252413305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2024] [Revised: 12/07/2024] [Accepted: 12/07/2024] [Indexed: 01/11/2025] Open
Abstract
Time perception is a fundamental cognitive function essential for adaptive behavior and shared across species. The neural mechanisms underlying time perception, particularly its neuromodulation, remain debated. In this review, we examined the role of the serotonergic system in time perception (at the scale of seconds and minutes), building a translational bridge between human and non-human animal studies. The literature search was conducted according to the PRISMA statement in PubMed, APA PsycINFO, and APA PsycARTICLES. Sixty papers were selected for full-text review, encompassing both human (n = 10) and animal studies (n = 50). Summarizing the reviewed literature, we revealed consistent evidence for the role of serotonin in timing behavior, highlighting its complex involvement across retrospective, immediate, and prospective timing paradigms. Increased serotonergic activation appears to accelerate internal time speed, which we interpret through the dual klepsydra model as accelerated discharge of the temporal accumulator. However, some findings challenge this framework. Additionally, we link impulsivity-associated with decreased serotonergic functioning in our review-to a slower internal time speed. Variability in prospective timing tasks underscores the need for further research into how serotonin modulates reward-based temporal decisions, using novel approaches to disentangle internal time speed, response inhibition, and other factors.
Collapse
Affiliation(s)
- Rauf Akhmirov
- Institute of Higher Nervous Activity and Neurophysiology, Russian Academy of Sciences, 117465 Moscow, Russia; (R.A.); (D.M.); (M.Z.); (K.S.)
| | - Dina Mitiureva
- Institute of Higher Nervous Activity and Neurophysiology, Russian Academy of Sciences, 117465 Moscow, Russia; (R.A.); (D.M.); (M.Z.); (K.S.)
| | - Maria Zaichenko
- Institute of Higher Nervous Activity and Neurophysiology, Russian Academy of Sciences, 117465 Moscow, Russia; (R.A.); (D.M.); (M.Z.); (K.S.)
| | - Kirill Smirnov
- Institute of Higher Nervous Activity and Neurophysiology, Russian Academy of Sciences, 117465 Moscow, Russia; (R.A.); (D.M.); (M.Z.); (K.S.)
| | - Olga Sysoeva
- Institute of Higher Nervous Activity and Neurophysiology, Russian Academy of Sciences, 117465 Moscow, Russia; (R.A.); (D.M.); (M.Z.); (K.S.)
- Center for Cognitive Sciences, Sirius University of Science and Technology, 354340 Sirius, Russia
| |
Collapse
|
5
|
Chaves C, Dos Santos RG, Dursun SM, Tusconi M, Carta MG, Brietzke E, Hallak JEC. Why N,N-dimethyltryptamine matters: unique features and therapeutic potential beyond classical psychedelics. Front Psychiatry 2024; 15:1485337. [PMID: 39568756 PMCID: PMC11576444 DOI: 10.3389/fpsyt.2024.1485337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Accepted: 10/21/2024] [Indexed: 11/22/2024] Open
Affiliation(s)
- Cristiano Chaves
- NeuroMood Lab, School of Medicine and Kingston Health Sciences Centre (KHSC), Department of Psychiatry, Queen's University, Kingston, ON, Canada
| | - Rafael G Dos Santos
- Department of Neuroscience and Behavior, Ribeirão Preto Medical School, University of São Paulo, São Paulo, Brazil
- National Institute for Translational Medicine (INCT-TM), CNPq, São Paulo, Brazil
| | - Serdar M Dursun
- National Institute for Translational Medicine (INCT-TM), CNPq, São Paulo, Brazil
- Department of Psychiatry (Neurochemical Research Unit) and Neuroscience and Mental Health Institute, University of Alberta, Edmonton, AB, Canada
| | | | - Mauro Giovanni Carta
- Department of Medical Sciences and Public Health, University of Cagliari, Cagliari, Italy
| | - Elisa Brietzke
- NeuroMood Lab, School of Medicine and Kingston Health Sciences Centre (KHSC), Department of Psychiatry, Queen's University, Kingston, ON, Canada
| | - Jaime E C Hallak
- Department of Neuroscience and Behavior, Ribeirão Preto Medical School, University of São Paulo, São Paulo, Brazil
- National Institute for Translational Medicine (INCT-TM), CNPq, São Paulo, Brazil
- Department of Psychiatry (Neurochemical Research Unit) and Neuroscience and Mental Health Institute, University of Alberta, Edmonton, AB, Canada
| |
Collapse
|
6
|
Butler JJ, Ricci D, Aman C, Beyeler A, De Deurwaerdère P. Classical psychedelics' action on brain monoaminergic systems. Int J Biochem Cell Biol 2024; 176:106669. [PMID: 39332625 DOI: 10.1016/j.biocel.2024.106669] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Revised: 09/17/2024] [Accepted: 09/23/2024] [Indexed: 09/29/2024]
Abstract
The study of the mechanism of action of classical psychedelics has gained significant interest due to their clinical potential in the treatment of several psychiatric conditions, including major depressive and anxiety disorders. These drugs bind 5-hydroxytryptamine receptors (5-HTR) including 5-HT1AR, 5-HT2AR, 5-HT2BR, and/or 5-HT2CR, as well as other targets. 5-HTRs regulate the activity of ascending monoaminergic neurons, a mechanism primarily involved in the action of classical antidepressant drugs, antipsychotics, and drugs of abuse. Sparse neurochemical data have been produced on the control of monoaminergic neuron activity in response to classical psychedelics. Here we review the available data in order to determine whether classical psychedelics have specific neurochemical effects on serotonergic, dopaminergic, and noradrenergic neurons. The data show that these drugs have disparate effects on each monoaminergic system, demonstrating a complex response with state-dependent and region-specific effects. For instance, several psychedelics inhibit the firing of serotonergic neurons, although this is not necessarily associated with a decrease in serotonin release in all regions. Noradrenergic neuron spontaneous activity also appears to be inhibited by psychedelics, also not necessarily associated with a decrease in noradrenaline release in all regions. Psychedelics influence on dopaminergic systems is also complex as the above-mentioned 5-HTRs may have opposing effects on dopaminergic neuron activity, in a state-dependent manner. There is an apparent lack of clear neuronal signature induced by psychedelics on monoaminergic neuron activity despite specific recurrent mechanisms. This review provides a current summary of the action of psychedelics on monoamine neuromodulators serotonin, dopamine and noradrenaline, compiling reoccurring and contradictory findings demonstrating that a monoamine signature of psychedelics, if applicable, would be state- and region-dependant.
Collapse
Affiliation(s)
- Jasmine Jade Butler
- University of Bordeaux, France; Centre National de la Recherche Scientifique (CNRS), unit 5287, Institut des Neurosciences Intégratives et Cognitives d'Aquitaine (INCIA), Bordeaux, France
| | - Daria Ricci
- University of Bordeaux, France; Institut National pour la Santé et la Recherche Médicale (INSERM), unit 1215, Neurocentre Magendie, Bordeaux, France
| | - Chloé Aman
- University of Bordeaux, France; Centre National de la Recherche Scientifique (CNRS), unit 5287, Institut des Neurosciences Intégratives et Cognitives d'Aquitaine (INCIA), Bordeaux, France
| | - Anna Beyeler
- University of Bordeaux, France; Institut National pour la Santé et la Recherche Médicale (INSERM), unit 1215, Neurocentre Magendie, Bordeaux, France.
| | - Philippe De Deurwaerdère
- University of Bordeaux, France; Centre National de la Recherche Scientifique (CNRS), unit 5287, Institut des Neurosciences Intégratives et Cognitives d'Aquitaine (INCIA), Bordeaux, France.
| |
Collapse
|
7
|
Zhu H, Wang L, Wang X, Yao Y, Zhou P, Su R. 5-hydroxytryptamine 2C/1A receptors modulate the biphasic dose response of the head twitch response and locomotor activity induced by DOM in mice. Psychopharmacology (Berl) 2024; 241:2315-2330. [PMID: 38916640 DOI: 10.1007/s00213-024-06635-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Accepted: 05/24/2024] [Indexed: 06/26/2024]
Abstract
RATIONALE The phenylalkylamine hallucinogen (-)-2,5-dimethoxy-4-methylamphetamine (DOM) exhibits an inverted U-shaped dose-response curve for both head twitch response (HTR) and locomotor activity in mice. Accumulated studies suggest that HTR and locomotor hyperactivity induced by DOM are mainly caused by the activation of serotonin 5-hydroxytryptamine 2 A receptor (5-HT2A receptor). However, the mechanisms underlying the biphasic dose response of HTR and locomotor activity induced by DOM, particularly at high doses, remain unclear. OBJECTIVES The primary objective of this study is to investigate the modulation of 5-HT2A/2C/1A receptors in HTR and locomotor activity, while also exploring the potential receptor mechanisms underlying the biphasic dose response of DOM. METHODS In this study, we employed pharmacological methods to identify the specific 5-HT receptor subtypes responsible for mediating the biphasic dose-response effects of DOM on HTR and locomotor activity in C57BL/6J mice. RESULTS The 5-HT2A receptor selective antagonist (R)-[2,3-di(methoxy)phenyl]-[1-[2-(4-fluorophenyl)ethyl]piperidin-4-yl]methanol (M100907) (500 µg/kg, i.p.) fully blocked the HTR at every dose of DOM (0.615-10 mg/kg, i.p.) in C57BL/6J mice. M100907 (50 µg/kg, i.p.) decreased the locomotor hyperactivity induced by a low dose of DOM (0.625, 1.25 mg/kg, i.p.), but had no effect on the locomotor hypoactivity induced by a high dose of DOM (10 mg/kg) in C57BL/6J mice. The 5-HT2C antagonist 6-chloro-5-methyl-1-[(2-[2-methylpyrid-3yloxy]pyrid-5yl)carbamoyl]indoline (SB242084) (0.3, 1 mg/kg, i.p.) reduced the HTR induced by a dose of 2.5 mg/kg DOM, but did not affect the response to other doses. SB242084 (1 mg/kg, i.p.) significantly increased the locomotor activity induced by DOM (0.615-10 mg/kg, i.p.) in mice. The 5-HT1A antagonist N-[2-[4-(2-methoxyphenyl)-1-piperazinyl]ethyl]N-(2-pyridinyl) cyclohexane carboxamide maleate (WAY100635) (1 mg/kg, i.p.) increased both HTR and locomotor activity induced by DOM in mice. The 5-HT1A agonist 8-hydroxy-2-(di-n-propylamino)tetralin (8-OH-DPAT) (1 mg/kg, i.p.) significantly reduced both the HTR and locomotor activity induced by DOM in mice. Additionally, pretreatment with the Gαi/o inhibitor PTX (0.25 µg/mouse, i.c.v.) enhanced the HTR induced by DOM and attenuated the effect of DOM on locomotor activity in mice. CONCLUSIONS Receptor subtypes 5-HT2C and 5-HT1A are implicated in the inverted U-shaped dose-response curves of HTR and locomotor activity induced by DOM in mice. The biphasic dose-response function of HTR and locomotor activity induced by DOM has different mechanisms in mice.
Collapse
MESH Headings
- Animals
- Mice
- Dose-Response Relationship, Drug
- Male
- Receptor, Serotonin, 5-HT2C/drug effects
- Receptor, Serotonin, 5-HT2C/metabolism
- DOM 2,5-Dimethoxy-4-Methylamphetamine/pharmacology
- Piperidines/pharmacology
- Piperidines/administration & dosage
- Receptor, Serotonin, 5-HT2A/drug effects
- Receptor, Serotonin, 5-HT2A/metabolism
- Locomotion/drug effects
- Locomotion/physiology
- Motor Activity/drug effects
- Motor Activity/physiology
- Receptor, Serotonin, 5-HT1A/drug effects
- Receptor, Serotonin, 5-HT1A/metabolism
- Hallucinogens/pharmacology
- Hallucinogens/administration & dosage
- Mice, Inbred C57BL
- Head Movements/drug effects
- Aminopyridines/pharmacology
- Aminopyridines/administration & dosage
- Serotonin 5-HT2 Receptor Antagonists/pharmacology
- Serotonin 5-HT2 Receptor Antagonists/administration & dosage
- Fluorobenzenes/pharmacology
- Serotonin 5-HT2 Receptor Agonists/pharmacology
- Serotonin 5-HT2 Receptor Agonists/administration & dosage
- Indoles
Collapse
Affiliation(s)
- Huili Zhu
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Key Laboratory of Neuropsychopharmacology, Beijing Institute of Pharmacology and Toxicology, 27th Taiping Road, Beijing, 100850, China
- School of Pharmacy, Yantai University, Yantai, 264005, China
| | - Longyu Wang
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Key Laboratory of Neuropsychopharmacology, Beijing Institute of Pharmacology and Toxicology, 27th Taiping Road, Beijing, 100850, China
- Nanjing University of Chinese Medicine, Nanjing, 210000, China
| | - Xiaoxuan Wang
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Key Laboratory of Neuropsychopharmacology, Beijing Institute of Pharmacology and Toxicology, 27th Taiping Road, Beijing, 100850, China
| | - Yishan Yao
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Key Laboratory of Neuropsychopharmacology, Beijing Institute of Pharmacology and Toxicology, 27th Taiping Road, Beijing, 100850, China
| | - Peilan Zhou
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Key Laboratory of Neuropsychopharmacology, Beijing Institute of Pharmacology and Toxicology, 27th Taiping Road, Beijing, 100850, China.
| | - Ruibin Su
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Key Laboratory of Neuropsychopharmacology, Beijing Institute of Pharmacology and Toxicology, 27th Taiping Road, Beijing, 100850, China.
| |
Collapse
|
8
|
Romeo B, Kervadec E, Fauvel B, Strika-Bruneau L, Amirouche A, Verroust V, Piolino P, Benyamina A. Significant Psychedelic Experiences Evaluated for Mystical Characteristics Associated with Cannabis Use Reduction and Psychological Flexibility Improvement: A Naturalistic Cross-Sectional Retrospective Survey. J Psychoactive Drugs 2024:1-12. [PMID: 38961652 DOI: 10.1080/02791072.2024.2375720] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2024] [Accepted: 05/13/2024] [Indexed: 07/05/2024]
Abstract
Treating cannabis use disorder remains a significant challenge in the field of addiction medicine. Some recent studies point to psychedelic-assisted psychotherapy as a potential treatment option for substance use disorders. The objective of this study was therefore to explore the impact of naturalistic psychedelic experiences on cannabis use and psychological flexibility. An online retrospective survey was carried out on 152 cannabis users who also reported a significant experience induced by psychedelics in the past. Following a psychedelic experience, there was a significant and sustained reduction of average CUDIT score (p < .001), frequency of cannabis use (p < .001), and acute duration of daily intoxication (p < .001). Cannabis use reduction during the first month post-experience was significantly associated with the intensity of the mystical experience (p = .01). Participants reported a concomitant increased lasting improvement of psychological flexibility following the experience (p < .001), which was correlated to the intensity of the mystical experience during the first month post-experience (p = .04). This study demonstrates that naturalistic psychedelic experiences may be followed by a decrease in cannabis use. Positive health outcomes appear potentially connected to the intensity of the mystical experience, as well as an improvement in psychological flexibility.
Collapse
Affiliation(s)
- B Romeo
- Department of Psychiatry and Addictology, APHP, Paul Brousse Hospital, Villejuif, France
- Unité de Recherche Psychiatrie-Comorbidités-Addictions, PSYCOMADD - Paris Saclay University Île-de-France, Villejuif, France
| | - E Kervadec
- Department of Psychiatry and Addictology, APHP, Paul Brousse Hospital, Villejuif, France
| | - B Fauvel
- Laboratoire Mémoire, Cerveau et Cognition (UR 7536), Institut de Psychologie, Université Paris Cité, Paris, France
| | - L Strika-Bruneau
- Department of Psychiatry and Addictology, APHP, Paul Brousse Hospital, Villejuif, France
- Unité de Recherche Psychiatrie-Comorbidités-Addictions, PSYCOMADD - Paris Saclay University Île-de-France, Villejuif, France
| | - A Amirouche
- Department of Psychiatry and Addictology, APHP, Paul Brousse Hospital, Villejuif, France
- Unité de Recherche Psychiatrie-Comorbidités-Addictions, PSYCOMADD - Paris Saclay University Île-de-France, Villejuif, France
| | - V Verroust
- Unité de Recherche Psychiatrie-Comorbidités-Addictions, PSYCOMADD - Paris Saclay University Île-de-France, Villejuif, France
- Université Picardie-Jules Vernes, Amiens, France
| | - P Piolino
- Laboratoire Mémoire, Cerveau et Cognition (UR 7536), Institut de Psychologie, Université Paris Cité, Paris, France
| | - A Benyamina
- Department of Psychiatry and Addictology, APHP, Paul Brousse Hospital, Villejuif, France
- Unité de Recherche Psychiatrie-Comorbidités-Addictions, PSYCOMADD - Paris Saclay University Île-de-France, Villejuif, France
| |
Collapse
|
9
|
Izmi N, Carhart-Harris RL, Kettner H. Psychological effects of psychedelics in adolescents. FRONTIERS IN CHILD AND ADOLESCENT PSYCHIATRY 2024; 3:1364617. [PMID: 39816600 PMCID: PMC11732004 DOI: 10.3389/frcha.2024.1364617] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Accepted: 05/21/2024] [Indexed: 01/18/2025]
Abstract
This study aimed to investigate differences in long-term psychological effects, acute subjective effects, and side effects associated with psychedelic use in adolescents (aged 16-24), compared with adults (aged 25+). Data from two observational online survey cohorts was pooled, involving adolescents (average age 20.4 ± 2.2, N = 435) and adults (average age 36.5 ± 9.7, range = 25-71, N = 654) who self-initiated a psychedelic experience and were tracked via online surveys from a pre-experience baseline to four weeks post-use. Self-reported measures of well-being were collected one week before, and two and four weeks after psychedelic use. Acute subjective drug effects, dosage and contextual variables pertaining to the setting of use were measured on the day after the session. Repeated-measures analyses of covariance, t- and z-tests, as well as exploratory correlational and regression analyses tested differences in psychological changes, acute drug effects, and side effects between the two groups. Psychological well-being significantly improved in adolescents two and four weeks following psychedelic use, with a clinically relevant mean change score of 3.3 points (95% CI: 1.1-5.5). on the Warwick-Edinburgh Mental Wellbeing Scale [F(1.8, 172.9) = 13.41, η 2G = .04, p < .001], statistically indistinguishable from changes in adults. Acute subjective effects differed between the age groups; adolescents reported significantly higher challenging experiences and ego-dissolution. In adolescents, visual symptoms related to "hallucinogen persisting perceptual disorder" (HPPD) were reported at a higher prevalence than in adults (73.5% vs. 34.2%, p < .001) but were reported as distressing by only one adolescent participant. To our knowledge, this is the first prospective study to examine the psychological effects of psychedelic use specifically in adolescents. Statistically significant improvements in psychological well-being and other domains of mental health were observed, consistent with effects seen previously in adults, providing tentative evidence for the potential utility of psychedelic interventions in adolescents. However, differences in acute subjective effects, specifically the less positive role of ego-dissolution experiences for long-term changes in adolescents, as well as a higher prevalence of HPPD-related symptoms suggest that special considerations might be required when assessing psychedelic treatment design and risks.
