1
|
Heimler B, Sofia M, Galor N, Ben-Gal O, Bahat Y, Zeilig G, Plotnik M. Synchronization of auditory-hand tapping coupling: the effect of aging. Exp Brain Res 2025; 243:43. [PMID: 39812817 DOI: 10.1007/s00221-024-06993-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Accepted: 12/27/2024] [Indexed: 01/16/2025]
Abstract
Hand(s)-tapping tasks have been extensively studied in order to characterize the features of sensorimotor synchronization (SMS). These tasks frequently require participants to synchronize their tapping pace to an external, metronome-like sound. The impact of ageing on SMS abilities remains mainly unexplored. Thus, we conducted a series of hand tapping tasks on 15 young adults (YA) and 15 older adults (OA). The tasks included tapping with the dominant hand only (D), with the non-dominant hand only (ND), with both hands simultaneously (SIM), and alternating between the hands (ALT). Participants in each task performed a synchronization-continuation task, in which they had to tap for one minute according to an external sound set at their spontaneous motor tempo (separately identified), and then, after the sound stopped, continue tapping at the same tempo for another minute. Results indicated a set of preserved and degraded tapping behaviors in OA compared to YA. The ALT task produced the most deteriorated tapping performance, followed by the ND task; the other two tasks revealed no difference between the groups. These findings shed more light on how SMS declines across the lifespan and provide some preliminary but important information that may guide rehabilitation and diagnostic procedures.
Collapse
Affiliation(s)
- Benedetta Heimler
- Center of Advanced Technologies in Rehabilitation, Sheba Medical Center, Ramat Gan, Israel.
| | - Miriam Sofia
- Center of Advanced Technologies in Rehabilitation, Sheba Medical Center, Ramat Gan, Israel
| | - Noam Galor
- Center of Advanced Technologies in Rehabilitation, Sheba Medical Center, Ramat Gan, Israel
| | - Oran Ben-Gal
- Center of Advanced Technologies in Rehabilitation, Sheba Medical Center, Ramat Gan, Israel
| | - Yotam Bahat
- Center of Advanced Technologies in Rehabilitation, Sheba Medical Center, Ramat Gan, Israel
| | - Gabi Zeilig
- Department of Neurological Rehabilitation, Sheba Medical Center, Ramat Gan, Israel
- Department of Physical and Rehabilitation Medicine, Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
- School of Health Professions, Ono Academic College, Kiryat Ono, Israel
| | - Meir Plotnik
- Center of Advanced Technologies in Rehabilitation, Sheba Medical Center, Ramat Gan, Israel
- Department of Physiology and Pharmacology, Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
- Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel
| |
Collapse
|
2
|
Frolov N, Pitsik E, Grubov V, Badarin A, Maksimenko V, Zakharov A, Kurkin S, Hramov A. Perceptual Integration Compensates for Attention Deficit in Elderly during Repetitive Auditory-Based Sensorimotor Task. SENSORS (BASEL, SWITZERLAND) 2023; 23:6420. [PMID: 37514714 PMCID: PMC10385696 DOI: 10.3390/s23146420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2023] [Revised: 07/12/2023] [Accepted: 07/13/2023] [Indexed: 07/30/2023]
Abstract
Sensorimotor integration (SI) brain functions that are vital for everyday life tend to decline in advanced age. At the same time, elderly people preserve a moderate level of neuroplasticity, which allows the brain's functionality to be maintained and slows down the process of neuronal degradation. Hence, it is important to understand which aspects of SI are modifiable in healthy old age. The current study focuses on an auditory-based SI task and explores: (i) if the repetition of such a task can modify neural activity associated with SI, and (ii) if this effect is different in young and healthy old age. A group of healthy older subjects and young controls underwent an assessment of the whole-brain electroencephalography (EEG) while repetitively executing a motor task cued by the auditory signal. Using EEG spectral power and functional connectivity analyses, we observed a differential age-related modulation of theta activity throughout the repetition of the SI task. Growth of the anterior stimulus-related theta oscillations accompanied by enhanced right-lateralized frontotemporal phase-locking was found in elderly adults. Their young counterparts demonstrated a progressive increase in prestimulus occipital theta power. Our results suggest that the short-term repetition of the auditory-based SI task modulates sensory processing in the elderly. Older participants most likely progressively improve perceptual integration rather than attention-driven processing compared to their younger counterparts.