Collapse
Affiliation(s)
- Nadhrah Izmi
- Centre for Psychedelic Research, Department of Brain Sciences, Faculty of Medicine, Imperial College London, London, United Kingdom
| | - Robin Lester Carhart-Harris
- Centre for Psychedelic Research, Department of Brain Sciences, Faculty of Medicine, Imperial College London, London, United Kingdom
- Psychedelics Division, Neuroscape, University of California, San Francisco, San Francisco, CA, United States
| | - Hannes Kettner
- Centre for Psychedelic Research, Department of Brain Sciences, Faculty of Medicine, Imperial College London, London, United Kingdom
- Psychedelics Division, Neuroscape, University of California, San Francisco, San Francisco, CA, United States
| |
Collapse
|
10
|
Romeo B, Kervadec E, Fauvel B, Strika-Bruneau L, Amirouche A, Verroust V, Piolino P, Benyamina A. Safety and risk assessment of psychedelic psychotherapy: A meta-analysis and systematic review. Psychiatry Res 2024; 335:115880. [PMID: 38579460 DOI: 10.1016/j.psychres.2024.115880] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/05/2023] [Revised: 03/25/2024] [Accepted: 03/27/2024] [Indexed: 04/07/2024]
Abstract
Psychotherapies assisted by psychedelic substances have shown promising results in the treatment of psychiatric disorders. The aim of this systematic review and meta-analysis was to evaluate safety data in human subjects. We carried out a search on MEDLINE, Embase and PsycINFO databases between 2000 and 2022. Standardized mean differences between different dose ranges and between acute and subacute phases were calculated for cardiovascular data after psychedelic administration. Risk differences were calculated for serious adverse events and common side effects. Thirty studies were included in this meta-analysis. There were only nine serious adverse events for over 1000 administrations of psychedelic substances (one during the acute phase and 8 during the post-acute phase). There were no suicide attempts during the acute phase and 3 participants engaged in self-harm during the post-acute phase. There was an increased risk for elevated heart rate, systolic and diastolic blood pressure for all dose range categories, as well as an increased risk of nausea during the acute phase. Other common side effects included headaches, anxiety, and decreased concentration or appetite. This meta-analysis demonstrates that psychedelics are well-tolerated, with a low risk of emerging serious adverse events in a controlled setting with appropriate inclusion criteria.
Collapse
Affiliation(s)
- B Romeo
- APHP, Paul Brousse Hospital, Department of Psychiatry and Addictology, F-94800, Villejuif, France; Unité de Recherche Psychiatrie-Comorbidités-Addictions - Psycomadd - Paris Saclay University Île-de-France, France.
| | - E Kervadec
- APHP, Paul Brousse Hospital, Department of Psychiatry and Addictology, F-94800, Villejuif, France; Unité de Recherche Psychiatrie-Comorbidités-Addictions - Psycomadd - Paris Saclay University Île-de-France, France
| | - B Fauvel
- Laboratoire Mémoire, Cerveau et Cognition (UR 7536), Institut de Psychologie, Université de Paris Cité, Paris, France
| | - L Strika-Bruneau
- APHP, Paul Brousse Hospital, Department of Psychiatry and Addictology, F-94800, Villejuif, France; Unité de Recherche Psychiatrie-Comorbidités-Addictions - Psycomadd - Paris Saclay University Île-de-France, France
| | - A Amirouche
- APHP, Paul Brousse Hospital, Department of Psychiatry and Addictology, F-94800, Villejuif, France; Unité de Recherche Psychiatrie-Comorbidités-Addictions - Psycomadd - Paris Saclay University Île-de-France, France
| | - V Verroust
- Unité de Recherche Psychiatrie-Comorbidités-Addictions - Psycomadd - Paris Saclay University Île-de-France, France; Université Picardie-Jules Verne, France
| | - P Piolino
- Laboratoire Mémoire, Cerveau et Cognition (UR 7536), Institut de Psychologie, Université de Paris Cité, Paris, France
| | - A Benyamina
- APHP, Paul Brousse Hospital, Department of Psychiatry and Addictology, F-94800, Villejuif, France; Unité de Recherche Psychiatrie-Comorbidités-Addictions - Psycomadd - Paris Saclay University Île-de-France, France
| |
Collapse
|
11
|
Hilal FF, Jeanblanc J, Deschamps C, Naassila M, Pierrefiche O, Ben Hamida S. Epigenetic drugs and psychedelics as emerging therapies for alcohol use disorder: insights from preclinical studies. J Neural Transm (Vienna) 2024; 131:525-561. [PMID: 38554193 DOI: 10.1007/s00702-024-02757-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Accepted: 02/22/2024] [Indexed: 04/01/2024]
Abstract
Alcohol use disorder (AUD) is a public health issue that affects millions of people worldwide leading to physical, mental and socio-economic consequences. While current treatments for AUD have provided relief to individuals, their effectiveness on the long term is often limited, leaving a number of affected individuals without sustainable solutions. In this review, we aim to explore two emerging approaches for AUD: psychedelics and epigenetic drugs (i.e., epidrugs). By examining preclinical studies, different animal species and procedures, we delve into the potential benefits of each of these treatments in terms of addictive behaviors (alcohol drinking and seeking, motivation to drink alcohol and prevention of relapse). Because psychedelics and epidrugs may share common and complementary mechanisms of action, there is an exciting opportunity for exploring synergies between these approaches and their parallel effectiveness in treating AUD and the diverse associated psychiatric conditions.
Collapse
Affiliation(s)
- Fahd François Hilal
- INSERM UMR 1247-Research Group on Alcohol and Pharmacodependences (GRAP), Université de Picardie Jules Verne, Chemin du Thil - Centre Universitaire de Recherche en Santé, 80025, Amiens, France
| | - Jerome Jeanblanc
- INSERM UMR 1247-Research Group on Alcohol and Pharmacodependences (GRAP), Université de Picardie Jules Verne, Chemin du Thil - Centre Universitaire de Recherche en Santé, 80025, Amiens, France
| | - Chloé Deschamps
- INSERM UMR 1247-Research Group on Alcohol and Pharmacodependences (GRAP), Université de Picardie Jules Verne, Chemin du Thil - Centre Universitaire de Recherche en Santé, 80025, Amiens, France
| | - Mickael Naassila
- INSERM UMR 1247-Research Group on Alcohol and Pharmacodependences (GRAP), Université de Picardie Jules Verne, Chemin du Thil - Centre Universitaire de Recherche en Santé, 80025, Amiens, France.
| | - Olivier Pierrefiche
- INSERM UMR 1247-Research Group on Alcohol and Pharmacodependences (GRAP), Université de Picardie Jules Verne, Chemin du Thil - Centre Universitaire de Recherche en Santé, 80025, Amiens, France
| | - Sami Ben Hamida
- INSERM UMR 1247-Research Group on Alcohol and Pharmacodependences (GRAP), Université de Picardie Jules Verne, Chemin du Thil - Centre Universitaire de Recherche en Santé, 80025, Amiens, France.
| |
Collapse
|
12
|
Laabi S, LeMmon C, Vogel C, Chacon M, Jimenez VM. Deciphering psilocybin: Cytotoxicity, anti-inflammatory effects, and mechanistic insights. Int Immunopharmacol 2024; 130:111753. [PMID: 38401463 DOI: 10.1016/j.intimp.2024.111753] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Revised: 02/13/2024] [Accepted: 02/21/2024] [Indexed: 02/26/2024]
Abstract
A decade of clinical research has indicated psilocybin's effectiveness in treating various neuropsychiatric disorders, such as depression and substance abuse. The correlation between increased pro-inflammatory cytokines and the severity of neuropsychiatric symptoms, along with the known anti-inflammatory potential of some psychedelics, suggests an immunomodulatory role for psilocybin. This study aims to understand the mechanism of action of psilocybin by investigating the cytotoxic and immunomodulatory effects of psilocybin and psilocin on both resting and LPS-activated RAW 264.7 murine macrophages. The study evaluated the cytotoxicity of psilocybin and psilocin using an LDH assay across various doses and assessed their impact on cytokine production in RAW 264.7 cells, measuring cytokine expression via ELISA. Different doses, including those above and below the LC50, were used in both pre-treatment and post-treatment approaches. The LDH assay revealed that psilocybin is almost twice as cytotoxic as psilocin, with an LC50 of 12 ng/ml and 28 ng/ml, respectively. In resting macrophages, both psilocybin and psilocin triggered significant release of TNF- α after 4 h, with the lowest doses inducing higher levels of the cytokine than the highest doses. IL-10 expression in resting cells was only triggered by the highest dose of psilocin in the 4-hour incubation group. In LPS-stimulated cells, psilocin reduced TNF- α levels more than psilocybin in pre-treatment and post-treatment, with no significant effects on IL-10 in pre-treatment. Psilocin, but not psilocybin, induced a significant increase of IL-10 in post-treatment, leading to the conclusion that psilocin, but not psilocybin, exerts anti-inflammatory effects on classically activated macrophages.
Collapse
Affiliation(s)
- Salma Laabi
- Department of Biomedical Sciences, Noorda College of Osteopathic Medicine, 2162 S 180 E, Provo, UT 84606, United States
| | - Claire LeMmon
- Department of Biomedical Sciences, Noorda College of Osteopathic Medicine, 2162 S 180 E, Provo, UT 84606, United States
| | - Callie Vogel
- Department of Biomedical Sciences, Noorda College of Osteopathic Medicine, 2162 S 180 E, Provo, UT 84606, United States
| | - Mariana Chacon
- Department of Biomedical Sciences, Noorda College of Osteopathic Medicine, 2162 S 180 E, Provo, UT 84606, United States
| | - Victor M Jimenez
- Department of Biomedical Sciences, Noorda College of Osteopathic Medicine, 2162 S 180 E, Provo, UT 84606, United States; Department of Pharmacy, Roseman University of Health Sciences, 10920 S River Front Pkwy, South Jordan, UT 84095, United States.
| |
Collapse
|
13
|
Arias HR, Rudin D, Hines DJ, Contreras A, Gulsevin A, Manetti D, Anouar Y, De Deurwaerdere P, Meiler J, Romanelli MN, Liechti ME, Chagraoui A. The novel non-hallucinogenic compound DM506 (3-methyl-1,2,3,4,5,6-hexahydroazepino[4,5-b]indole) induces sedative- and anxiolytic-like activity in mice by a mechanism involving 5-HT 2A receptor activation. Eur J Pharmacol 2024; 966:176329. [PMID: 38253116 DOI: 10.1016/j.ejphar.2024.176329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 01/09/2024] [Accepted: 01/10/2024] [Indexed: 01/24/2024]
Abstract
The anxiolytic and sedative-like effects of 3-methyl-1,2,3,4,5,6-hexahydroazepino[4,5-b]indole (DM506), a non-hallucinogenic compound derived from ibogamine, were studied in mice. The behavioral effects were examined using Elevated O-maze and novelty suppressed feeding (NSFT) tests, open field test, and loss of righting reflex (LORR) test. The results showed that 15 mg/kg DM506 induced acute and long-lasting anxiolytic-like activity in naive and stressed/anxious mice, respectively. Repeated administration of 5 mg/kg DM506 did not cause cumulative anxiolytic activity or any side effects. Higher doses of DM506 (40 mg/kg) induced sedative-like activity, which was inhibited by a selective 5-HT2A receptor antagonist, volinanserin. Electroencephalography results showed that 15 mg/kg DM506 fumarate increased the transition from a highly alert state (fast γ wavelength) to a more synchronized deep-sleeping activity (δ wavelength), which is reflected in the sedative/anxiolytic activity in mice but without the head-twitch response observed in hallucinogens. The functional, radioligand binding, and molecular docking results showed that DM506 binds to the agonist sites of human 5-HT2A (Ki = 24 nM) and 5-HT2B (Ki = 16 nM) receptors and activates them with a potency (EC50) of 9 nM and 3 nM, respectively. DM506 was relatively less potent and behaved as a partial agonist (efficacy <80%) for both receptor subtypes compared to the full agonist DOI (2,5-dimethoxy-4-iodoamphetamine). Our study showed for the first time that the non-hallucinogenic compound DM506 induces anxiolytic- and sedative-like activities in naïve and stressed/anxious mice in a dose-, time-, and volinanserin-sensitive manner, likely through mechanisms involving 5-HT2A receptor activation.
Collapse
Affiliation(s)
- Hugo R Arias
- Department of Pharmacology and Physiology, Oklahoma State University College of Osteopathic Medicine, Tahlequah, OK, USA
| | - Deborah Rudin
- Divison of Clinical Pharmacology and Toxicology, Department of Pharmaceutical Sciences, University of Basel, Basel, Switzerland; Division of Clinical Pharmacology and Toxicology, Department of Biomedicine, University Hospital Basel and University of Basel, Basel, Switzerland
| | - Dustin J Hines
- Psychological and Brain Sciences, University of Nevada, Las Vegas, NV, USA
| | - April Contreras
- Psychological and Brain Sciences, University of Nevada, Las Vegas, NV, USA
| | - Alican Gulsevin
- Department of Chemistry, Vanderbilt University, Nashville, TN, USA; Center for Structural Biology, Vanderbilt University, Nashville, TN, USA
| | - Dina Manetti
- Department of Neurosciences, Psychology, Drug Research and Child Health Section of Pharmaceutical and Nutraceutical Sciences, University of Florence, Italy
| | - Youssef Anouar
- UNIROUEN, Inserm U1239, Neuroendocrine, Endocrine and Germinal Differentiation and Communication (NorDiC), Rouen Normandie University, 76000, Mont-Saint-Aignan, France
| | - Philippe De Deurwaerdere
- Centre National de la Recherche Scientifique, Institut des Neurosciences Integratives et Cognitives d'Aquitaine, UMR, 5287, Bordeaux, France
| | - Jens Meiler
- Institute for Drug Discovery, Leipzig University Medical School, 04103, Leipzig, Germany
| | - Maria Novella Romanelli
- Department of Neurosciences, Psychology, Drug Research and Child Health Section of Pharmaceutical and Nutraceutical Sciences, University of Florence, Italy
| | - Matthias E Liechti
- Divison of Clinical Pharmacology and Toxicology, Department of Pharmaceutical Sciences, University of Basel, Basel, Switzerland; Division of Clinical Pharmacology and Toxicology, Department of Biomedicine, University Hospital Basel and University of Basel, Basel, Switzerland
| | - Abdeslam Chagraoui
- Department of Medical Biochemistry, Rouen University Hospital, CHU de Rouen, France; UNIROUEN, Inserm U1239, Neuroendocrine, Endocrine and Germinal Differentiation and Communication (NorDiC), Rouen Normandie University, 76000, Mont-Saint-Aignan, France.
| |
Collapse
|
14
|
Bassi M, Bilel S, Tirri M, Corli G, Di Rosa F, Gregori A, Alkilany AM, Rachid O, Roda E, Zauli G, Locatelli CA, Marti M. Pharmaco-toxicological effects of the novel tryptamine hallucinogen 5-MeO-MiPT on motor, sensorimotor, physiological, and cardiorespiratory parameters in mice-from a human poisoning case to the preclinical evidence. Psychopharmacology (Berl) 2024; 241:489-511. [PMID: 38214743 PMCID: PMC10884077 DOI: 10.1007/s00213-024-06526-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Accepted: 01/01/2024] [Indexed: 01/13/2024]
Abstract
RATIONALE The 5-methoxy-N-methyl-N-isopropyltryptamine (5-MeO-MiPT, known online as "Moxy") is a new psychedelic tryptamine first identified on Italian national territory in 2014. Its hallucinogen effects are broadly well-known; however, only few information is available regarding its pharmaco-toxicological effects. OBJECTIVES Following the seizure of this new psychoactive substances by the Arm of Carabinieri and the occurrence of a human intoxication case, in the current study we had the aim to characterize the in vivo acute effects of systemic administration of 5-MeO-MiPT (0.01-30 mg/kg i.p.) on sensorimotor (visual, acoustic, and overall tactile) responses, thermoregulation, and stimulated motor activity (drag and accelerod test) in CD-1 male mice. We also evaluated variation on sensory gating (PPI, prepulse inhibition; 0.01-10 mg/kg i.p.) and on cardiorespiratory parameters (MouseOx and BP-2000; 30 mg/kg i.p.). Lastly, we investigated the in silico ADMET (absorption, distribution, metabolism, excretion, toxicity) profile of 5-MeO-MiPT compared to 5-methoxy-N,N-diisopropyltryptamine (5-MeO-DIPT) and N,N-dimethyltryptamine (DMT). RESULTS This study demonstrates that 5-MeO-MiPT dose-dependently inhibits sensorimotor and PPI responses and, at high doses, induces impairment of the stimulated motor activity and cardiorespiratory changes in mice. In silico prediction shows that the 5-MeO-MiPT toxicokinetic profile shares similarities with 5-MeO-DIPT and DMT and highlights a cytochrome risk associated with this compound. CONCLUSIONS Consumption of 5-MeO-MiPT can affect the ability to perform activities and pose a risk to human health status, as the correspondence between the effects induced in mice and the symptoms occurred in the intoxication case suggests. However, our findings suggest that 5-MeO-MiPT should not be excluded from research in the psychiatric therapy field.
Collapse
Grants
- Effects of NPS: development of a multicentre research for the information enhancement of the Early Warning System Anti-Drug Policies Department, Presidency of the Council of Ministers, Italy
- Implementation of the identification Anti-Drug Policies Department, Presidency of the Council of Ministers, Italy
- study of the effects of NPS: Development of a multicentric research to strengthen the database of the National Monitoring Centre for Drug Addiction Anti-Drug Policies Department, Presidency of the Council of Ministers, Italy
- the Early Warning System Anti-Drug Policies Department, Presidency of the Council of Ministers, Italy
- FAR 2021 Università degli Studi di Ferrara
- FAR 2022 Università degli Studi di Ferrara
- Anti-Drug Policies Department, Presidency of the Council of Ministers, Italy
Collapse
Affiliation(s)
- Marta Bassi
- Department of Translational Medicine, Section of Legal Medicine and LTTA Centre, University of Ferrara, Via Fossato Di Mortara 70, 44121, Ferrara, Italy
| | - Sabrine Bilel
- Department of Translational Medicine, Section of Legal Medicine and LTTA Centre, University of Ferrara, Via Fossato Di Mortara 70, 44121, Ferrara, Italy
| | - Micaela Tirri
- Department of Translational Medicine, Section of Legal Medicine and LTTA Centre, University of Ferrara, Via Fossato Di Mortara 70, 44121, Ferrara, Italy
| | - Giorgia Corli
- Department of Translational Medicine, Section of Legal Medicine and LTTA Centre, University of Ferrara, Via Fossato Di Mortara 70, 44121, Ferrara, Italy
| | - Fabiana Di Rosa
- Department of Scientific Investigation (RIS), Carabinieri, 00191, Rome, Italy
| | - Adolfo Gregori
- Department of Scientific Investigation (RIS), Carabinieri, 00191, Rome, Italy
| | - Alaaldin M Alkilany
- Department of Pharmaceutical Sciences, College of Pharmacy, QU Health, Qatar University, Doha, Qatar
| | - Ousama Rachid
- Department of Pharmaceutical Sciences, College of Pharmacy, QU Health, Qatar University, Doha, Qatar
| | - Elisa Roda
- Laboratory of Clinical & Experimental Toxicology, Pavia Poison Centre, National Toxicology Information Centre, Toxicology Unit, Istituti Clinici Scientifici Maugeri, IRCCS, Pavia, Italy
| | - Giorgio Zauli
- Research Department, King Khaled Eye Specialistic Hospital, Riyadh, Saudi Arabia
| | - Carlo Alessandro Locatelli
- Laboratory of Clinical & Experimental Toxicology, Pavia Poison Centre, National Toxicology Information Centre, Toxicology Unit, Istituti Clinici Scientifici Maugeri, IRCCS, Pavia, Italy
| | - Matteo Marti
- Department of Translational Medicine, Section of Legal Medicine and LTTA Centre, University of Ferrara, Via Fossato Di Mortara 70, 44121, Ferrara, Italy.