Collapse
Affiliation(s)
- Nikita Frolov
- Laboratory of Dynamics in Biological Systems, Department of Cellular and Molecular Medicine, KU Leuven, 3000 Leuven, Belgium
| | - Elena Pitsik
- Institute of Neuroscience, Samara State Medical University, 443099 Samara, Russia
| | - Vadim Grubov
- Institute of Neuroscience, Samara State Medical University, 443099 Samara, Russia
| | - Artem Badarin
- Institute of Neuroscience, Samara State Medical University, 443099 Samara, Russia
| | - Vladimir Maksimenko
- Institute of Neuroscience, Samara State Medical University, 443099 Samara, Russia
| | - Alexander Zakharov
- Institute of Neuroscience, Samara State Medical University, 443099 Samara, Russia
| | - Semen Kurkin
- Institute of Neuroscience, Samara State Medical University, 443099 Samara, Russia
| | - Alexander Hramov
- Institute of Neuroscience, Samara State Medical University, 443099 Samara, Russia
| |
Collapse
|
3
|
Van Hoornweder S, Blanco-Mora DA, Depestele S, van Dun K, Cuypers K, Verstraelen S, Meesen R. Aging and Complexity Effects on Hemisphere-Dependent Movement-Related Beta Desynchronization during Bimanual Motor Planning and Execution. Brain Sci 2022; 12:1444. [PMID: 36358370 PMCID: PMC9688378 DOI: 10.3390/brainsci12111444] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Revised: 10/19/2022] [Accepted: 10/24/2022] [Indexed: 02/07/2025] Open
Abstract
With aging comes degradation of bimanual movement performance. A hallmark feature of bimanual movements is movement-related beta desynchronization (MRBD), an attenuation in the amplitude of beta oscillations associated with sensorimotor activation. Here, we investigated MRBD in 39 healthy adults (20 younger and 19 older adults) in frontal, central, and parietal regions across both hemispheres, during the planning and execution of a bimanual tracking task. Task accuracy decreased with age and during more difficult conditions when both hands had to move at different relative speeds. MRBD was mostly situated in the central region, and increased in older versus younger adults during movement execution but not planning. Irrespective of age, motor planning and execution were associated with increased MRBD in the left and right hemispheres, respectively. Notably, right central MRBD during motor planning was associated with bimanual task performance, particularly in older adults. Specifically, persons who demonstrated high MRBD during motor planning performed better on the bimanual tracking task. Our results highlight the importance of lateralized MRBD during motor planning, thereby shining new light on previous research and providing a promising avenue for future interventions.
Collapse
Affiliation(s)
- Sybren Van Hoornweder
- REVAL—Rehabilitation Research Center, Faculty of Rehabilitation Sciences, University of Hasselt, 3590 Diepenbeek, Belgium
| | | | - Siel Depestele
- REVAL—Rehabilitation Research Center, Faculty of Rehabilitation Sciences, University of Hasselt, 3590 Diepenbeek, Belgium
| | - Kim van Dun
- REVAL—Rehabilitation Research Center, Faculty of Rehabilitation Sciences, University of Hasselt, 3590 Diepenbeek, Belgium
| | - Koen Cuypers
- REVAL—Rehabilitation Research Center, Faculty of Rehabilitation Sciences, University of Hasselt, 3590 Diepenbeek, Belgium
- Movement Control and Neuroplasticity Research Group, Group Biomedical Sciences, Department of Movement Sciences, KU Leuven, 3000 Leuven, Belgium
- Leuven Brain Institute (KU Leuven-LBI), 3001 Leuven, Belgium
| | - Stefanie Verstraelen
- REVAL—Rehabilitation Research Center, Faculty of Rehabilitation Sciences, University of Hasselt, 3590 Diepenbeek, Belgium
| | - Raf Meesen
- REVAL—Rehabilitation Research Center, Faculty of Rehabilitation Sciences, University of Hasselt, 3590 Diepenbeek, Belgium
- Movement Control and Neuroplasticity Research Group, Group Biomedical Sciences, Department of Movement Sciences, KU Leuven, 3000 Leuven, Belgium
| |
Collapse
|
4
|
Rhythmic ability decline in aging individuals: The role of movement task complexity. BIOMEDICAL HUMAN KINETICS 2021. [DOI: 10.2478/bhk-2022-0006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Abstract
Study aim: To investigate age-related changes in rhythmic reproduction ability in relation to the complexity of the adopted movement task.
Material and methods: A Stereophotogrammetric system was used to quantify individual rhythmic performances through motion analysis. Seventeen younger adult (age: 34.8 ± 4.2 yrs) and sixteen older adult (age: 69.9 ± 3.8 yrs) sedentary individuals volunteered for this study. Participants were administered a rhythmic test, which included three different rhythmic patterns to be reproduced by means of finger-tapping, foot-tapping and walking. Number of correct reproductions, time delays and rhythmic ratios were assessed and submitted to analysis of variance.
Results: For all rhythmic parameters, age-related differences emerged about rhythmic patterns and motor tasks. Older adults showed reduced accuracy as compared to their younger counterparts with a marked tendency to speed up beats reproduction (p < 0.05). Increased movement complexity negatively influenced rhythmic ability, with worst performances in the walking task (p < 0.05).
Conclusions: Complexity of the motor reproduction worsen rhythmic ability. Future research should focus on how specific rhythmic training with progressive movement task complexity could contrast this age-related decline.
Collapse
|
5
|
Blais M, Jucla M, Maziero S, Albaret JM, Chaix Y, Tallet J. The Differential Effects of Auditory and Visual Stimuli on Learning, Retention and Reactivation of a Perceptual-Motor Temporal Sequence in Children With Developmental Coordination Disorder. Front Hum Neurosci 2021; 15:616795. [PMID: 33867955 PMCID: PMC8044544 DOI: 10.3389/fnhum.2021.616795] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Accepted: 03/03/2021] [Indexed: 11/13/2022] Open
Abstract
This study investigates the procedural learning, retention, and reactivation of temporal sensorimotor sequences in children with and without developmental coordination disorder (DCD). Twenty typically-developing (TD) children and 12 children with DCD took part in this study. The children were required to tap on a keyboard, synchronizing with auditory or visual stimuli presented as an isochronous temporal sequence, and practice non-isochronous temporal sequences to memorize them. Immediate and delayed retention of the audio-motor and visuo-motor non-isochronous sequences were tested by removing auditory or visual stimuli immediately after practice and after a delay of 2 h. A reactivation test involved reintroducing the auditory and visual stimuli after the delayed recall. Data were computed via circular analyses to obtain asynchrony, the stability of synchronization and errors (i.e., the number of supplementary taps). Firstly, an overall deficit in synchronization with both auditory and visual isochronous stimuli was observed in DCD children compared to TD children. During practice, further improvements (decrease in asynchrony and increase in stability) were found for the audio-motor non-isochronous sequence compared to the visuo-motor non-isochronous sequence in both TD children and children with DCD. However, a drastic increase in errors occurred in children with DCD during immediate retention as soon as the auditory stimuli were removed. Reintroducing auditory stimuli decreased errors in the audio-motor sequence for children with DCD. Such changes were not seen for the visuo-motor non-isochronous sequence, which was equally learned, retained and reactivated in DCD and TD children. All these results suggest that TD children benefit from both auditory and visual stimuli to memorize the sequence, whereas children with DCD seem to present a deficit in integrating an audio-motor sequence in their memory. The immediate effect of reactivation suggests a specific dependency on auditory information in DCD. Contrary to the audio-motor sequence, the visuo-motor sequence was both learned and retained in children with DCD. This suggests that visual stimuli could be the best information for memorizing a temporal sequence in DCD. All these results are discussed in terms of a specific audio-motor coupling deficit in DCD.