- Department of Anti-Drug Policies, Collaborative Center for the Italian National Early Warning System, Presidency of the Council of Ministers, Ferrara, Italy.
| |
Collapse
|
15
|
Liblik SA, Rocha da Cunha T, Liblik CSDFK, Biscioni DN, Girardi DR. [Ethics in the use of psychedelics: The definition of illicit drugs from the perspective of critical bioethics]. Salud Colect 2024; 20:e4630. [PMID: 38381110 DOI: 10.18294/sc.2024.4630] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2023] [Accepted: 02/05/2024] [Indexed: 02/22/2024] Open
Abstract
This essay, situated in the field of bioethics, examines the prohibition of psychedelic use, exploring arguments surrounding the growing evidence of their therapeutic potential and their millennia-long history of cultural and spiritual uses. It initially discusses the historical context of psychedelics and the various terms used to describe them. The essay problematizes the definition of "drugs," highlighting the lack of objective criteria for distinguishing between legal and illicit substances. Drawing on concepts and theoretical frameworks of critical bioethics, it analyzes how the prohibitionist moral discourse is sustained more by political and economic interests than by scientific justifications, leading to stigmatization and vulnerability. The essay advocates for the end of the prohibition of psychedelics based on ethical arguments, emphasizing their importance in reducing individual and collective suffering. The work contributes to a deeper reflection on this socially controversial topic, integrating interdisciplinary knowledge.
Collapse
Affiliation(s)
- Sergio Alexandre Liblik
- Magíster en Bioética. Profesor, Pontifícia Universidade Católica do Paraná, Curitiba, Brasil
| | - Thiago Rocha da Cunha
- Doctor en Bioética. Profesor, Programa de Pós-grado em Bioética, Pontifícia Universidade Católica do Paraná, Curitiba, Brasil
| | - Carmem Silvia da Fonseca Kummer Liblik
- Doctora en Históra. Investigadora, Grupo de Pesquisa CNPq/PUCPR Bioética, Saúde Global e Direitos Humanos, Pontifícia Universidade Católica do Paraná, Curitiba, Brasil
| | - Diego Nicolás Biscioni
- Magíster en Salud Pública. Profesor, Departarmento de Salud y Actividad Física, Universidad Nacional de Avellaneda, Avellaneda, Argentina
| | - Dennys Robson Girardi
- Magíster en Tecnología en Salud. Doctorando em Direito Empresarial e Cidadania, Centro Universitário Curitiba, Curitiba, Brasil
| |
Collapse
|
16
|
Wells A, Muthukumaraswamy APS, Morunga E, Evans W, Cavadino A, Bansal M, Lawrence NJ, Ashley A, Hoeh NR, Sundram F, Applebaum AJ, Parkinson H, Reynolds L. PAM trial protocol: a randomised feasibility study of psychedelic microdosing-assisted meaning-centred psychotherapy in advanced stage cancer patients. Pilot Feasibility Stud 2024; 10:29. [PMID: 38347582 PMCID: PMC10860284 DOI: 10.1186/s40814-024-01449-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Accepted: 01/12/2024] [Indexed: 02/15/2024] Open
Abstract
BACKGROUND An advanced cancer diagnosis can be associated with a significant profile of distress. Psychedelic compounds have shown clinically significant effects in the treatment of psychological distress in patients with advanced-stage cancer. Given the challenges of delivering timely and effective intervention in the advanced cancer context, it is possible that an alternative, more pragmatic, approach lies in psychedelic 'microdosing'. Microdosing refers to repeated administration of psychedelics in sub-hallucinogenic doses. The purpose of this study is to evaluate the feasibility of conducting a full-scale randomised controlled trial comparing psychedelic microdose-assisted-meaning-centred psychotherapy (PA-MCP) to standard meaning-centred psychotherapy (MCP) in New Zealand indigenous (Māori) and non-indigenous people with advanced cancer and symptoms of anxiety and/or depression. Although MCP is a well-established psychotherapeutic treatment in advanced cancer populations, the potential efficacy and effectiveness of this therapy when delivered alongside a standardised microdose regimen of a psychedelic compound have not been investigated. METHODS Participants with advanced-stage cancer and symptoms of anxiety and/or depression (N = 40; 20 Māori, 20 non-Māori) will be randomised under double-blind conditions to receive 7 sessions of MCP alongside 13 doses of either an LSD microdose (4-20 µg) (PA-MCP) or inactive placebo (placebo-MCP). The feasibility, acceptability, and safety of this intervention and physiological and psychological measures will be recorded at baseline, at each session of MCP, and at a 1-month and 6-month follow-up. DISCUSSION Our findings will evaluate the feasibility, acceptability, and safety of a larger randomised controlled trial and provide an initial indication of the potential benefits of psychedelic microdosing for psychological distress in advanced-stage indigenous and non-indigenous cancer patients. TRIAL REGISTRATION NZCTR, ACTRN12623000478617. Registered 11 May 2023. https://www.anzctr.org.au/Trial/Registration/TrialReview.aspx?id=385810&isReview=true .
Collapse
Affiliation(s)
- Alesha Wells
- Department of Psychological Medicine, Faculty of Medical and Health Sciences, University of Auckland, 22-30 Park Avenue, Grafton, Auckland, 1023, New Zealand.
| | - A P Suresh Muthukumaraswamy
- School of Pharmacy, Faculty of Medical and Health Sciences, University of Auckland, 85 Park Road, Grafton, Auckland, 1023, New Zealand
| | - Eva Morunga
- Cancer Support Service, Te Toka Tumai Auckland, Auckland City Hospital, Te Whatu Ora2 Park Road, Grafton, Auckland, 1023, New Zealand
- The University of Auckland, 22-30 Park Avenue, Grafton, Auckland, 1023, New Zealand
| | - Will Evans
- Mana Health, 7 Ruskin Street, Parnell, Auckland, 1052, New Zealand
| | - Alana Cavadino
- School of Population Health, The University of Auckland, 22-30 Park Avenue, Grafton, Auckland, 1023, New Zealand
| | - Mahima Bansal
- School of Pharmacy, Faculty of Medical and Health Sciences, University of Auckland, 85 Park Road, Grafton, Auckland, 1023, New Zealand
| | - Nicola J Lawrence
- Department of Oncology, Faculty of Medical and Health Sciences, University of Auckland, 85 Park Road, Grafton, Auckland, New Zealand
- Te Pūriri o Te Ora - Regional Cancer and Blood, Te Whatu Ora Te Toka Tumai, 2 Park Road, Grafton, Auckland, 1023, New Zealand
| | - Amanda Ashley
- Te Pūriri o Te Ora - Regional Cancer and Blood, Te Whatu Ora Te Toka Tumai, 2 Park Road, Grafton, Auckland, 1023, New Zealand
- Harbour Cancer and Wellness, 212 Wairau Road, Wairau Valley, Auckland, 0627, New Zealand
| | - Nicholas R Hoeh
- Department of Psychological Medicine, Faculty of Medical and Health Sciences, University of Auckland, 22-30 Park Avenue, Grafton, Auckland, 1023, New Zealand
| | - Frederick Sundram
- Department of Psychological Medicine, Faculty of Medical and Health Sciences, University of Auckland, 22-30 Park Avenue, Grafton, Auckland, 1023, New Zealand
| | - Allison J Applebaum
- Department of Psychiatry and Behavioral Sciences, Memorial Sloan Kettering Cancer Center, 641 Lexington Avenue, 7th Floor, New York, NY, 10022, USA
| | - Hineatua Parkinson
- School of Psychology, University of Auckland, 23 Symonds Street, Auckland Central, 1010, New Zealand
| | - Lisa Reynolds
- Department of Psychological Medicine, Faculty of Medical and Health Sciences, University of Auckland, 22-30 Park Avenue, Grafton, Auckland, 1023, New Zealand
| |
Collapse
|
17
|
Palmisano VF, Agnorelli C, Fagiolini A, Erritzoe D, Nutt D, Faraji S, Nogueira JJ. Membrane Permeation of Psychedelic Tryptamines by Dynamic Simulations. Biochemistry 2024. [PMID: 38324395 PMCID: PMC10882957 DOI: 10.1021/acs.biochem.3c00598] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/09/2024]
Abstract
Renewed scientific interest in psychedelic compounds represents one of the most promising avenues for addressing the current burden of mental health disorders. Classic psychedelics are a group of compounds that exhibit structural similarities to the naturally occurring neurotransmitter serotonin (5-HT). Acting on the 5-HT type 2A receptors (HT2ARs), psychedelics induce enduring neurophysiological changes that parallel their therapeutic psychological and behavioral effects. Recent preclinical evidence suggests that the ability of psychedelics to exert their action is determined by their ability to permeate the neuronal membrane to target a pool of intracellular 5-HT2ARs. In this computational study, we employ classical molecular dynamics simulations and umbrella sampling techniques to investigate the permeation behavior of 12 selected tryptamines and to characterize the interactions that drive the process. We aim at elucidating the impact of N-alkylation, indole ring substitution and positional modifications, and protonation on their membrane permeability. Dimethylation of the primary amine group and the introduction of a methoxy group at position 5 exhibited an increase in permeability. Moreover, there is a significant influence of positional substitutions on the indole groups, and the protonation of the molecules substantially increases the energy barrier at the center of the bilayer, making the compounds highly impermeable. All the information extracted from the trends predicted by the simulations can be applied in future drug design projects to develop psychedelics with enhanced activity.
Collapse
Affiliation(s)
- Vito F Palmisano
- Department of Chemistry, Universidad Autonoma de Madrid, Madrid 28049, Spain
- Theoretical Chemistry Group, Zernike Institute for Advanced Materials, University of Groningen, Groningen 9747 AG, The Netherlands
| | - Claudio Agnorelli
- Center for Psychedelic Research, Division of Psychiatry, Department of Brain Science, Imperial College of London, London SW7 2BX, U.K
- Unit of Psychiatry, Department of Molecular Medicine, University of Siena, Siena 53100, Italy
| | - Andrea Fagiolini
- Unit of Psychiatry, Department of Molecular Medicine, University of Siena, Siena 53100, Italy
| | - David Erritzoe
- Center for Psychedelic Research, Division of Psychiatry, Department of Brain Science, Imperial College of London, London SW7 2BX, U.K
| | - David Nutt
- Center for Psychedelic Research, Division of Psychiatry, Department of Brain Science, Imperial College of London, London SW7 2BX, U.K
| | - Shirin Faraji
- Theoretical Chemistry Group, Zernike Institute for Advanced Materials, University of Groningen, Groningen 9747 AG, The Netherlands
| | - Juan J Nogueira
- Department of Chemistry, Universidad Autonoma de Madrid, Madrid 28049, Spain
- IADCHEM, Institute for Advanced Research in Chemistry, Universidad Autonoma de Madrid, Madrid 28049, Spain
| |
Collapse
|
18
|
De Filippo R, Schmitz D. Synthetic surprise as the foundation of the psychedelic experience. Neurosci Biobehav Rev 2024; 157:105538. [PMID: 38220035 PMCID: PMC10839673 DOI: 10.1016/j.neubiorev.2024.105538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 01/03/2024] [Accepted: 01/05/2024] [Indexed: 01/16/2024]
Abstract
Psychedelic agents, such as LSD and psilocybin, induce marked alterations in consciousness via activation of the 5-HT2A receptor (5-HT2ARs). We hypothesize that psychedelics enforce a state of synthetic surprise through the biased activation of the 5-HTRs system. This idea is informed by recent insights into the role of 5-HT in signaling surprise. The effects on consciousness, explained by the cognitive penetrability of perception, can be described within the predictive coding framework where surprise corresponds to prediction error, the mismatch between predictions and actual sensory input. Crucially, the precision afforded to the prediction error determines its effect on priors, enabling a dynamic interaction between top-down expectations and incoming sensory data. By integrating recent findings on predictive coding circuitry and 5-HT2ARs transcriptomic data, we propose a biological implementation with emphasis on the role of inhibitory interneurons. Implications arise for the clinical use of psychedelics, which may rely primarily on their inherent capacity to induce surprise in order to disrupt maladaptive patterns.
Collapse
Affiliation(s)
- Roberto De Filippo
- Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität Berlin, and Berlin Institute of Health, Neuroscience Research Center, 10117 Berlin, Germany.
| | - Dietmar Schmitz
- Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität Berlin, and Berlin Institute of Health, Neuroscience Research Center, 10117 Berlin, Germany; German Center for Neurodegenerative Diseases (DZNE) Berlin, 10117 Berlin, Germany; Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität Berlin, and Berlin Institute of Health, Einstein Center for Neuroscience, 10117 Berlin, Germany; Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität Berlin, and Berlin Institute of Health, NeuroCure Cluster of Excellence, 10117 Berlin, Germany; Humboldt-Universität zu Berlin, Bernstein Center for Computational Neuroscience, Philippstr. 13, 10115 Berlin, Germany
| |
Collapse
|
19
|
Fletcher PJ, Li Z, Ji XD, Lê AD. Established sensitization of ethanol-induced locomotor activity is not reversed by psilocybin or the 5-HT 2A receptor agonist TCB-2 in male DBA/2J mice. Pharmacol Biochem Behav 2024; 235:173703. [PMID: 38154589 DOI: 10.1016/j.pbb.2023.173703] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 11/28/2023] [Accepted: 12/22/2023] [Indexed: 12/30/2023]
Abstract
RATIONALE Psychedelic drugs, which share in common 5-HT2A receptor agonist activity, have shown promise in treating alcohol-use disorders (AUDs). Repeated exposure to ethanol (EtOH) induces molecular and behavioural changes reflective of neuroadaptations that may contribute to addiction. Psychedelic drugs can induce neuroplasticity also, raising the possibility that their potential clinical effects in AUD may involve an action to reverse or offset effects of long-term changes induced by EtOH. This possibility was examined by investigating whether psilocybin, or the 5-HT2A receptor agonist TCB-2, counteracted established sensitization of EtOH-induced locomotor activity. METHODS Male DBA/2J mice received repeated injections of 2.2 g/kg EtOH to induce a sensitized locomotor activity response. In two experiments separate groups of mice were then injected with psilocybin (0, 0.3 and 1 kg/kg) or TCB-2 (0, 1 and 3 mg/kg) on 5 consecutive days. Next, mice were challenged with 1.8 g/kg EtOH and locomotor activity measured for 15 min. RESULTS Relative to naïve controls, previously sensitized mice showed enhanced locomotor activity to the challenge dose. Despite reducing locomotor activity in their own right psilocybin and TCB-2 did not alter the strength of this sensitized response. CONCLUSION Psilocybin and TCB-2 at behaviourally effective doses did not reverse sensitization of EtOH-induced activity. This suggests that mechanisms involved in mediating short-term reductions in EtOH intake by psilocybin or TCB-2 may not involve a capacity of these drugs to offset enduring changes in behaviour and any underlying neural adaptations induced by repeated intermittent exposure to EtOH.
Collapse
Affiliation(s)
- Paul J Fletcher
- Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, ON, Canada; Department of Psychology, University of Toronto, Toronto, ON, Canada; Department of Psychiatry, University of Toronto, Toronto, ON, Canada.
| | - Zhaoxia Li
- Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, ON, Canada
| | - Xiao Dong Ji
- Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, ON, Canada
| | - Anh D Lê
- Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, ON, Canada; Department of Psychiatry, University of Toronto, Toronto, ON, Canada; Department of Pharmacology and Toxicology, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
20
|
Barman R, Kumar Bora P, Saikia J, Konwar P, Sarkar A, Kemprai P, Proteem Saikia S, Haldar S, Slater A, Banik D. Hypothetical biosynthetic pathways of pharmaceutically potential hallucinogenic metabolites in Myristicaceae, mechanistic convergence and co-evolutionary trends in plants and humans. PHYTOCHEMISTRY 2024; 218:113928. [PMID: 38035973 DOI: 10.1016/j.phytochem.2023.113928] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2023] [Revised: 11/10/2023] [Accepted: 11/11/2023] [Indexed: 12/02/2023]
Abstract
The family Myristicaceae harbour mind-altering phenylpropanoids like myristicin, elemicin, safrole, tryptamine derivatives such as N,N-dimethyltryptamine (DMT) and 5-methoxy N,N-dimethyltryptamine (5-MeO-DMT) and β-carbolines such as 1-methyl-6-methoxy-dihydro-β-carboline and 2-methyl-6-methoxy-1,2,3,4-tetrahydro-β-carboline. This study aimed to systematically review and propose the hypothetical biosynthetic pathways of hallucinogenic metabolites of Myristicaceae which have the potential to be used pharmaceutically. Relevant publications were retrieved from online databases, including Google Scholar, PubMed Central, Science Direct and the distribution of the hallucinogens among the family was compiled. The review revealed that the biosynthesis of serotonin in plants was catalysed by tryptamine 5-hydroxylase (T5H) and tryptophan 5-hydroxylase (TPH), whereas in invertebrates and vertebrates only by tryptophan 5-hydroxylase (TPH). Indolethylamine-N-methyltransferase catalyses the biosynthesis of DMT in plants and the brains of humans and other mammals. Caffeic acid 3-O-methyltransferase catalyses the biosynthesis of both phenylpropanoids and tryptamines in plants. All the hallucinogenic markers exhibited neuropsychiatric effects in humans as mechanistic convergence. The review noted that DMT, 5-MeO-DMT, and β-carbolines were natural protectants against both plant stress and neurodegenerative human ailments. The protein sequence data of tryptophan 5-hydroxylase and tryptamine 5-hydroxylase retrieved from NCBI showed a co-evolutionary relationship in between animals and plants on the phylogenetic framework of a Maximum Parsimony tree. The review also demonstrates that the biosynthesis of serotonin, DMT, 5-MeO-DMT, 5-hydroxy dimethyltryptamine, and β-carbolines in plants, as well as endogenous secretion of these compounds in the brain and blood of humans and rodents, reflects co-evolutionary mutualism in plants and humans.