Collapse
Affiliation(s)
- Mélody Blais
- Toulouse NeuroImaging Center, Université de Toulouse, Inserm, UPS, Toulouse, France
- EuroMov Digital Health in Motion, Univ Montpellier, IMT Mines Ales, Montpellier, France
| | - Mélanie Jucla
- Octogone-Lordat, University of Toulouse, Toulouse, France
| | - Stéphanie Maziero
- Toulouse NeuroImaging Center, Université de Toulouse, Inserm, UPS, Toulouse, France
- Octogone-Lordat, University of Toulouse, Toulouse, France
| | - Jean-Michel Albaret
- Toulouse NeuroImaging Center, Université de Toulouse, Inserm, UPS, Toulouse, France
| | - Yves Chaix
- Toulouse NeuroImaging Center, Université de Toulouse, Inserm, UPS, Toulouse, France
- Hôpital des Enfants, Centre Hospitalier Universitaire de Toulouse, CHU Purpan, Toulouse, France
| | - Jessica Tallet
- Toulouse NeuroImaging Center, Université de Toulouse, Inserm, UPS, Toulouse, France
| |
Collapse
|
6
|
Roy C, Dalla Bella S, Pla S, Lagarde J. Multisensory integration and behavioral stability. PSYCHOLOGICAL RESEARCH 2019; 85:879-886. [PMID: 31792611 DOI: 10.1007/s00426-019-01273-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2019] [Accepted: 11/18/2019] [Indexed: 11/28/2022]
Abstract
Information coming from multiple senses, as compared to a single one, typically enhances our performance. The multisensory improvement has been extensively examined in perception studies, as well as in tasks involving a motor response like a simple reaction time. However, how this effect extends to more complex behavior, typically involving the coordination of movements, such as bimanual coordination or walking, is still unclear. A critical element in achieving motor coordination in complex behavior is its stability. Reaching a stable state in the coordination pattern allows to sustain complex behavior over time (e.g., without interruption or negative consequences, like falling). This study focuses on the relation between stability in the coordination of movement patterns, like walking, and multisensory improvement. Participants walk with unimodal and audio-tactile metronomes presented either at their preferred rate or at a slower walking rate, the instruction being to synchronize their steps to the metronomes. Walking at a slower rate makes gait more variable than walking at the preferred rate. Interestingly however, the multimodal stimuli enhance the stability of motor coordination but only in the slower condition. Thus, the reduced stability of the coordination pattern (at a slower gait rate) prompts the sensorimotor system to capitalize on multimodal stimulation. These findings provide evidence of a new link between multisensory improvement and behavioral stability, in the context of ecological sensorimotor task.
Collapse
Affiliation(s)
- Charlotte Roy
- EuroMov Laboratory, Montpellier University, Montpellier, France. .,Applied Cognitive Psychology Laboratory, Ulm University, Albert-Einstein-Allee 43, 89081, Ulm, Germany.
| | - Simone Dalla Bella
- EuroMov Laboratory, Montpellier University, Montpellier, France.,International Laboratory for Brain, Music, and Sound Research (BRAMS), Montreal, Canada.,Department of Psychology, University of Montreal, Montreal, Canada
| | - Simon Pla
- EuroMov Laboratory, Montpellier University, Montpellier, France
| | - Julien Lagarde
- EuroMov Laboratory, Montpellier University, Montpellier, France
| |
Collapse
|
7
|
Michels L, Dietz V, Schättin A, Schrafl-Altermatt M. Neuroplastic Changes in Older Adults Performing Cooperative Hand Movements. Front Hum Neurosci 2018; 12:488. [PMID: 30618675 PMCID: PMC6300783 DOI: 10.3389/fnhum.2018.00488] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2018] [Accepted: 11/21/2018] [Indexed: 11/18/2022] Open
Abstract
The aim of this study was to examine whether older adults use the same task-specific brain activation patterns during two different bimanual hand movement tasks as younger adults. Functional magnetic resonance brain imaging was performed in 18 younger (mean age: 30.3 ± 3.6 years) and 11 older adults (62.6 ± 6.8 years) during the execution of cooperative (mimicking opening a bottle) or non-cooperative (bimanual pro-/supination) hand movements. We expected to see a stronger task-specific involvement of the secondary somatosensory cortex (S2) during cooperative hand movements in older compared to younger adults. However, S2 activation was present in both groups during the cooperative task and was only significantly stronger compared to the non-cooperative task in younger adults. In a whole brain-analysis, the contrast between older and younger adults revealed a hyperactivation of the bilateral dorsal premotor cortex (precentral gyrus), right thalamus, right frontal operculum, anterior cingulate cortex, and supplementary motor areas in older adults (p < 0.001), with some of them being visible after correcting for age. Age was positively associated with fMRI signal changes in these regions across the whole sample. Older adults showed reduced gray matter volume but not in regions showing task-related fMRI group differences. We also found an increase in functional connectivity between SMA, M1, thalamus, and precentral gyri in older adults. In contrast, younger adults showed hyperconnectivity between S2 and S1. We conclude that older compared to younger adults show age-related functional neuroplastic changes in brain regions involved in motor control and performance.