Collapse
Affiliation(s)
- Rubi Barman
- Agrotechnology and Rural Development Division, CSIR-North East Institute of Science and Technology, Jorhat - 785006, Assam, India; AcSIR - Academy of Scientific and Innovative Research, Ghaziabad - 201002, India
| | - Pranjit Kumar Bora
- Agrotechnology and Rural Development Division, CSIR-North East Institute of Science and Technology, Jorhat - 785006, Assam, India; AcSIR - Academy of Scientific and Innovative Research, Ghaziabad - 201002, India
| | - Jadumoni Saikia
- Agrotechnology and Rural Development Division, CSIR-North East Institute of Science and Technology, Jorhat - 785006, Assam, India; AcSIR - Academy of Scientific and Innovative Research, Ghaziabad - 201002, India
| | - Parthapratim Konwar
- Agrotechnology and Rural Development Division, CSIR-North East Institute of Science and Technology, Jorhat - 785006, Assam, India; AcSIR - Academy of Scientific and Innovative Research, Ghaziabad - 201002, India
| | - Aditya Sarkar
- Agrotechnology and Rural Development Division, CSIR-North East Institute of Science and Technology, Jorhat - 785006, Assam, India
| | - Phirose Kemprai
- Agrotechnology and Rural Development Division, CSIR-North East Institute of Science and Technology, Jorhat - 785006, Assam, India; AcSIR - Academy of Scientific and Innovative Research, Ghaziabad - 201002, India
| | - Siddhartha Proteem Saikia
- Agrotechnology and Rural Development Division, CSIR-North East Institute of Science and Technology, Jorhat - 785006, Assam, India; AcSIR - Academy of Scientific and Innovative Research, Ghaziabad - 201002, India
| | - Saikat Haldar
- Agrotechnology and Rural Development Division, CSIR-North East Institute of Science and Technology, Jorhat - 785006, Assam, India; AcSIR - Academy of Scientific and Innovative Research, Ghaziabad - 201002, India
| | - Adrian Slater
- Faculty of School of Health and Allied Sciences, Biomolecular Technology Group, Hawthorn Building HB1.12, De Montfort University, The Gateway, Leicester, LE1 9BH, UK
| | - Dipanwita Banik
- Agrotechnology and Rural Development Division, CSIR-North East Institute of Science and Technology, Jorhat - 785006, Assam, India; AcSIR - Academy of Scientific and Innovative Research, Ghaziabad - 201002, India.
| |
Collapse
|
21
|
Kervadec E, Fauvel B, Strika-Bruneau L, Amirouche A, Verroust V, Piolino P, Romeo B, Benyamina A. Reduction of alcohol use and increase in psychological flexibility after a naturalistic psychedelic experience: a retrospective survey. Alcohol Alcohol 2024; 59:agad078. [PMID: 37981297 DOI: 10.1093/alcalc/agad078] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 10/24/2023] [Accepted: 10/26/2023] [Indexed: 11/21/2023] Open
Abstract
INTRODUCTION Alcohol use can be significantly associated with negative social, professional, and health outcomes. Even more so, alcohol use disorder (AUD) is a critical public health issue and major avoidable risk factor. This study aimed to examine the effect of a naturalistic psychedelic experience on alcohol use and related measures. METHODS A retrospective online survey was conducted on 160 individuals who reported a psychedelic experience and a concomitant drinking habit but did not necessarily have an AUD. Demographic data, characteristics of the psychedelic experience, and changes in alcohol consumption and psychological flexibility were surveyed. Results: The mean number of drinking days per week and AUDIT scores significantly decreased after the psychedelic experience (P < .001). Subjects who quit or reduced drinking had a more severe AUD (P < .01) and lower psychological flexibility (P = .003) before the psychedelic session. Alcohol use reduction was significantly associated with the intensity of the mystical experience (P = .03). Psychological flexibility increased more in participants who reduced their alcohol use (P < .001), and the change in psychological flexibility was one of the predictors of alcohol use improvement (P = .003). Conclusion: Our findings suggest that a naturalistic psychedelic experience could be associated with a reduction in alcohol use and dependency. Such positive health outcomes can be associated with the intensity of the mystical experience as well as an increase in psychological flexibility.
Collapse
Affiliation(s)
- Ewen Kervadec
- Department of Psychiatry and Addictology, APHP, Paul Brousse Hospital, Villejuif F-94800, France
| | - Baptiste Fauvel
- Laboratoire Mémoire, Cerveau et Cognition (UR 7536), Institut de Psychologie, Université Paris Cité, Site Boulogne-Centre Henri Pié ron71, avenue Edouard Vaillant 92774 Boulogne-Billancourt, Paris, France
| | - Lana Strika-Bruneau
- Department of Psychiatry and Addictology, APHP, Paul Brousse Hospital, Villejuif F-94800, France
- Unité de Recherche Psychiatrie-Comorbidités-Addictions-PSYCOMADD-Paris Saclay University Île-de-France, Hôpital Paul Brousse AP-HP12 Avenue Paul Vaillant Couturier, 94800 Villejuif, France
| | - Ammar Amirouche
- Department of Psychiatry and Addictology, APHP, Paul Brousse Hospital, Villejuif F-94800, France
- Unité de Recherche Psychiatrie-Comorbidités-Addictions-PSYCOMADD-Paris Saclay University Île-de-France, Hôpital Paul Brousse AP-HP12 Avenue Paul Vaillant Couturier, 94800 Villejuif, France
| | - Vincent Verroust
- Unité de Recherche Psychiatrie-Comorbidités-Addictions-PSYCOMADD-Paris Saclay University Île-de-France, Hôpital Paul Brousse AP-HP12 Avenue Paul Vaillant Couturier, 94800 Villejuif, France
- Université Picardie-Jules Vernes, Chemin du Thil, 80000 Amiens, France
| | - Pascale Piolino
- Laboratoire Mémoire, Cerveau et Cognition (UR 7536), Institut de Psychologie, Université Paris Cité, Site Boulogne-Centre Henri Pié ron71, avenue Edouard Vaillant 92774 Boulogne-Billancourt, Paris, France
| | - Bruno Romeo
- Department of Psychiatry and Addictology, APHP, Paul Brousse Hospital, Villejuif F-94800, France
- Unité de Recherche Psychiatrie-Comorbidités-Addictions-PSYCOMADD-Paris Saclay University Île-de-France, Hôpital Paul Brousse AP-HP12 Avenue Paul Vaillant Couturier, 94800 Villejuif, France
| | - Amine Benyamina
- Department of Psychiatry and Addictology, APHP, Paul Brousse Hospital, Villejuif F-94800, France
- Unité de Recherche Psychiatrie-Comorbidités-Addictions-PSYCOMADD-Paris Saclay University Île-de-France, Hôpital Paul Brousse AP-HP12 Avenue Paul Vaillant Couturier, 94800 Villejuif, France
| |
Collapse
|
22
|
Duan W, Cao D, Wang S, Cheng J. Serotonin 2A Receptor (5-HT 2AR) Agonists: Psychedelics and Non-Hallucinogenic Analogues as Emerging Antidepressants. Chem Rev 2024; 124:124-163. [PMID: 38033123 DOI: 10.1021/acs.chemrev.3c00375] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2023]
Abstract
Psychedelics make up a group of psychoactive compounds that induce hallucinogenic effects by activating the serotonin 2A receptor (5-HT2AR). Clinical trials have demonstrated the traditional psychedelic substances like psilocybin as a class of rapid-acting and long-lasting antidepressants. However, there is a pressing need for rationally designed 5-HT2AR agonists that possess optimal pharmacological profiles in order to fully reveal the therapeutic potential of these agonists and identify safer drug candidates devoid of hallucinogenic effects. This Perspective provides an overview of the structure-activity relationships of existing 5-HT2AR agonists based on their chemical classifications and discusses recent advancements in understanding their molecular pharmacology at a structural level. The encouraging clinical outcomes of psychedelics in depression treatment have sparked drug discovery endeavors aimed at developing novel 5-HT2AR agonists with improved subtype selectivity and signaling bias properties, which could serve as safer and potentially nonhallucinogenic antidepressants. These efforts can be significantly expedited through the utilization of structure-based methods and functional selectivity-directed screening.
Collapse
Affiliation(s)
- Wenwen Duan
- iHuman Institute, ShanghaiTech University, 393 Middle Huaxia Road, Shanghai 201210, China
| | - Dongmei Cao
- State Key Laboratory of Molecular Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences; University of Chinese Academy of Sciences, 320 Yueyang Road, Shanghai 200031, China
| | - Sheng Wang
- State Key Laboratory of Molecular Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences; University of Chinese Academy of Sciences, 320 Yueyang Road, Shanghai 200031, China
- Key Laboratory of Systems Health Science of Zhejiang Province, School of Life Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China
| | - Jianjun Cheng
- iHuman Institute, ShanghaiTech University, 393 Middle Huaxia Road, Shanghai 201210, China
- School of Life Science and Technology, ShanghaiTech University, 393 Middle Huaxia Road, Shanghai 201210, China
| |
Collapse
|
23
|
Beans C. If psychedelics heal, how do they do it? Proc Natl Acad Sci U S A 2024; 121:e2321906121. [PMID: 38170743 PMCID: PMC10786285 DOI: 10.1073/pnas.2321906121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2024] Open
|
24
|
Madrid-Gambin F, Fabregat-Safont D, Gomez-Gomez A, Olesti E, Mason NL, Ramaekers JG, Pozo OJ. Present and future of metabolic and metabolomics studies focused on classical psychedelics in humans. Biomed Pharmacother 2023; 169:115775. [PMID: 37944438 DOI: 10.1016/j.biopha.2023.115775] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 10/16/2023] [Accepted: 10/20/2023] [Indexed: 11/12/2023] Open
Abstract
Psychedelics are classical hallucinogen drugs that induce a marked altered state of consciousness. In recent years, there has been renewed attention to the possible use of classical psychedelics for the treatment of certain mental health disorders. However, further investigation to better understand their biological effects in humans, their mechanism of action, and their metabolism in humans is needed when considering the development of future novel therapeutic approaches. Both metabolic and metabolomics studies may help for these purposes. On one hand, metabolic studies aim to determine the main metabolites of the drug. On the other hand, the application of metabolomics in human psychedelics studies can help to further understand the biological processes underlying the psychedelic state and the mechanisms of action underlying their therapeutic potential. This review presents the state of the art of metabolic and metabolomic studies after lysergic acid diethylamide (LSD), mescaline, N,N-dimethyltryptamine (DMT) and β-carboline alkaloids (ayahuasca brew), 5-methoxy-DMT and psilocybin administrations in humans. We first describe the characteristics of the published research. Afterward, we reviewed the main results obtained by both metabolic and metabolomics (if available) studies in classical psychedelics and we found out that metabolic and metabolomics studies in psychedelics progress at two different speeds. Thus, whereas the main metabolites for classical psychedelics have been robustly established, the main metabolic alterations induced by psychedelics need to be explored. The integration of metabolomics and pharmacokinetics for investigating the molecular interaction between psychedelics and multiple targets may open new avenues in understanding the therapeutic role of psychedelics.
Collapse
Affiliation(s)
- Francisco Madrid-Gambin
- Applied Metabolomics Research Group, Hospital del Mar Research Institute, 08003 Barcelona, Spain.
| | - David Fabregat-Safont
- Applied Metabolomics Research Group, Hospital del Mar Research Institute, 08003 Barcelona, Spain; Environmental and Public Health Analytical Chemistry, Research Institute for Pesticides and Water, University Jaume I, 12071 Castelló, Spain
| | - Alex Gomez-Gomez
- Applied Metabolomics Research Group, Hospital del Mar Research Institute, 08003 Barcelona, Spain; CERBA Internacional, Chromatography Department, 08203 Sabadell, Spain
| | - Eulàlia Olesti
- Department of Clinical Pharmacology, Area Medicament, Hospital Clinic of Barcelona, 08036 Barcelona, Spain; Clinical Pharmacology, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), 08036 Barcelona, Spain
| | - Natasha L Mason
- Department of Neuropsychology and Psychopharmacology, Faculty of Psychology and Neuroscience, Maastricht University, 6200 MD Maastricht, the Netherlands
| | - Johannes G Ramaekers
- Department of Neuropsychology and Psychopharmacology, Faculty of Psychology and Neuroscience, Maastricht University, 6200 MD Maastricht, the Netherlands
| | - Oscar J Pozo
- Applied Metabolomics Research Group, Hospital del Mar Research Institute, 08003 Barcelona, Spain.
| |
Collapse
|
25
|
Wallach J, Cao AB, Calkins MM, Heim AJ, Lanham JK, Bonniwell EM, Hennessey JJ, Bock HA, Anderson EI, Sherwood AM, Morris H, de Klein R, Klein AK, Cuccurazzu B, Gamrat J, Fannana T, Zauhar R, Halberstadt AL, McCorvy JD. Identification of 5-HT 2A receptor signaling pathways associated with psychedelic potential. Nat Commun 2023; 14:8221. [PMID: 38102107 PMCID: PMC10724237 DOI: 10.1038/s41467-023-44016-1] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Accepted: 11/27/2023] [Indexed: 12/17/2023] Open
Abstract
Serotonergic psychedelics possess considerable therapeutic potential. Although 5-HT2A receptor activation mediates psychedelic effects, prototypical psychedelics activate both 5-HT2A-Gq/11 and β-arrestin2 transducers, making their respective roles unclear. To elucidate this, we develop a series of 5-HT2A-selective ligands with varying Gq efficacies, including β-arrestin-biased ligands. We show that 5-HT2A-Gq but not 5-HT2A-β-arrestin2 recruitment efficacy predicts psychedelic potential, assessed using head-twitch response (HTR) magnitude in male mice. We further show that disrupting Gq-PLC signaling attenuates the HTR and a threshold level of Gq activation is required to induce psychedelic-like effects, consistent with the fact that certain 5-HT2A partial agonists (e.g., lisuride) are non-psychedelic. Understanding the role of 5-HT2A Gq-efficacy in psychedelic-like psychopharmacology permits rational development of non-psychedelic 5-HT2A agonists. We also demonstrate that β-arrestin-biased 5-HT2A receptor agonists block psychedelic effects and induce receptor downregulation and tachyphylaxis. Overall, 5-HT2A receptor Gq-signaling can be fine-tuned to generate ligands distinct from classical psychedelics.
Collapse
Affiliation(s)
- Jason Wallach
- Department of Pharmaceutical Sciences, Saint Joseph's University, Philadelphia, PA, 19104, USA.
| | - Andrew B Cao
- Department of Cell Biology, Neurobiology, and Anatomy, Medical College of Wisconsin, Milwaukee, WI, 53226, USA
| | - Maggie M Calkins
- Department of Cell Biology, Neurobiology, and Anatomy, Medical College of Wisconsin, Milwaukee, WI, 53226, USA
| | - Andrew J Heim
- Department of Chemistry, Saint Joseph's University, Philadelphia, PA, 19104, USA
- Chemical Computing Group ULC, 910-1010 Sherbrooke W, Montréal, QC, H3A 2R7, Canada
| | - Janelle K Lanham
- Department of Cell Biology, Neurobiology, and Anatomy, Medical College of Wisconsin, Milwaukee, WI, 53226, USA
| | - Emma M Bonniwell
- Department of Cell Biology, Neurobiology, and Anatomy, Medical College of Wisconsin, Milwaukee, WI, 53226, USA
| | - Joseph J Hennessey
- Department of Cell Biology, Neurobiology, and Anatomy, Medical College of Wisconsin, Milwaukee, WI, 53226, USA
| | - Hailey A Bock
- Department of Cell Biology, Neurobiology, and Anatomy, Medical College of Wisconsin, Milwaukee, WI, 53226, USA
| | - Emilie I Anderson
- Department of Cell Biology, Neurobiology, and Anatomy, Medical College of Wisconsin, Milwaukee, WI, 53226, USA
| | | | - Hamilton Morris
- Department of Pharmaceutical Sciences, Saint Joseph's University, Philadelphia, PA, 19104, USA
| | - Robbin de Klein
- Research Service, VA San Diego Healthcare System, San Diego, CA, 92161, USA
| | - Adam K Klein
- Department of Psychiatry, University of California San Diego, La Jolla, CA, 92093, USA
- Gilgamesh Pharmaceuticals, New York, NY, 10003, USA
| | - Bruna Cuccurazzu
- Department of Psychiatry, University of California San Diego, La Jolla, CA, 92093, USA
| | - James Gamrat
- Department of Pharmaceutical Sciences, Saint Joseph's University, Philadelphia, PA, 19104, USA
| | - Tilka Fannana
- Department of Pharmaceutical Sciences, Saint Joseph's University, Philadelphia, PA, 19104, USA
| | - Randy Zauhar
- Department of Chemistry, Saint Joseph's University, Philadelphia, PA, 19104, USA
- Artemis Discovery, LLC, Suite 300, 709 N 2nd Street, Philadelphia, PA, 19123, USA
| | - Adam L Halberstadt
- Research Service, VA San Diego Healthcare System, San Diego, CA, 92161, USA.
- Department of Psychiatry, University of California San Diego, La Jolla, CA, 92093, USA.
- Center for Psychedelic Research, University of California San Diego, La Jolla, CA, 92093, USA.
| | - John D McCorvy
- Department of Cell Biology, Neurobiology, and Anatomy, Medical College of Wisconsin, Milwaukee, WI, 53226, USA.
- Neuroscience Research Center, Medical College of Wisconsin, Milwaukee, WI, 53226, USA.
- Cancer Center, Medical College of Wisconsin, Milwaukee, WI, 53226, USA.
| |
Collapse
|
26
|
Wojtas A, Herian M, Maćkowiak M, Solarz A, Wawrzczak-Bargiela A, Bysiek A, Noworyta K, Gołembiowska K. Hallucinogenic activity, neurotransmitters release, anxiolytic and neurotoxic effects in Rat's brain following repeated administration of novel psychoactive compound 25B-NBOMe. Neuropharmacology 2023; 240:109713. [PMID: 37689261 DOI: 10.1016/j.neuropharm.2023.109713] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 07/05/2023] [Accepted: 09/06/2023] [Indexed: 09/11/2023]
Abstract
2-(4-Bromo-2,5-dimethoxyphenyl)-N-(2-methoxybenzyl)etanoamine (25B-NBOMe) is a highly selective 5-HT2A receptor agonist, exhibiting a potent hallucinogenic activity. In the present study, we investigated the effect of a 7-day treatment with 25B-NBOMe in a dose of 0.3 mg/kg on the following: the neurotransmitter release in vivo using microdialysis in freely moving animals, hallucinogenic activity measured in the Wet Dog Shake (WDS) test, anxiety level as measured in the light/dark box (LDB) and locomotor activity in the open field (OF) test, DNA damage with the comet assay, and on a number of neuronal and glial cells with immunohistochemistry. Repeated administration of 25B-NBOMe decreased the response to a challenge dose (0.3 mg/kg) on DA, 5-HT and glutamatergic neurons in the rats' frontal cortex, striatum, and nucleus accumbens. The WDS response dropped drastically after the second day of treatment, suggesting a rapid development of tolerance. LDB and OF tests showed that the effect of 25B-NBOMe on anxiety depends on the treatment and environmental settings. Results obtained with the comet assay indicate a genotoxic properties in the frontal cortex and hippocampus. An increase in immunopositive glial but not neuronal cells was observed in the cortical regions but not in the hippocampus. In conclusion, our study showed that a chronic administration of 25B-NBOMe produces the development of tolerance observed in the neurotransmitters release and hallucinogenic activity. The oxidative damage of cortical and hippocampal DNA implies the generation of free radicals by the drug, resulting in genotoxicity but rather not in neurotoxic tissue damage. Behavioral tests show that 25B-NBOMe exerts anxiogenic effect after single and repeated treatment.