Collapse
Affiliation(s)
- Lars Michels
- Department of Neuroradiology, University Hospital Zurich, Zürich, Switzerland.,MR-Center, University Children's Hospital Zurich, Zürich, Switzerland
| | - Volker Dietz
- Spinal Cord Injury Center, Balgrist University Hospital, Zürich, Switzerland
| | - Alexandra Schättin
- Spinal Cord Injury Center, Balgrist University Hospital, Zürich, Switzerland.,Institute of Human Movement Sciences and Sport, ETH Zürich, Zürich, Switzerland
| | - Miriam Schrafl-Altermatt
- Spinal Cord Injury Center, Balgrist University Hospital, Zürich, Switzerland.,Neural Control of Movement Laboratory, ETH Zürich, Zürich, Switzerland
| |
Collapse
|
8
|
Gaul D, Issartel J. Getting into the Swing of things: An investigation into rhythmic unimanual coordination in typically developing children. Neurosci Lett 2018; 671:148-153. [PMID: 29331628 DOI: 10.1016/j.neulet.2018.01.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2017] [Revised: 01/01/2018] [Accepted: 01/03/2018] [Indexed: 11/19/2022]
Abstract
Unimanual coordination is a vital component of everyday life and underpins successful engagement of many activities of daily living and physical activity participation. The ability to coordinate with environmental stimuli has been extensively studied in adults in a variety of situations. However, we know little about these processes in children and even less about how these processes change as age increases. This paper examines children's performance in a rhythmic unimanual coordination task using a handheld pendulum. Participants (aged 6, 9 and 11 years) manipulated the pendulum at 3 frequencies (preferred frequency, +20% of preferred and -20% of preferred frequency) in coordination with 3 stimuli (Visual, Auditory and Visual-Auditory combined). Results showed that children's coordination levels and movement variability improved with age, however still fell below those observed in adults. In addition children demonstrated preferences for visual stimuli or multisensory stimuli compared to auditory stimuli on their own Interestingly, children were found to demonstrate different movement amplitudes for -20%, preferred and +20% frequency conditions. In conclusion, children's unimanual coordination levels were found to follow the typical maturation process and improve with age. Further to this, findings suggest the potential benefit of multisensory information for uni manual coordination in children.
Collapse
Affiliation(s)
- David Gaul
- School of Health and Human Performance, Dublin City University, Dublin, Ireland.
| | - Johann Issartel
- School of Health and Human Performance, Dublin City University, Dublin, Ireland
| |
Collapse
|
9
|
Krehbiel LM, Kang N, Cauraugh JH. Age-related differences in bimanual movements: A systematic review and meta-analysis. Exp Gerontol 2017; 98:199-206. [PMID: 28890358 DOI: 10.1016/j.exger.2017.09.001] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2017] [Revised: 07/20/2017] [Accepted: 09/05/2017] [Indexed: 11/16/2022]
Abstract
BACKGROUND With increasing age motor functions decline. The additional challenges of executing bimanual movements further hinder motor functions in older adults. The current systematic review and meta-analysis determined the effects of healthy aging on performance in bimanual movements as compared to younger adults. METHODS Our comprehensive search identified 27 studies that reported bimanual movement performance measures. Each study included a between groups comparison of older (mean age=68.79years) and younger adults (mean age=23.14years). The 27 qualified studies generated 40 total outcome measure comparisons: (a) accuracy: 18, (b) variability: 14, and (c) movement time: eight. RESULTS Our meta-analysis conducted on a random effects model identified a relatively large negative standardized mean difference effect (ES=-0.93). This indicates that older adults exhibited more impaired bimanual movement performance in comparison to younger adults in our group of studies. Specifically, a moderator variable analysis revealed large negative effects in both accuracy (ES=-0.94) and variability (ES=-1.00), as well as a moderate negative effect (ES=-0.71) for movement time. These findings indicate that older adults displayed reduced accuracy, greater variability, and longer execution time when executing bimanual movements. CONCLUSION These meta-analytic findings revealed that aging impairs bimanual movement performance.