Collapse
Affiliation(s)
- Adam Wojtas
- Maj Institute of Pharmacology, Polish Academy of Sciences, Department of Pharmacology, 31-343, Kraków, 12 Smętna, Poland
| | - Monika Herian
- Maj Institute of Pharmacology, Polish Academy of Sciences, Department of Pharmacology, 31-343, Kraków, 12 Smętna, Poland
| | - Marzena Maćkowiak
- Maj Institute of Pharmacology, Polish Academy of Sciences, Department of Pharmacology, Laboratory of Pharmacology and Brain Biostructure, 31-343, Kraków, 12 Smętna, Poland
| | - Anna Solarz
- Maj Institute of Pharmacology, Polish Academy of Sciences, Department of Pharmacology, Laboratory of Pharmacology and Brain Biostructure, 31-343, Kraków, 12 Smętna, Poland
| | - Agnieszka Wawrzczak-Bargiela
- Maj Institute of Pharmacology, Polish Academy of Sciences, Department of Pharmacology, Laboratory of Pharmacology and Brain Biostructure, 31-343, Kraków, 12 Smętna, Poland
| | - Agnieszka Bysiek
- Maj Institute of Pharmacology, Polish Academy of Sciences, Department of Pharmacology, 31-343, Kraków, 12 Smętna, Poland
| | - Karolina Noworyta
- Maj Institute of Pharmacology, Polish Academy of Sciences, Department of Pharmacology, 31-343, Kraków, 12 Smętna, Poland
| | - Krystyna Gołembiowska
- Maj Institute of Pharmacology, Polish Academy of Sciences, Department of Pharmacology, 31-343, Kraków, 12 Smętna, Poland.
| |
Collapse
|
27
|
Bottemanne H, Berkovitch L, Gauld C, Balcerac A, Schmidt L, Mouchabac S, Fossati P. Storm on predictive brain: A neurocomputational account of ketamine antidepressant effect. Neurosci Biobehav Rev 2023; 154:105410. [PMID: 37793581 DOI: 10.1016/j.neubiorev.2023.105410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2023] [Revised: 08/24/2023] [Accepted: 09/26/2023] [Indexed: 10/06/2023]
Abstract
For the past decade, ketamine, an N-methyl-D-aspartate receptor (NMDAr) antagonist, has been considered a promising treatment for major depressive disorder (MDD). Unlike the delayed effect of monoaminergic treatment, ketamine may produce fast-acting antidepressant effects hours after a single administration at subanesthetic dose. Along with these antidepressant effects, it may also induce transient dissociative (disturbing of the sense of self and reality) symptoms during acute administration which resolve within hours. To understand ketamine's rapid-acting antidepressant effect, several biological hypotheses have been explored, but despite these promising avenues, there is a lack of model to understand the timeframe of antidepressant and dissociative effects of ketamine. In this article, we propose a neurocomputational account of ketamine's antidepressant and dissociative effects based on the Predictive Processing (PP) theory, a framework for cognitive and sensory processing. PP theory suggests that the brain produces top-down predictions to process incoming sensory signals, and generates bottom-up prediction errors (PEs) which are then used to update predictions. This iterative dynamic neural process would relies on N-methyl-D-aspartate (NMDAr) and α-amino-3-hydroxy-5-methyl-4-isoxazole-propionic receptors (AMPAr), two major component of the glutamatergic signaling. Furthermore, it has been suggested that MDD is characterized by over-rigid predictions which cannot be updated by the PEs, leading to miscalibration of hierarchical inference and self-reinforcing negative feedback loops. Based on former empirical studies using behavioral paradigms, neurophysiological recordings, and computational modeling, we suggest that ketamine impairs top-down predictions by blocking NMDA receptors, and enhances presynaptic glutamate release and PEs, producing transient dissociative symptoms and fast-acting antidepressant effect in hours following acute administration. Moreover, we present data showing that ketamine may enhance a delayed neural plasticity pathways through AMPAr potentiation, triggering a prolonged antidepressant effect up to seven days for unique administration. Taken together, the two sides of antidepressant effects with distinct timeframe could constitute the keystone of antidepressant properties of ketamine. These PP disturbances may also participate to a ketamine-induced time window of mental flexibility, which can be used to improve the psychotherapeutic process. Finally, these proposals could be used as a theoretical framework for future research into fast-acting antidepressants, and combination with existing antidepressant and psychotherapy.
Collapse
Affiliation(s)
- Hugo Bottemanne
- Paris Brain Institute - Institut du Cerveau (ICM), UMR 7225 / UMRS 1127, Sorbonne University / CNRS / INSERM, Paris, France; Sorbonne University, Department of Philosophy, Science Norm Democracy Research Unit, UMR, 8011, Paris, France; Sorbonne University, Department of Psychiatry, Pitié-Salpêtrière Hospital, Assistance Publique-Hôpitaux de Paris (AP-HP), Paris, France.
| | - Lucie Berkovitch
- Saclay CEA Centre, Neurospin, Gif-Sur-Yvette Cedex, France; Department of Psychiatry, GHU Paris Psychiatrie et Neurosciences, Service Hospitalo-Universitaire, Paris, France
| | - Christophe Gauld
- Department of Child Psychiatry, CHU de Lyon, F-69000 Lyon, France; Institut des Sciences Cognitives Marc Jeannerod, UMR 5229 CNRS & Université Claude Bernard Lyon 1, F-69000 Lyon, France
| | - Alexander Balcerac
- Paris Brain Institute - Institut du Cerveau (ICM), UMR 7225 / UMRS 1127, Sorbonne University / CNRS / INSERM, Paris, France; Sorbonne University, Department of Neurology, Pitié-Salpêtrière Hospital, Assistance Publique-Hôpitaux de Paris (AP-HP), Paris, France
| | - Liane Schmidt
- Paris Brain Institute - Institut du Cerveau (ICM), UMR 7225 / UMRS 1127, Sorbonne University / CNRS / INSERM, Paris, France
| | - Stephane Mouchabac
- Paris Brain Institute - Institut du Cerveau (ICM), UMR 7225 / UMRS 1127, Sorbonne University / CNRS / INSERM, Paris, France; Sorbonne University, Department of Psychiatry, Saint-Antoine Hospital, Assistance Publique-Hôpitaux de Paris (AP-HP), Paris, France
| | - Philippe Fossati
- Paris Brain Institute - Institut du Cerveau (ICM), UMR 7225 / UMRS 1127, Sorbonne University / CNRS / INSERM, Paris, France; Sorbonne University, Department of Philosophy, Science Norm Democracy Research Unit, UMR, 8011, Paris, France
| |
Collapse
|
28
|
Romeo B, Fauvel B, Dejean S, Strika L, Amirouche A, Verroust V, Piolino P, Benyamina A. Impact of a Naturalistic Psychedelic Experience on Smoking: A Retrospective Survey. J Psychoactive Drugs 2023; 55:640-649. [PMID: 37341764 DOI: 10.1080/02791072.2023.2227171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2022] [Revised: 04/17/2023] [Accepted: 05/01/2023] [Indexed: 06/22/2023]
Abstract
Tobacco use disorder is a major public health concern. The aim of this study was to investigate the impact of a psychedelic experience in a natural context on tobacco use. A retrospective online survey was conducted on 173 individuals who reported having had a psychedelic experience while being smokers. Demographic information was collected, and characteristics of the psychedelic experience, tobacco addiction and psychological flexibility were assessed. Mean number of cigarettes smoked per day, and proportion of individuals with high tobacco dependency significantly decreased between the three time points (p < .001). Participants who reduced or quit smoking had more intense mystical experiences during the psychedelic session (p = .01) and lower psychological flexibility before the psychedelic experience (p = .018). The increase in psychological flexibility post psychedelic session, and the personal motives for the psychedelic experience were significant positive predictors of smoking reduction or cessation (p < .001). Our results confirmed that a psychedelic experience in smoker individuals can be associated with smoking and tobacco dependency reduction and that the personal motives for the psychedelic session, the intensity of the mystical experience, and the increase of psychological flexibility following the psychedelic experience, are associated with smoking cessation or reduction.
Collapse
Affiliation(s)
- B Romeo
- APHP, Paul Brousse Hospital, Department of Psychiatry and Addictology, Villejuif, France
- Unité de Recherche Psychiatrie-Comorbidités-Addictions - PSYCOMADD -Paris Saclay University Île-de-France, Villejuif, France
| | - B Fauvel
- Laboratoire Mémoire, Cerveau Et Cognition (UR 7536), Institut de Psychologie, Université de Paris Cité, Paris, France
| | - S Dejean
- APHP, Paul Brousse Hospital, Department of Psychiatry and Addictology, Villejuif, France
| | - L Strika
- APHP, Paul Brousse Hospital, Department of Psychiatry and Addictology, Villejuif, France
- Unité de Recherche Psychiatrie-Comorbidités-Addictions - PSYCOMADD -Paris Saclay University Île-de-France, Villejuif, France
| | - A Amirouche
- APHP, Paul Brousse Hospital, Department of Psychiatry and Addictology, Villejuif, France
- Unité de Recherche Psychiatrie-Comorbidités-Addictions - PSYCOMADD -Paris Saclay University Île-de-France, Villejuif, France
| | - V Verroust
- Unité de Recherche Psychiatrie-Comorbidités-Addictions - PSYCOMADD -Paris Saclay University Île-de-France, Villejuif, France
- Centre d'histoire des sciences, des sociétés et des conflits, Université Picardie-Jules Vernes, Amiens, France
| | - P Piolino
- Laboratoire Mémoire, Cerveau Et Cognition (UR 7536), Institut de Psychologie, Université de Paris Cité, Paris, France
| | - A Benyamina
- APHP, Paul Brousse Hospital, Department of Psychiatry and Addictology, Villejuif, France
- Unité de Recherche Psychiatrie-Comorbidités-Addictions - PSYCOMADD -Paris Saclay University Île-de-France, Villejuif, France
| |
Collapse
|
29
|
Custodio RJP, Ortiz DM, Lee HJ, Sayson LV, Kim M, Lee YS, Kim KM, Cheong JH, Kim HJ. Serotonin 2C receptors are also important in head-twitch responses in male mice. Psychopharmacology (Berl) 2023:10.1007/s00213-023-06482-9. [PMID: 37882810 DOI: 10.1007/s00213-023-06482-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Accepted: 10/05/2023] [Indexed: 10/27/2023]
Abstract
RATIONALE Serotonergic psychedelics exert their effects via their high affinity for serotonin (5-HT) receptors, particularly through activating 5-HT2A receptors (5-HT2AR), employing the frontal cortex-dependent head-twitch response (HTR). Although universally believed to be so, studies have not yet fully ascertained whether 5-HT2AR activation is the sole initiator of these psychedelic effects. This is because not all 5-HT2AR agonists exhibit similar pharmacologic properties. OBJECTIVE This study aims to identify and discriminate the roles of 5-HT2AR and 5-HT2CR in the HTR induced by Methallylescaline (MAL) and 4-Methyl-2,5,β-trimethoxyphenethylamine (BOD) in male mice. Also, an analysis of their potential neurotoxic properties was evaluated. METHODS Male mice treated with MAL and BOD were evaluated in different behavioral paradigms targeting HTR and neurotoxicity effects. Drug affinity, pharmacological blocking, and molecular analysis were also conducted to support the behavioral findings. The HTR induced by DOI has been extensively characterized in male mice, making it a good positive control for this study, specifically for comparing the pharmacological effects of our test compounds. RESULTS The activation of 5-HT2CR, alone or in concert with 5-HT2AR, produces a comparable degree of HTRs (at a dose of 1 mg·kg-1), with divergent 5-HT2CR- and 5-HT2AR-Gqα11-mediated signaling and enhanced neurotoxic properties (at a dose of 30 mg·kg-1) coupled with activated pro-inflammatory cytokines. These findings show these compounds' potential psychedelic and neurotoxic effects in male mice. CONCLUSION These findings showed that while 5-HT2AR is the main initiator of HTR, the 5-HT2CR also has a distinct property that renders it effective in inducing HTR in male mice.
Collapse
Affiliation(s)
- Raly James Perez Custodio
- Networking Group Aging, Department of Ergonomics, Leibniz Research Centre for Working Environment and Human Factors - IfADo, Ardeystrasse 67, Dortmund, 44139, Germany.
| | - Darlene Mae Ortiz
- Uimyung Research Institute for Neuroscience, Department of Pharmacy, Sahmyook University, 815 Hwarang-ro, Nowon-gu, Seoul, 01795, Republic of Korea
| | - Hyun Jun Lee
- Uimyung Research Institute for Neuroscience, Department of Pharmacy, Sahmyook University, 815 Hwarang-ro, Nowon-gu, Seoul, 01795, Republic of Korea
| | - Leandro Val Sayson
- Uimyung Research Institute for Neuroscience, Department of Pharmacy, Sahmyook University, 815 Hwarang-ro, Nowon-gu, Seoul, 01795, Republic of Korea
| | - Mikyung Kim
- Department of Chemistry & Life Science, Sahmyook University, 815 Hwarang-ro, Nowon-gu, Seoul, 01795, Republic of Korea
| | - Yong Sup Lee
- Medicinal Chemistry Laboratory, Department of Pharmacy & Department of Life and Nanopharmaceutical Sciences, College of Pharmacy, Kyung Hee University, 26 Kyungheedae-ro, Seoul, 02447, Republic of Korea
| | - Kyeong-Man Kim
- Department of Pharmacology, College of Pharmacy, Chonnam National University, 77 Yongbong-ro, Buk-gu, Gwangju, 61186, Republic of Korea
| | - Jae Hoon Cheong
- Institute for New Drug Development, College of Pharmacy, Jeonbuk National University, 567 Baekje-daero, Deokjin-gu, Jeonju, Jeollabuk-do, 54896, Republic of Korea.
| | - Hee Jin Kim
- Uimyung Research Institute for Neuroscience, Department of Pharmacy, Sahmyook University, 815 Hwarang-ro, Nowon-gu, Seoul, 01795, Republic of Korea.
| |
Collapse
|
30
|
Tyagi R, Saraf TS, Canal CE. The Psychedelic N, N-Dipropyltryptamine Prevents Seizures in a Mouse Model of Fragile X Syndrome via a Mechanism that Appears Independent of Serotonin and Sigma1 Receptors. ACS Pharmacol Transl Sci 2023; 6:1480-1491. [PMID: 37854624 PMCID: PMC10580393 DOI: 10.1021/acsptsci.3c00137] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Indexed: 10/20/2023]
Abstract
The serotonergic psychedelic psilocybin shows efficacy in treating neuropsychiatric disorders, though the mechanism(s) underlying its therapeutic effects remain unclear. We show that a similar psychedelic tryptamine, N,N-dipropyltryptamine (DPT), completely prevents audiogenic seizures (AGS) in an Fmr1 knockout mouse model of fragile X syndrome at a 10 mg/kg dose but not at lower doses (3 or 5.6 mg/kg). Despite showing in vitro that DPT is a serotonin 5-HT2A, 5-HT1B, and 5-HT1A receptor agonist (with that rank order of functional potency, determined with TRUPATH Gα/βγ biosensors), pretreatment with selective inhibitors of 5-HT2A/2C, 5-HT1B, or 5-HT1A receptors did not block DPT's antiepileptic effects; a pan-serotonin receptor antagonist was also ineffective. Because 5-HT1A receptor activation blocks AGS in Fmr1 knockout mice, we performed a dose-response experiment to evaluate DPT's engagement of 5-HT1A receptors in vivo. DPT elicited 5-HT1A-dependent effects only at doses greater than 10 mg/kg, further supporting that DPT's antiepileptic effects were not 5-HT1A-mediated. We also observed that the selective sigma1 receptor antagonist, NE-100, did not impact DPT's antiepileptic effects, suggesting DPT engagement of sigma1 receptors was not a crucial mechanism. Separately, we observed that DPT and NE-100 at high doses caused convulsions on their own that were qualitatively distinct from AGS. In conclusion, DPT dose-dependently blocked AGS in Fmr1 knockout mice, but neither serotonin nor sigma1 receptor antagonists prevented this action. Thus, DPT might have neurotherapeutic effects independent of its serotonergic psychedelic properties. However, DPT also caused seizures at high doses, showing that DPT has complex dose-dependent in vivo polypharmacology.
Collapse
Affiliation(s)
- Richa Tyagi
- Department of Pharmaceutical
Sciences, College of Pharmacy, Mercer University, 3001 Mercer University Drive, Atlanta, Georgia 30341, United States
| | - Tanishka S. Saraf
- Department of Pharmaceutical
Sciences, College of Pharmacy, Mercer University, 3001 Mercer University Drive, Atlanta, Georgia 30341, United States
| | - Clinton E. Canal
- Department of Pharmaceutical
Sciences, College of Pharmacy, Mercer University, 3001 Mercer University Drive, Atlanta, Georgia 30341, United States
| |
Collapse
|
31
|
Pottie E, Poulie CBM, Simon IA, Harpsøe K, D’Andrea L, Komarov IV, Gloriam DE, Jensen AA, Kristensen JL, Stove CP. Structure-Activity Assessment and In-Depth Analysis of Biased Agonism in a Set of Phenylalkylamine 5-HT 2A Receptor Agonists. ACS Chem Neurosci 2023; 14:2727-2742. [PMID: 37474114 PMCID: PMC10401645 DOI: 10.1021/acschemneuro.3c00267] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Accepted: 06/09/2023] [Indexed: 07/22/2023] Open
Abstract
Serotonergic psychedelics are described to have activation of the serotonin 2A receptor (5-HT2A) as their main pharmacological action. Despite their relevance, the molecular mechanisms underlying the psychedelic effects induced by certain 5-HT2A agonists remain elusive. One of the proposed hypotheses is the occurrence of biased agonism, defined as the preferential activation of certain signaling pathways over others. This study comparatively monitored the efficiency of a diverse panel of 4-position-substituted (and N-benzyl-derived) phenylalkylamines to induce recruitment of β-arrestin2 (βarr2) or miniGαq to the 5-HT2A, allowing us to assess structure-activity relationships and biased agonism. All test compounds exhibited agonist properties with a relatively large range of both EC50 and Emax values. Interestingly, the lipophilicity of the 2C-X phenethylamines was correlated with their efficacy in both assays but yielded a stronger correlation in the miniGαq- than in the βarr2-assay. Molecular docking suggested that accommodation of the 4-substituent of the 2C-X analogues in a hydrophobic pocket between transmembrane helices 4 and 5 of 5-HT2A may contribute to this differential effect. Aside from previously used standard conditions (lysergic acid diethylamide (LSD) as a reference agonist and a 2 h activation profile to assess a compound's activity), serotonin was included as a second reference agonist, and the compounds' activities were also assessed using the first 30 min of the activation profile. Under all assessed circumstances, the qualitative structure-activity relationships remained unchanged. Furthermore, the use of two reference agonists allowed for the estimation of both "benchmark bias" (relative to LSD) and "physiology bias" (relative to serotonin).
Collapse
Affiliation(s)
- Eline Pottie
- Laboratory
of Toxicology, Department of Bioanalysis, Faculty of Pharmaceutical
Sciences, Ghent University, Campus Heymans, Ottergemsesteenweg
460, B-9000 Ghent, Belgium
| | - Christian B. M. Poulie
- Department
of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, DK-2100 Copenhagen, Denmark
| | - Icaro A. Simon
- Department
of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, DK-2100 Copenhagen, Denmark
| | - Kasper Harpsøe
- Department
of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, DK-2100 Copenhagen, Denmark
| | - Laura D’Andrea
- Department
of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, DK-2100 Copenhagen, Denmark
| | | | - David E. Gloriam
- Department
of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, DK-2100 Copenhagen, Denmark
| | - Anders A. Jensen
- Department
of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, DK-2100 Copenhagen, Denmark
| | - Jesper L. Kristensen
- Department
of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, DK-2100 Copenhagen, Denmark
| | - Christophe P. Stove
- Laboratory
of Toxicology, Department of Bioanalysis, Faculty of Pharmaceutical
Sciences, Ghent University, Campus Heymans, Ottergemsesteenweg
460, B-9000 Ghent, Belgium
| |
Collapse
|
32
|
Wallach J, Cao AB, Calkins MM, Heim AJ, Lanham JK, Bonniwell EM, Hennessey JJ, Bock HA, Anderson EI, Sherwood AM, Morris H, de Klein R, Klein AK, Cuccurazzu B, Gamrat J, Fannana T, Zauhar R, Halberstadt AL, McCorvy JD. Identification of 5-HT 2A Receptor Signaling Pathways Responsible for Psychedelic Potential. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.07.29.551106. [PMID: 37577474 PMCID: PMC10418054 DOI: 10.1101/2023.07.29.551106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/15/2023]
Abstract
Serotonergic psychedelics possess considerable therapeutic potential. Although 5-HT2A receptor activation mediates psychedelic effects, prototypical psychedelics activate both 5-HT2A-Gq/11 and β-arrestin2 signaling, making their respective roles unclear. To elucidate this, we developed a series of 5-HT2A-selective ligands with varying Gq efficacies, including β-arrestin-biased ligands. We show that 5-HT2A-Gq but not 5-HT2A-β-arrestin2 efficacy predicts psychedelic potential, assessed using head-twitch response (HTR) magnitude in male mice. We further show that disrupting Gq-PLC signaling attenuates the HTR and a threshold level of Gq activation is required to induce psychedelic-like effects, consistent with the fact that certain 5-HT2A partial agonists (e.g., lisuride) are non-psychedelic. Understanding the role of 5-HT2A-Gq efficacy in psychedelic-like psychopharmacology permits rational development of non-psychedelic 5-HT2A agonists. We also demonstrate that β-arrestin-biased 5-HT2A receptor agonists induce receptor downregulation and tachyphylaxis, and have an anti-psychotic-like behavioral profile. Overall, 5-HT2A receptor signaling can be fine-tuned to generate ligands with properties distinct from classical psychedelics.
Collapse
Affiliation(s)
- Jason Wallach
- Department of Pharmaceutical Sciences, Saint Joseph’s University, Philadelphia, Pennsylvania 19104, United States
| | - Andrew B. Cao
- Department of Cell Biology, Neurobiology, and Anatomy, Medical College of Wisconsin, Milwaukee, Wisconsin 53226, United States
| | - Maggie M. Calkins
- Department of Cell Biology, Neurobiology, and Anatomy, Medical College of Wisconsin, Milwaukee, Wisconsin 53226, United States
| | - Andrew J. Heim
- Department of Chemistry, Saint Joseph’s University, Philadelphia, Pennsylvania 19104, United States
| | - Janelle K. Lanham
- Department of Cell Biology, Neurobiology, and Anatomy, Medical College of Wisconsin, Milwaukee, Wisconsin 53226, United States
| | - Emma M. Bonniwell
- Department of Cell Biology, Neurobiology, and Anatomy, Medical College of Wisconsin, Milwaukee, Wisconsin 53226, United States
| | - Joseph J. Hennessey
- Department of Cell Biology, Neurobiology, and Anatomy, Medical College of Wisconsin, Milwaukee, Wisconsin 53226, United States
| | - Hailey A. Bock
- Department of Cell Biology, Neurobiology, and Anatomy, Medical College of Wisconsin, Milwaukee, Wisconsin 53226, United States
| | - Emilie I. Anderson
- Department of Cell Biology, Neurobiology, and Anatomy, Medical College of Wisconsin, Milwaukee, Wisconsin 53226, United States
| | | | - Hamilton Morris
- Department of Pharmaceutical Sciences, Saint Joseph’s University, Philadelphia, Pennsylvania 19104, United States
| | - Robbin de Klein
- Research Service, VA San Diego Healthcare System, San Diego, California 92161, United States
| | - Adam K. Klein
- Department of Psychiatry, University of California San Diego, La Jolla, California 92093, United States
| | - Bruna Cuccurazzu
- Department of Psychiatry, University of California San Diego, La Jolla, California 92093, United States
| | - James Gamrat
- Department of Pharmaceutical Sciences, Saint Joseph’s University, Philadelphia, Pennsylvania 19104, United States
| | - Tilka Fannana
- Department of Pharmaceutical Sciences, Saint Joseph’s University, Philadelphia, Pennsylvania 19104, United States
| | - Randy Zauhar
- Department of Chemistry, Saint Joseph’s University, Philadelphia, Pennsylvania 19104, United States
| | - Adam L. Halberstadt
- Department of Psychiatry, University of California San Diego, La Jolla, California 92093, United States
- Research Service, VA San Diego Healthcare System, San Diego, California 92161, United States
| | - John D. McCorvy
- Department of Cell Biology, Neurobiology, and Anatomy, Medical College of Wisconsin, Milwaukee, Wisconsin 53226, United States
| |
Collapse
|
33
|
Schmitz GP, Roth BL. G protein-coupled receptors as targets for transformative neuropsychiatric therapeutics. Am J Physiol Cell Physiol 2023; 325:C17-C28. [PMID: 37067459 PMCID: PMC10281788 DOI: 10.1152/ajpcell.00397.2022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 03/28/2023] [Accepted: 04/06/2023] [Indexed: 04/18/2023]
Abstract
G protein-coupled receptors (GPCRs) constitute the largest family of druggable genes in the human genome. Even though perhaps 30% of approved medications target GPCRs, they interact with only a small number of them. Here, we consider whether there might be new opportunities for transformative therapeutics for neuropsychiatric disorders by specifically targeting both known and understudied GPCRs. Using psychedelic drugs that target serotonin receptors as an example, we show how recent insights into the structure, function, signaling, and cell biology of these receptors have led to potentially novel therapeutics. We next focus on the possibility that nonpsychedelic 5-HT2A receptor agonists might prove to be safe and rapidly acting antidepressants. Finally, we examine understudied and orphan GPCRs using the MRGPR family of receptors as an example.
Collapse
Affiliation(s)
- Gavin P Schmitz
- Department of Pharmacology, UNC Chapel Hill Medical School, Chapel Hill, North Carolina, United States
| | - Bryan L Roth
- Department of Pharmacology, UNC Chapel Hill Medical School, Chapel Hill, North Carolina, United States
| |
Collapse
|
34
|
Fissler P, Vandersmissen A, Filippi M, Mavioglu RN, Scholkmann F, Karabatsiakis A, Krähenmann R. Effects of serotonergic psychedelics on mitochondria: Transdiagnostic implications for mitochondria-related pathologies. J Psychopharmacol 2023:2698811231164707. [PMID: 37122193 DOI: 10.1177/02698811231164707] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
The use of serotonergic psychedelics has gained increasing attention in research, clinical practice and society. Growing evidence suggests fast-acting, transdiagnostic health benefits of these 5-hydroxytryptamine 2A receptor agonists. Here, we provide a brief overview of their benefits for psychological, cardiovascular, metabolic, neurodegenerative, and immunological pathologies. We then review their effect on mitochondria including mitochondrial biogenesis, functioning and transport. Mitochondrial dysregulation is a transdiagnostic mechanism that contributes to the aforementioned pathologies. Hence, we postulate that psychedelic-induced effects on mitochondria partially underlie their transdiagnostic benefits. Based on this assumption, we propose new treatment indications for psychedelics and that the health benefits induced by psychedelics depend on patient-specific mitochondrial dysregulation.
Collapse
Affiliation(s)
- Patrick Fissler
- Psychiatric Services Thurgau, Spital Thurgau AG, Münsterlingen, Switzerland
- University Hospital for Psychiatry and Psychotherapy, Paracelsus Medical University Salzburg, Salzburg, Austria
| | - Anja Vandersmissen
- Psychiatric Services Thurgau, Spital Thurgau AG, Münsterlingen, Switzerland
- University Hospital for Psychiatry and Psychotherapy, Paracelsus Medical University Salzburg, Salzburg, Austria
| | - Marco Filippi
- Psychiatric Services Thurgau, Spital Thurgau AG, Münsterlingen, Switzerland
- University Hospital for Psychiatry and Psychotherapy, Paracelsus Medical University Salzburg, Salzburg, Austria
| | | | - Felix Scholkmann
- Biomedical Optics Research Laboratory, Department of Neonatology, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Alexander Karabatsiakis
- Department of Psychology, Clinical Psychology II, University of Innsbruck, Innsbruck, Austria
| | - Rainer Krähenmann
- Psychiatric Services Thurgau, Spital Thurgau AG, Münsterlingen, Switzerland
- University Hospital for Psychiatry and Psychotherapy, Paracelsus Medical University Salzburg, Salzburg, Austria
- Department of Psychiatry, Psychotherapy and Psychosomatics, University of Zürich, Zürich, Switzerland
| |
Collapse
|
35
|
Lewis V, Bonniwell EM, Lanham JK, Ghaffari A, Sheshbaradaran H, Cao AB, Calkins MM, Bautista-Carro MA, Arsenault E, Telfer A, Taghavi-Abkuh FF, Malcolm NJ, El Sayegh F, Abizaid A, Schmid Y, Morton K, Halberstadt AL, Aguilar-Valles A, McCorvy JD. A non-hallucinogenic LSD analog with therapeutic potential for mood disorders. Cell Rep 2023; 42:112203. [PMID: 36884348 PMCID: PMC10112881 DOI: 10.1016/j.celrep.2023.112203] [Citation(s) in RCA: 40] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 12/30/2022] [Accepted: 02/16/2023] [Indexed: 03/08/2023] Open
Abstract
Hallucinations limit widespread therapeutic use of psychedelics as rapidly acting antidepressants. Here we profiled the non-hallucinogenic lysergic acid diethylamide (LSD) analog 2-bromo-LSD (2-Br-LSD) at more than 33 aminergic G protein-coupled receptors (GPCRs). 2-Br-LSD shows partial agonism at several aminergic GPCRs, including 5-HT2A, and does not induce the head-twitch response (HTR) in mice, supporting its classification as a non-hallucinogenic 5-HT2A partial agonist. Unlike LSD, 2-Br-LSD lacks 5-HT2B agonism, an effect linked to cardiac valvulopathy. Additionally, 2-Br-LSD produces weak 5-HT2A β-arrestin recruitment and internalization in vitro and does not induce tolerance in vivo after repeated administration. 2-Br-LSD induces dendritogenesis and spinogenesis in cultured rat cortical neurons and increases active coping behavior in mice, an effect blocked by the 5-HT2A-selective antagonist volinanserin (M100907). 2-Br-LSD also reverses the behavioral effects of chronic stress. Overall, 2-Br-LSD has an improved pharmacological profile compared with LSD and may have profound therapeutic value for mood disorders and other indications.
Collapse
Affiliation(s)
- Vern Lewis
- Department of Neuroscience, Carleton University, Ottawa, ON K1S 5B6, Canada
| | - Emma M Bonniwell
- Department of Cell Biology, Neurobiology and Anatomy, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Janelle K Lanham
- Department of Cell Biology, Neurobiology and Anatomy, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Abdi Ghaffari
- BetterLife Pharma Inc., Vancouver, BC V6H 1A6, Canada
| | | | - Andrew B Cao
- Department of Cell Biology, Neurobiology and Anatomy, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Maggie M Calkins
- Department of Cell Biology, Neurobiology and Anatomy, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | | | - Emily Arsenault
- Department of Neuroscience, Carleton University, Ottawa, ON K1S 5B6, Canada
| | - Andre Telfer
- Department of Neuroscience, Carleton University, Ottawa, ON K1S 5B6, Canada
| | | | - Nicholas J Malcolm
- Department of Cell Biology, Neurobiology and Anatomy, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Fatema El Sayegh
- Department of Neuroscience, Carleton University, Ottawa, ON K1S 5B6, Canada
| | - Alfonso Abizaid
- Department of Neuroscience, Carleton University, Ottawa, ON K1S 5B6, Canada
| | - Yasmin Schmid
- Department of Psychiatry, University of California, San Diego, La Jolla, CA 92093, USA
| | - Kathleen Morton
- Department of Psychiatry, University of California, San Diego, La Jolla, CA 92093, USA
| | - Adam L Halberstadt
- Department of Psychiatry, University of California, San Diego, La Jolla, CA 92093, USA.
| | | | - John D McCorvy
- Department of Cell Biology, Neurobiology and Anatomy, Medical College of Wisconsin, Milwaukee, WI 53226, USA.
| |
Collapse
|
36
|
Syrová K, Šíchová K, Danda H, Lhotková E, Jorratt P, Pinterová-Leca N, Vejmola Č, Olejníková-Ladislavová L, Hájková K, Kuchař M, Horáček J, Páleníček T. Acute pharmacological profile of 2C-B-Fly-NBOMe in male Wistar rats—pharmacokinetics, effects on behaviour and thermoregulation. Front Pharmacol 2023; 14:1120419. [PMID: 36969854 PMCID: PMC10033663 DOI: 10.3389/fphar.2023.1120419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Accepted: 02/27/2023] [Indexed: 03/11/2023] Open
Abstract
Introduction:N-2-methoxy-benzylated (“NBOMe”) analogues of phenethylamine are a group of new psychoactive substances (NPS) with reported strong psychedelic effects in sub-milligram doses linked to a number of severe intoxications, including fatal ones. In our present work, we provide a detailed investigation of pharmacokinetics and acute behavioural effects of 2C-B-Fly-NBOMe (2-(8-bromo-2,3,6,7-tetrahydrobenzo [1,2-b:4,5-b′]difuran-4-yl)-N-[(2-methoxybenzyl]ethan-1-amine), an analogue of popular psychedelic entactogen 2C-B (4-Bromo-2,5-dimethoxyphenethylamine).Methods: All experiments were conducted on adult male Wistar rats. Pharmacokinetic parameters of 2C-B-Fly-NBOMe (1 mg/kg subcutaneously; s. c.) in blood serum and brain tissue were analysed over 24 h using liquid chromatography-mass spectrometry (LC/MS). For examination of behavioural parameters in open field test (OFT) and prepulse inhibition (PPI) of acoustic startle reaction (ASR), 2C-B-Fly-NBOMe (0.2, 1 and 5 mg/kg s. c.) was administered in two temporal onsets: 15 and 60 min after administration. Thermoregulatory changes were evaluated in individually and group-housed animals over 8 h following the highest dose used in behavioural experiments (5 mg/kg s. c.).Results: Peak drug concentrations were detected 30 and 60 min after the drug application in serum (28 ng/ml) and brain tissue (171 ng/g), respectively. The parental compound was still present in the brain 8 h after administration. Locomotor activity was dose-dependently reduced by the drug in both temporal testing onsets. ASR was also strongly disrupted in both temporal onsets, drug’s effect on PPI was weaker. 2C-B-Fly-NBOMe did not cause any significant thermoregulatory changes.Discussion: Our results suggest that 2C-B-Fly-NBOMe penetrates animal brain tissue in a relatively slow manner, induces significant inhibitory effects on motor performance, and attenuates sensorimotor gating. Its overall profile is similar to closely related analogue 2C-B and other NBOMe substances.
Collapse
Affiliation(s)
- Kateřina Syrová
- Psychedelics Research Centre, National Institute of Mental Health, Prague, Czechia
- Third Faculty of Medicine, Charles University, Prague, Czechia
| | - Klára Šíchová
- Psychedelics Research Centre, National Institute of Mental Health, Prague, Czechia
| | - Hynek Danda
- Psychedelics Research Centre, National Institute of Mental Health, Prague, Czechia
- Third Faculty of Medicine, Charles University, Prague, Czechia
| | - Eva Lhotková
- Psychedelics Research Centre, National Institute of Mental Health, Prague, Czechia
| | - Pascal Jorratt
- Psychedelics Research Centre, National Institute of Mental Health, Prague, Czechia
- Third Faculty of Medicine, Charles University, Prague, Czechia
| | - Nikola Pinterová-Leca
- Psychedelics Research Centre, National Institute of Mental Health, Prague, Czechia
- Third Faculty of Medicine, Charles University, Prague, Czechia
| | - Čestmír Vejmola
- Psychedelics Research Centre, National Institute of Mental Health, Prague, Czechia
- Third Faculty of Medicine, Charles University, Prague, Czechia
| | - Lucie Olejníková-Ladislavová
- Psychedelics Research Centre, National Institute of Mental Health, Prague, Czechia
- Third Faculty of Medicine, Charles University, Prague, Czechia
| | - Kateřina Hájková
- Forensic Laboratory of Biologically Active Compounds, Department of Chemistry of Natural Compounds, University of Chemistry and Technology, Prague, Czechia
| | - Martin Kuchař
- Psychedelics Research Centre, National Institute of Mental Health, Prague, Czechia
- Forensic Laboratory of Biologically Active Compounds, Department of Chemistry of Natural Compounds, University of Chemistry and Technology, Prague, Czechia
- *Correspondence: Tomáš Páleníček, ; Martin Kuchař,
| | - Jiří Horáček
- Psychedelics Research Centre, National Institute of Mental Health, Prague, Czechia
- Third Faculty of Medicine, Charles University, Prague, Czechia
| | - Tomáš Páleníček
- Psychedelics Research Centre, National Institute of Mental Health, Prague, Czechia
- Third Faculty of Medicine, Charles University, Prague, Czechia
- *Correspondence: Tomáš Páleníček, ; Martin Kuchař,
| |
Collapse
|
37
|
Aqil M, Roseman L. More than meets the eye: The role of sensory dimensions in psychedelic brain dynamics, experience, and therapeutics. Neuropharmacology 2023; 223:109300. [PMID: 36334767 DOI: 10.1016/j.neuropharm.2022.109300] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Revised: 10/08/2022] [Accepted: 10/20/2022] [Indexed: 11/11/2022]
Abstract
Psychedelics are undergoing a major resurgence of scientific and clinical interest. While multiple theories and frameworks have been proposed, there is yet no universal agreement on the mechanisms underlying the complex effects of psychedelics on subjective experience and brain dynamics, nor their therapeutic benefits. Despite being prominent in psychedelic phenomenology and distinct from those elicited by other classes of hallucinogens, the effects of psychedelics on low-level sensory - particularly visual - dimensions of experience, and corresponding brain dynamics, have often been disregarded by contemporary research as 'epiphenomenal byproducts'. Here, we review available evidence from neuroimaging, pharmacology, questionnaires, and clinical studies; we propose extensions to existing models, provide testable hypotheses for the potential therapeutic roles of psychedelic-induced visual hallucinations, and simulations of visual phenomena relying on low-level cortical dynamics. In sum, we show that psychedelic-induced alterations in low-level sensory dimensions 1) are unlikely to be entirely causally reconducible to high-level alterations, but rather co-occur with them in a dialogical interplay, and 2) are likely to play a causally relevant role in determining high-level alterations and therapeutic outcomes. We conclude that reevaluating the currently underappreciated role of sensory dimensions in psychedelic states will be highly valuable for neuroscience and clinical practice, and that integrating low-level and domain-specific aspects of psychedelic effects into existing nonspecific models is a necessary step to further understand how these substances effect both acute and long-term change in the human brain.
Collapse
Affiliation(s)
- Marco Aqil
- Spinoza Centre for Neuroimaging, the Netherlands; Computational Cognitive Neuroscience and Neuroimaging, Institute for Neuroscience, the Netherlands; Experimental and Applied Psychology, Vrije University Amsterdam, the Netherlands.
| | - Leor Roseman
- Centre for Psychedelic Research, Imperial College London, London, United Kingdom
| |
Collapse
|
38
|
Lipari N, Centner A, Glinski J, Cohen S, Manfredsson FP, Bishop C. Characterizing the relationship between L-DOPA-induced-dyskinesia and psychosis-like behaviors in a bilateral rat model of Parkinson's disease. Neurobiol Dis 2023; 176:105965. [PMID: 36526089 DOI: 10.1016/j.nbd.2022.105965] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 11/30/2022] [Accepted: 12/12/2022] [Indexed: 12/15/2022] Open
Abstract
Parkinson's disease associated psychosis (PDAP) is a prevalent non-motor symptom (NMS) that significantly erodes patients' and caregivers' quality of life yet remains vastly understudied. One potential source of PDAP in late-stage Parkinson's disease (PD) is the common dopamine (DA) replacement therapy for motor symptoms, Levodopa (L-DOPA). Given the high incidence of L-DOPA-induced dyskinesia (LID) in later phases of PD, this study sought to characterize the relationship between PDAP and LID in a bilateral medial forebrain bundle 6-hydroxydopamine hydrobromide (6-OHDA) lesion rat model. To assess PDAP in this model, prepulse inhibition (PPI), a well-validated assay of sensorimotor gating, was employed. First, we tested whether a bilateral lesion alone or after chronic L-DOPA treatment was sufficient to induce PPI dysfunction. Rats were also monitored for LID development, using the abnormal involuntary movements (AIMs) test, to examine PPI and LID associations. In experiment 2, Vilazodone (VZD), a serotonin transporter (SERT) blocker and 1A receptor (5-HT1A) partial agonist was administered to test its potential efficacy in reducing LID and PPI dysfunction. Once testing was complete, tissue was collected for high performance liquid chromatography (HPLC) to examine the monoamine levels in motor and non-motor circuits. Results indicate that bilateral DA lesions produced motor deficits and that chronic L-DOPA induced moderate AIMs; importantly, rats that developed more severe AIMs were more likely to display sensorimotor gating dysfunction. In addition, VZD treatment dose-dependently reduced L-DOPA-induced AIMs without impairing L-DOPA efficacy, although VZD's effects on PPI were limited. Altogether, this project established the bilateral 6-OHDA lesion model accurately portrayed LID and PDAP-like behaviors, uncovered their potential relationship, and finally, demonstrated the utility of VZD for reducing LID.
Collapse
Affiliation(s)
- Natalie Lipari
- Department of Psychology, Binghamton University, Binghamton, NY, USA
| | - Ashley Centner
- Department of Psychology, Binghamton University, Binghamton, NY, USA
| | - John Glinski
- Department of Psychology, Binghamton University, Binghamton, NY, USA
| | - Sophie Cohen
- Department of Psychology, Binghamton University, Binghamton, NY, USA
| | | | | |
Collapse
|
39
|
Halberstadt AL, Luethi D, Hoener MC, Trachsel D, Brandt SD, Liechti ME. Use of the head-twitch response to investigate the structure-activity relationships of 4-thio-substituted 2,5-dimethoxyphenylalkylamines. Psychopharmacology (Berl) 2023; 240:115-126. [PMID: 36477925 PMCID: PMC9816194 DOI: 10.1007/s00213-022-06279-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Accepted: 11/10/2022] [Indexed: 12/12/2022]
Abstract
RATIONALE 4-Thio-substituted phenylalkylamines such as 2,5-dimethoxy-4-ethylthiophenethylamine (2C-T-2) and 2,5-dimethoxy-4-n-propylthiophenethylamine (2C-T-7) produce psychedelic effects in humans and have been distributed as recreational drugs. OBJECTIVES The present studies were conducted to examine the structure-activity relationships (SAR) of a series of 4-thio-substituted phenylalkylamines using the head twitch response (HTR), a 5-HT2A receptor-mediated behavior induced by psychedelic drugs in mice. The HTR is commonly used as a behavioral proxy in rodents for human psychedelic effects and can be used to discriminate hallucinogenic and non-hallucinogenic 5-HT2A agonists. METHODS HTR dose-response studies with twelve different 4-thio-substituted phenylalkylamines were conducted in male C57BL/6 J mice. To detect the HTR, head movement was recorded electronically using a magnetometer coil and then head twitches were identified in the recordings using a validated method based on artificial intelligence. RESULTS 2C-T, the parent compound of this series, had relatively low potency in the HTR paradigm, but adding an α-methyl group increased potency fivefold. Potency was also increased when the 4-methylthio group was extended by one to three methylene units. Fluorination of the 4-position alkylthio chain, however, was detrimental for activity, as was the presence of a 4-allylthio substituent versus a propylthio group. 2C-T analogs containing a 4-benzylthio group showed little or no effect in the HTR paradigm, which is consistent with evidence that bulky 4-substituents can dampen agonist efficacy at the 5-HT2A receptor. Binding and functional studies confirmed that the compounds have nanomolar affinity for 5-HT2 receptor subtypes and act as partial agonists at 5-HT2A. CONCLUSIONS In general, there were close parallels between the HTR data and the known SAR governing activity of phenylalkylamines at the 5-HT2A receptor. These findings further support the classification of 2C-T compounds as psychedelic drugs.
Collapse
Affiliation(s)
- Adam L Halberstadt
- Department of Psychiatry, University of California San Diego, 9500 Gilman Dr, La Jolla, CA, 92093-0804, USA.
- Research Service, VA San Diego Healthcare System, San Diego, CA, USA.
| | - Dino Luethi
- Division of Clinical Pharmacology and Toxicology, Department of Biomedicine and Department of Pharmaceutical Sciences, University Hospital Basel and University of Basel, Basel, Switzerland
| | - Marius C Hoener
- pRED, Roche Innovation Center Basel, Neuroscience Research, F. Hoffmann-La Roche Ltd, Basel, Switzerland
| | | | - Simon D Brandt
- School of Pharmacy and Biomolecular Sciences, Liverpool John Moores University, Liverpool, UK
| | - Matthias E Liechti
- Division of Clinical Pharmacology and Toxicology, Department of Biomedicine and Department of Pharmaceutical Sciences, University Hospital Basel and University of Basel, Basel, Switzerland
| |
Collapse
|
40
|
Henningfield JE, Ashworth J, Heal DJ, Smith SL. Psychedelic drug abuse potential assessment for new drug applications and controlled substance scheduling: A United States perspective. J Psychopharmacol 2023; 37:33-44. [PMID: 36588452 DOI: 10.1177/02698811221140004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
BACKGROUND Psychedelics are an increasingly active area of research and pharmaceutical development. This includes abuse potential assessment to better understand their pharmacological mechanisms and effects and guide controlled substance regulation. Psychedelics pose challenges to abuse assessments to ensure valid, reliable, and generalizable outcomes and safe study conduct. FINDINGS Key nonclinical techniques, for example, receptor binding and functional assays in vitro, and nonclinical physical dependence determinations, are easily adaptable to psychedelics. However, the entactogens (weak reinforcers) and hallucinogens (non-reinforcers) require more flexible approaches than typically recommended by regulatory agencies. Phase 1 pharmacokinetic/pharmacodynamic safety studies and Phases 2/3 efficacy/safety trials with systematic monitoring of abuse-related adverse events are readily applicable to psychedelics. Human abuse trials require modification because supratherapeutic doses may not be safe and procedures, for example, personal monitors to manage serious adverse events, might bias outcomes. RECOMMENDATIONS Abuse-related studies for psychedelics requiring approval by Food and Drug Administration and other agencies should take into consideration existing knowledge that will vary from extensive, for example, psilocybin, to zero for novel hallucinogens and entactogens. Many abuse assessments can be reasonably applied to animals and humans without compromising scientific integrity. Modification of existing techniques and incorporating a broader range of nonclinical tests should ensure generalizable outcomes. Human abuse studies merit reconsideration and possible modification to ensure safety and validity for psychedelic drug evaluation. Other nonclinical and clinical methods can provide evaluations of the pharmacological equivalence of test drugs to known drugs of abuse to provide context to the abuse assessment and guide drug scheduling.
Collapse
Affiliation(s)
- Jack E Henningfield
- PinneyAssociates, Inc, Bethesda, MD, USA.,Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | | | - David J Heal
- DevelRx Ltd, BioCity, Nottingham, UK.,Department of Pharmacy and Pharmacology, University of Bath, Bath, UK
| | | |
Collapse
|
41
|
Could psychedelic drugs have a role in the treatment of schizophrenia? Rationale and strategy for safe implementation. Mol Psychiatry 2023; 28:44-58. [PMID: 36280752 DOI: 10.1038/s41380-022-01832-z] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Revised: 10/02/2022] [Accepted: 10/07/2022] [Indexed: 01/07/2023]
Abstract
Schizophrenia is a widespread psychiatric disorder that affects 0.5-1.0% of the world's population and induces significant, long-term disability that exacts high personal and societal cost. Negative symptoms, which respond poorly to available antipsychotic drugs, are the primary cause of this disability. Association of negative symptoms with cortical atrophy and cell loss is widely reported. Psychedelic drugs are undergoing a significant renaissance in psychiatric disorders with efficacy reported in several conditions including depression, in individuals facing terminal cancer, posttraumatic stress disorder, and addiction. There is considerable evidence from preclinical studies and some support from human studies that psychedelics enhance neuroplasticity. In this Perspective, we consider the possibility that psychedelic drugs could have a role in treating cortical atrophy and cell loss in schizophrenia, and ameliorating the negative symptoms associated with these pathological manifestations. The foremost concern in treating schizophrenia patients with psychedelic drugs is induction or exacerbation of psychosis. We consider several strategies that could be implemented to mitigate the danger of psychotogenic effects and allow treatment of schizophrenia patients with psychedelics to be implemented. These include use of non-hallucinogenic derivatives, which are currently the focus of intense study, implementation of sub-psychedelic or microdosing, harnessing of entourage effects in extracts of psychedelic mushrooms, and blocking 5-HT2A receptor-mediated hallucinogenic effects. Preclinical studies that employ appropriate animal models are a prerequisite and clinical studies will need to be carefully designed on the basis of preclinical and translational data. Careful research in this area could significantly impact the treatment of one of the most severe and socially debilitating psychiatric disorders and open an exciting new frontier in psychopharmacology.
Collapse
|
42
|
Psilocybin for Depression: From Credibility to Feasibility, What's Missing? Pharmaceuticals (Basel) 2022; 16:ph16010068. [PMID: 36678564 PMCID: PMC9861656 DOI: 10.3390/ph16010068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 12/28/2022] [Accepted: 12/29/2022] [Indexed: 01/03/2023] Open
Abstract
Psilocybin has been suggested as a promising transdiagnostic treatment strategy for a wide range of psychiatric disorders. Recent findings showed that psychedelic-assisted/"psycholitic" psychotherapy should provide significant and sustained alleviation of depressive symptoms. However, to date, there have been several study limitations (e.g., small sample sizes, blinding, limited follow-up, highly screened treatment populations) and some health/political issues, including practitioners' experience, lack of standardized protocols, psychedelics' legal status, ethical concerns, and potential psychological/psychopathological/medical untoward effects. The focus here is on a range of clinical and methodological issues, also aiming at outlining some possible suggestions. We are confident that newer evidence, more precise protocols, and eventual reclassification policies may allow a better understanding of the real potential of psilocybin as a transdiagnostic therapeutic molecule.
Collapse
|
43
|
Kelmendi B, Kichuk SA, DePalmer G, Maloney G, Ching TH, Belser A, Pittenger C. Single-dose psilocybin for treatment-resistant obsessive-compulsive disorder: A case report. Heliyon 2022; 8:e12135. [PMID: 36536916 PMCID: PMC9758406 DOI: 10.1016/j.heliyon.2022.e12135] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Revised: 09/05/2022] [Accepted: 11/28/2022] [Indexed: 12/12/2022] Open
Abstract
Classic psychedelics, such as psilocybin, act on the brain's serotonin system and produce striking psychological effects. Early work in the 1950s and 1960s and more recent controlled studies suggest benefit from psychedelic treatment in a number of conditions. A few case reports in recreational users and a single experimental study suggest benefit in patients with obsessive-compulsive disorder (OCD), but careful clinical data and long-term follow-up have been lacking. Here we describe a case of a patient with refractory OCD treated with psilocybin and followed prospectively for a year, with marked symptomatic improvement. We provide qualitative and quantitative detail of his experience during and after treatment. Improvement in OCD symptoms (YBOCS declined from 24 to 0-2) was accompanied by broader changes in his relationship to his emotions, social and work function, and quality of life. This individual was an early participant in an ongoing controlled study of psilocybin in the treatment of OCD (NCT03356483). These results are preliminary but promising, motivating ongoing investigations of the therapeutic potential of appropriately monitored and supported psychedelic treatment in the treatment of patients with obsessions and compulsions.
Collapse
Affiliation(s)
- Benjamin Kelmendi
- Yale School of Medicine, Department of Psychiatry, New Haven, CT, USA
- US Department of Veterans Affairs, National Center for PTSD – Clinical Neuroscience Division, West Haven, CT, USA
- Corresponding author.
| | - Stephen A. Kichuk
- Yale School of Medicine, Department of Psychiatry, New Haven, CT, USA
| | - Giuliana DePalmer
- Yale School of Medicine, Department of Psychiatry, New Haven, CT, USA
| | | | | | | | - Christopher Pittenger
- Yale School of Medicine, Department of Psychiatry, New Haven, CT, USA
- Yale University, Department of Psychology, New Haven, CT USA
- Yale Child Study Center, Yale University School of Medicine, New Haven, CT, USA
- Yale Center for Brain and Mind Health, Yale University School of Medicine, New Haven, CT, USA
| |
Collapse
|
44
|
Calleja‐Conde J, Morales‐García JA, Echeverry‐Alzate V, Bühler KM, Giné E, López‐Moreno JA. Classic psychedelics and alcohol use disorders: A systematic review of human and animal studies. Addict Biol 2022; 27:e13229. [PMID: 36301215 PMCID: PMC9541961 DOI: 10.1111/adb.13229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Revised: 07/20/2022] [Accepted: 08/19/2022] [Indexed: 01/24/2023]
Abstract
Classic psychedelics refer to substances such as lysergic acid diethylamide (LSD), psilocybin, ayahuasca, and mescaline, which induce altered states of consciousness by acting mainly on 5-HT2A receptors. Recently, the interest of psychedelics as pharmacological treatment for psychiatric disorders has increased significantly, including their use on problematic use of alcohol. This systematic review is aimed to analyse the last two decades of studies examining the relationship between classic psychedelics and alcohol consumption. We searched PubMed and PsycInfo for human and preclinical studies published between January 2000 to December 2021. The search identified 639 publications. After selection, 27 studies were included. Human studies (n = 20) generally show promising data and seem to indicate that classic psychedelics could help reduce alcohol consumption. Nevertheless, some of these studies present methodological concerns such as low number of participants, lack of control group or difficulty in determining the effect of classic psychedelics in isolation. On the other hand, preclinical studies (n = 7) investigating the effect of these compounds on voluntary alcohol consumption are scarce and show some conflicting data. Among these compounds, psilocybin seems to show the most consistent data indicating that this compound could be a potential candidate to treat alcohol use disorders. In the absence of understanding the biological and/or psychological mechanisms, more studies including methodological quality parameters are needed to finally determine the effects of classic psychedelics on alcohol consumption.
Collapse
Affiliation(s)
| | | | - Víctor Echeverry‐Alzate
- School of Life and Nature SciencesNebrija UniversityMadridSpain
- Department of Psychobiology and Methodology in Behavioral Sciences, Faculty of Psychology, Somosaguas CampusComplutense University of MadridMadridSpain
| | - Kora Mareen Bühler
- Department of Psychobiology and Methodology in Behavioral Sciences, Faculty of Psychology, Somosaguas CampusComplutense University of MadridMadridSpain
| | - Elena Giné
- Department of Cell Biology, Faculty of MedicineComplutense University of MadridMadridSpain
| | - Jose Antonio López‐Moreno
- Department of Psychobiology and Methodology in Behavioral Sciences, Faculty of Psychology, Somosaguas CampusComplutense University of MadridMadridSpain
| |
Collapse
|
45
|
Stoliker D, Egan GF, Friston KJ, Razi A. Neural Mechanisms and Psychology of Psychedelic Ego Dissolution. Pharmacol Rev 2022; 74:876-917. [PMID: 36786290 DOI: 10.1124/pharmrev.121.000508] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 06/26/2022] [Accepted: 06/29/2022] [Indexed: 11/22/2022] Open
Abstract
Neuroimaging studies of psychedelics have advanced our understanding of hierarchical brain organization and the mechanisms underlying their subjective and therapeutic effects. The primary mechanism of action of classic psychedelics is binding to serotonergic 5-HT2A receptors. Agonist activity at these receptors leads to neuromodulatory changes in synaptic efficacy that can have a profound effect on hierarchical message-passing in the brain. Here, we review the cognitive and neuroimaging evidence for the effects of psychedelics: in particular, their influence on selfhood and subject-object boundaries-known as ego dissolution-surmised to underwrite their subjective and therapeutic effects. Agonism of 5-HT2A receptors, located at the apex of the cortical hierarchy, may have a particularly powerful effect on sentience and consciousness. These effects can endure well after the pharmacological half-life, suggesting that psychedelics may have effects on neural plasticity that may play a role in their therapeutic efficacy. Psychologically, this may be accompanied by a disarming of ego resistance that increases the repertoire of perceptual hypotheses and affords alternate pathways for thought and behavior, including those that undergird selfhood. We consider the interaction between serotonergic neuromodulation and sentience through the lens of hierarchical predictive coding, which speaks to the value of psychedelics in understanding how we make sense of the world and specific predictions about effective connectivity in cortical hierarchies that can be tested using functional neuroimaging. SIGNIFICANCE STATEMENT: Classic psychedelics bind to serotonergic 5-HT2A receptors. Their agonist activity at these receptors leads to neuromodulatory changes in synaptic efficacy, resulting in a profound effect on information processing in the brain. Here, we synthesize an abundance of brain imaging research with pharmacological and psychological interpretations informed by the framework of predictive coding. Moreover, predictive coding is suggested to offer more sophisticated interpretations of neuroimaging findings by bridging the role between the 5-HT2A receptors and large-scale brain networks.
Collapse
Affiliation(s)
- Devon Stoliker
- Turner Institute for Brain and Mental Health (D.S., G.F.E., A.R.) and Monash Biomedical Imaging (G.F.E., A.R.), Monash University, Clayton, Victoria, Australia; Wellcome Centre for Human Neuroimaging, UCL, London, United Kingdom (K.J.F., A.R.); and CIFAR Azrieli Global Scholar, CIFAR, Toronto, Canada (A.R.)
| | - Gary F Egan
- Turner Institute for Brain and Mental Health (D.S., G.F.E., A.R.) and Monash Biomedical Imaging (G.F.E., A.R.), Monash University, Clayton, Victoria, Australia; Wellcome Centre for Human Neuroimaging, UCL, London, United Kingdom (K.J.F., A.R.); and CIFAR Azrieli Global Scholar, CIFAR, Toronto, Canada (A.R.)
| | - Karl J Friston
- Turner Institute for Brain and Mental Health (D.S., G.F.E., A.R.) and Monash Biomedical Imaging (G.F.E., A.R.), Monash University, Clayton, Victoria, Australia; Wellcome Centre for Human Neuroimaging, UCL, London, United Kingdom (K.J.F., A.R.); and CIFAR Azrieli Global Scholar, CIFAR, Toronto, Canada (A.R.)
| | - Adeel Razi
- Turner Institute for Brain and Mental Health (D.S., G.F.E., A.R.) and Monash Biomedical Imaging (G.F.E., A.R.), Monash University, Clayton, Victoria, Australia; Wellcome Centre for Human Neuroimaging, UCL, London, United Kingdom (K.J.F., A.R.); and CIFAR Azrieli Global Scholar, CIFAR, Toronto, Canada (A.R.)
| |
Collapse
|
46
|
Bogenschutz MP, Ross S, Bhatt S, Baron T, Forcehimes AA, Laska E, Mennenga SE, O’Donnell K, Owens LT, Podrebarac S, Rotrosen J, Tonigan JS, Worth L. Percentage of Heavy Drinking Days Following Psilocybin-Assisted Psychotherapy vs Placebo in the Treatment of Adult Patients With Alcohol Use Disorder: A Randomized Clinical Trial. JAMA Psychiatry 2022; 79:953-962. [PMID: 36001306 PMCID: PMC9403854 DOI: 10.1001/jamapsychiatry.2022.2096] [Citation(s) in RCA: 253] [Impact Index Per Article: 84.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
IMPORTANCE Although classic psychedelic medications have shown promise in the treatment of alcohol use disorder (AUD), the efficacy of psilocybin remains unknown. OBJECTIVE To evaluate whether 2 administrations of high-dose psilocybin improve the percentage of heavy drinking days in patients with AUD undergoing psychotherapy relative to outcomes observed with active placebo medication and psychotherapy. DESIGN, SETTING, AND PARTICIPANTS In this double-blind randomized clinical trial, participants were offered 12 weeks of manualized psychotherapy and were randomly assigned to receive psilocybin vs diphenhydramine during 2 day-long medication sessions at weeks 4 and 8. Outcomes were assessed over the 32-week double-blind period following the first dose of study medication. The study was conducted at 2 academic centers in the US. Participants were recruited from the community between March 12, 2014, and March 19, 2020. Adults aged 25 to 65 years with a DSM-IV diagnosis of alcohol dependence and at least 4 heavy drinking days during the 30 days prior to screening were included. Exclusion criteria included major psychiatric and drug use disorders, hallucinogen use, medical conditions that contraindicated the study medications, use of exclusionary medications, and current treatment for AUD. INTERVENTIONS Study medications were psilocybin, 25 mg/70 kg, vs diphenhydramine, 50 mg (first session), and psilocybin, 25-40 mg/70 kg, vs diphenhydramine, 50-100 mg (second session). Psychotherapy included motivational enhancement therapy and cognitive behavioral therapy. MAIN OUTCOMES AND MEASURES The primary outcome was percentage of heavy drinking days, assessed using a timeline followback interview, contrasted between groups over the 32-week period following the first administration of study medication using multivariate repeated-measures analysis of variance. RESULTS A total of 95 participants (mean [SD] age, 46 [12] years; 42 [44.2%] female) were randomized (49 to psilocybin and 46 to diphenhydramine). One participant (1.1%) was American Indian/Alaska Native, 3 (3.2%) were Asian, 4 (4.2%) were Black, 14 (14.7%) were Hispanic, and 75 (78.9%) were non-Hispanic White. Of the 95 randomized participants, 93 received at least 1 dose of study medication and were included in the primary outcome analysis. Percentage of heavy drinking days during the 32-week double-blind period was 9.7% for the psilocybin group and 23.6% for the diphenhydramine group, a mean difference of 13.9%; (95% CI, 3.0-24.7; F1,86 = 6.43; P = .01). Mean daily alcohol consumption (number of standard drinks per day) was also lower in the psilocybin group. There were no serious adverse events among participants who received psilocybin. CONCLUSIONS AND RELEVANCE Psilocybin administered in combination with psychotherapy produced robust decreases in percentage of heavy drinking days over and above those produced by active placebo and psychotherapy. These results provide support for further study of psilocybin-assisted treatment for AUD. TRIAL REGISTRATION ClinicalTrials.gov Identifier: NCT02061293.
Collapse
Affiliation(s)
- Michael P. Bogenschutz
- Department of Psychiatry, New York University Langone Center for Psychedelic Medicine, New York University Grossman School of Medicine, New York
| | - Stephen Ross
- Department of Psychiatry, New York University Langone Center for Psychedelic Medicine, New York University Grossman School of Medicine, New York
| | - Snehal Bhatt
- Department of Psychiatry and Behavioral Sciences, University of New Mexico School of Medicine, Albuquerque
| | - Tara Baron
- Department of Psychiatry, New York University Langone Center for Psychedelic Medicine, New York University Grossman School of Medicine, New York
| | | | - Eugene Laska
- Department of Psychiatry, New York University Langone Center for Psychedelic Medicine, New York University Grossman School of Medicine, New York,Department of Population Health, Division of Biostatistics, New York University Grossman School of Medicine, New York
| | - Sarah E. Mennenga
- Department of Psychiatry, New York University Langone Center for Psychedelic Medicine, New York University Grossman School of Medicine, New York
| | - Kelley O’Donnell
- Department of Psychiatry, New York University Langone Center for Psychedelic Medicine, New York University Grossman School of Medicine, New York
| | - Lindsey T. Owens
- Department of Psychiatry, New York University Langone Center for Psychedelic Medicine, New York University Grossman School of Medicine, New York,Department of Psychology, University of Alabama at Birmingham
| | - Samantha Podrebarac
- Department of Psychiatry, New York University Langone Center for Psychedelic Medicine, New York University Grossman School of Medicine, New York
| | - John Rotrosen
- Department of Psychiatry, New York University Langone Center for Psychedelic Medicine, New York University Grossman School of Medicine, New York
| | - J. Scott Tonigan
- University of New Mexico Center on Alcohol, Substance Use and Addictions, Albuquerque
| | - Lindsay Worth
- Department of Psychiatry and Behavioral Sciences, University of New Mexico School of Medicine, Albuquerque
| |
Collapse
|
47
|
Odland AU, Kristensen JL, Andreasen JT. Animal Behavior in Psychedelic Research. Pharmacol Rev 2022; 74:1176-1205. [PMID: 36180111 DOI: 10.1124/pharmrev.122.000590] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Accepted: 06/30/2022] [Indexed: 11/22/2022] Open
Abstract
Psychedelic-assisted psychotherapy holds great promise in the treatment of mental health disorders. Research into 5-hydroxytryptamine 2A receptor (5-HT2AR) agonist psychedelic compounds has increased dramatically over the past two decades. In humans, these compounds produce drastic effects on consciousness, and their therapeutic potential relates to changes in the processing of emotional, social, and self-referential information. The use of animal behavior to study psychedelics is under debate, and this review provides a critical perspective on the translational value of animal behavior studies in psychedelic research. Acute activation of 5-HT2ARs produces head twitches and unique discriminative cues, disrupts sensorimotor gating, and stimulates motor activity while inhibiting exploration in rodents. The acute treatment with psychedelics shows discrepant results in conventional rodent tests of depression-like behaviors but generally induces anxiolytic-like effects and inhibits repetitive behavior in rodents. Psychedelics impair waiting impulsivity but show discrepant effects in other tests of cognitive function. Tests of social interaction also show conflicting results. Effects on measures of time perception depend on the experimental schedule. Lasting or delayed effects of psychedelics in rodent tests related to different behavioral domains appear to be rather sensitive to changes in experimental protocols. Studying the effects of psychedelics on animal behaviors of relevance to effects on psychiatric symptoms in humans, assessing lasting effects, publishing negative findings, and relating behaviors in rodents and humans to other more translatable readouts, such as neuroplastic changes, will improve the translational value of animal behavioral studies in psychedelic research. SIGNIFICANCE STATEMENT: Psychedelics like LSD and psilocybin have received immense interest as potential new treatments of psychiatric disorders. Psychedelics change high-order consciousness in humans, and there is debate about the use of animal behavior studies to investigate these compounds. This review provides an overview of the behavioral effects of 5-HT2AR agonist psychedelics in laboratory animals and discusses the translatability of the effects in animals to effects in humans. Possible ways to improve the utility of animal behavior in psychedelic research are discussed.
Collapse
Affiliation(s)
- Anna U Odland
- Department of Drug Design and Pharmacology, University of Copenhagen, Copenhagen, 2100, Denmark
| | - Jesper L Kristensen
- Department of Drug Design and Pharmacology, University of Copenhagen, Copenhagen, 2100, Denmark
| | - Jesper T Andreasen
- Department of Drug Design and Pharmacology, University of Copenhagen, Copenhagen, 2100, Denmark
| |
Collapse
|
48
|
Pilc A, Machaczka A, Kawalec P, Smith JL, Witkin JM. Where do we go next in antidepressant drug discovery? A new generation of antidepressants: a pivotal role of AMPA receptor potentiation and mGlu2/3 receptor antagonism. Expert Opin Drug Discov 2022; 17:1131-1146. [PMID: 35934973 DOI: 10.1080/17460441.2022.2111415] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
INTRODUCTION Major depressive disorder remains a prevalent world-wide health problem. Currently available antidepressant medications take weeks of dosing, do not produce antidepressant response in all patients, and have undesirable ancillary effects. AREAS COVERED The present opinion piece focuses on the major inroads to the creation of new antidepressants. These include N-methyl-D-aspartate (NMDA) receptor antagonists and related compounds like ketamine, psychedelic drugs like psilocybin, and muscarinic receptor antagonists like scopolamine. The preclinical and clinical pharmacological profile of these new-age antidepressant drugs is discussed. EXPERT OPINION Preclinical and clinical data have accumulated to predict a next generation of antidepressant medicines. In contrast to the current standard of care antidepressant drugs, these compounds differ in that they demonstrate rapid activity, often after a single dose, and effects that outlive their presence in brain. These compounds also can provide efficacy for treatment-resistant depressed patients. The mechanism of action of these compounds suggests a strong glutamatergic component that involves the facilitation of AMPA receptor function. Antagonism of mGlu2/3 receptors is also relevant to the antidepressant pharmacology of this new class of drugs. Based upon the ongoing efforts to develop these new-age antidepressants, new drug approvals are predicted in the near future.
Collapse
Affiliation(s)
- Andrzej Pilc
- Department of Neurobiology, Maj Institute of Pharmacology, Polish Academy of Sciences, Krakow, Poland.,Drug Management Department, Institute of Public Health, Faculty of Health Sciences, Jagiellonian University, Krakow, Poland
| | - Agata Machaczka
- Department of Neurobiology, Maj Institute of Pharmacology, Polish Academy of Sciences, Krakow, Poland
| | - Paweł Kawalec
- Drug Management Department, Institute of Public Health, Faculty of Health Sciences, Jagiellonian University, Krakow, Poland
| | - Jodi L Smith
- Laboratory of Antiepileptic Drug Discovery, Ascension St. Vincent, Indianapolis, IN, USA
| | - Jeffrey M Witkin
- Laboratory of Antiepileptic Drug Discovery, Ascension St. Vincent, Indianapolis, IN, USA
| |
Collapse
|
49
|
Yasin S, Fierst A, Keenan H, Knapp A, Gallione K, Westlund T, Kirschner S, Vaidya S, Qiu C, Rougebec A, Morss E, Lebiedzinski J, Dejean M, Keenan JP. Self-Enhancement and the Medial Prefrontal Cortex: The Convergence of Clinical and Experimental Findings. Brain Sci 2022; 12:1103. [PMID: 36009167 PMCID: PMC9405933 DOI: 10.3390/brainsci12081103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2022] [Revised: 08/12/2022] [Accepted: 08/16/2022] [Indexed: 12/02/2022] Open
Abstract
Self-enhancement (SE) is often overlooked as a fundamental cognitive ability mediated via the Prefrontal Cortex (PFC). Here, we present research that establishes the relationship between the PFC, SE, and the potential evolved beneficial mechanisms. Specifically, we believe there is now enough evidence to speculate that SE exists to provide significant benefits and should be considered a normal aspect of the self. Whatever the metabolic or social cost, the upside of SE is great enough that it is a core and fundamental psychological construct. Furthermore, though entirely theoretical, we suggest that a critical reason the PFC has evolved so significantly in Homo sapiens is to, in part, sustain SE. We, therefore, elaborate on its proximate and ultimate mechanisms.
Collapse
Affiliation(s)
- Saeed Yasin
- Department of Biology, Montclair State University, 320 Science Hall, Montclair, NJ 07043, USA
| | - Anjel Fierst
- Department of Biology, Montclair State University, 320 Science Hall, Montclair, NJ 07043, USA
| | - Harper Keenan
- Department of Biology, Montclair State University, 320 Science Hall, Montclair, NJ 07043, USA
| | - Amelia Knapp
- Department of Biology, Montclair State University, 320 Science Hall, Montclair, NJ 07043, USA
| | - Katrina Gallione
- Department of Biology, Montclair State University, 320 Science Hall, Montclair, NJ 07043, USA
| | - Tessa Westlund
- Department of Biology, Montclair State University, 320 Science Hall, Montclair, NJ 07043, USA
| | - Sydney Kirschner
- Department of Biology, Montclair State University, 320 Science Hall, Montclair, NJ 07043, USA
| | - Sahana Vaidya
- Department of Biology, Montclair State University, 320 Science Hall, Montclair, NJ 07043, USA
| | - Christina Qiu
- Department of Biology, Montclair State University, 320 Science Hall, Montclair, NJ 07043, USA
| | - Audrey Rougebec
- Department of Biology, Montclair State University, 320 Science Hall, Montclair, NJ 07043, USA
| | - Elodie Morss
- Department of Biology, Montclair State University, 320 Science Hall, Montclair, NJ 07043, USA
| | - Jack Lebiedzinski
- Department of Biology, Montclair State University, 320 Science Hall, Montclair, NJ 07043, USA
| | - Maya Dejean
- Department of Biology, Montclair State University, 320 Science Hall, Montclair, NJ 07043, USA
| | - Julian Paul Keenan
- Department of Biology, Montclair State University, 320 Science Hall, Montclair, NJ 07043, USA
- Cognitive Neuroimaging Laboratory, Department of Biology, Montclair State University, 320 Science Hall, Montclair, NJ 07043, USA
| |
Collapse
|
50
|
Alachkar A. Aromatic patterns: Tryptophan aromaticity as a catalyst for the emergence of life and rise of consciousness. Phys Life Rev 2022; 42:93-114. [PMID: 35905538 DOI: 10.1016/j.plrev.2022.07.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Accepted: 07/12/2022] [Indexed: 11/28/2022]
Abstract
Sunlight held the key to the origin of life on Earth. The earliest life forms, cyanobacteria, captured the sunlight to generate energy through photosynthesis. Life on Earth evolved in accordance with the circadian rhythms tied to sensitivity to sunlight patterns. A unique feature of cyanobacterial photosynthetic proteins and circadian rhythms' molecules, and later of nearly all photon-sensing molecules throughout evolution, is that the aromatic amino acid tryptophan (Trp) resides at the center of light-harvesting active sites. In this perspective, I review the literature and integrate evidence from different scientific fields to explore the role Trp plays in photon-sensing capabilities of living organisms through its resonance delocalization of π-electrons. The observations presented here are the product of apparently unrelated phenomena throughout evolution, but nevertheless share consistent patterns of photon-sensing by Trp-containing and Trp-derived molecules. I posit the unique capacity to transfer electrons during photosynthesis in the earliest life forms is conferred to Trp due to its aromaticity. I propose this ability evolved to assume more complex functions, serving as a host for mechanisms underlying mental aptitudes - a concept which provides a theoretical basis for defining the neural correlates of consciousness. The argument made here is that Trp aromaticity may have allowed for the inception of the mechanistic building blocks used to fabricate complexity in higher forms of life. More specifically, Trp aromatic non-locality may have acted as a catalyst for the emergence of consciousness by instigating long-range synchronization and stabilizing the large-scale coherence of neural networks, which mediate functional brain activity. The concepts proposed in this perspective provide a conceptual foundation that invites further interdisciplinary dialogue aimed at examining and defining the role of aromaticity (beyond Trp) in the emergence of life and consciousness.
Collapse
Affiliation(s)
- Amal Alachkar
- Department of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences, University of California, Irvine, CA 92697, USA; UC Irvine Center for the Neurobiology of Learning and Memory, University of California-Irvine, Irvine, CA 92697, USA; Institute for Genomics and Bioinformatics, School of Information and Computer Sciences, University of California, Irvine, CA 92697, USA.
| |
Collapse
|