Collapse
Affiliation(s)
- Lisa M Krehbiel
- Motor Behavior Laboratory, University of Florida, Gainesville, Florida, USA
| | - Nyeonju Kang
- Laboratory for Rehabilitation Neuroscience, University of Florida, Gainesville, Florida, USA; Division of Sport Science, Incheon National University, Incheon, South Korea
| | - James H Cauraugh
- Motor Behavior Laboratory, University of Florida, Gainesville, Florida, USA.
| |
Collapse
|
10
|
Maes C, Gooijers J, Orban de Xivry JJ, Swinnen SP, Boisgontier MP. Two hands, one brain, and aging. Neurosci Biobehav Rev 2017; 75:234-256. [PMID: 28188888 DOI: 10.1016/j.neubiorev.2017.01.052] [Citation(s) in RCA: 81] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2016] [Revised: 12/18/2016] [Accepted: 01/31/2017] [Indexed: 12/11/2022]
Abstract
Many activities of daily living require moving both hands in an organized manner in space and time. Therefore, understanding the impact of aging on bimanual coordination is essential for prolonging functional independence and well-being in older adults. Here we investigated the behavioral and neural determinants of bimanual coordination in aging. The studies surveyed in this review reveal that aging is associated with cortical hyper-activity (but also subcortical hypo-activity) during performance of bimanual tasks. In addition to changes in activation in local areas, the interaction between distributed brain areas also exhibits age-related effects, i.e., functional connectivity is increased in the resting brain as well as during task performance. The mechanisms and triggers underlying these functional activation and connectivity changes remain to be investigated. This requires further research investment into the detailed study of interactions between brain structure, function and connectivity. This will also provide the foundation for interventional research programs towards preservation of brain health and behavioral performance by maximizing neuroplasticity potential in older adults.
Collapse
Affiliation(s)
- Celine Maes
- KU Leuven, Movement Control and Neuroplasticity Research Group, Group Biomedical Sciences, 3001 Leuven, Belgium
| | - Jolien Gooijers
- KU Leuven, Movement Control and Neuroplasticity Research Group, Group Biomedical Sciences, 3001 Leuven, Belgium
| | - Jean-Jacques Orban de Xivry
- KU Leuven, Movement Control and Neuroplasticity Research Group, Group Biomedical Sciences, 3001 Leuven, Belgium
| | - Stephan P Swinnen
- KU Leuven, Movement Control and Neuroplasticity Research Group, Group Biomedical Sciences, 3001 Leuven, Belgium; KU Leuven, Leuven Research Institute for Neuroscience & Disease (LIND), 3001 Leuven, Belgium
| | - Matthieu P Boisgontier
- KU Leuven, Movement Control and Neuroplasticity Research Group, Group Biomedical Sciences, 3001 Leuven, Belgium.
| |
Collapse
|
11
|
Age-related changes in post-movement beta synchronization during a selective inhibition task. Exp Brain Res 2016; 234:3543-3553. [PMID: 27531152 DOI: 10.1007/s00221-016-4753-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2016] [Accepted: 08/04/2016] [Indexed: 10/21/2022]
|
12
|
Abstract
Although evidence exists that changes in sensorimotor function occur with aging, changes in the bilateral coordination of the upper extremities is less understood. Here, we review the behavioral and neural evidence of declines in bilateral coordination as well as the implications these deficits have on function and physical rehabilitation. We begin with an introduction to the two major forms of bilateral coordination, symmetric and non-symmetric and their sub-groupings. After discussing the motor performance changes with age in symmetric tasks, we address age-related changes in motor lateralization that may affect the bilateral coordination of non-symmetric coordination. This is followed by a discussion of the contributions of cognitive, sensory, and cortical changes with age that influence and underlie bilateral motor performance. Finally, age-related changes in motor learning of bilateral movements are also considered. In general, most age related changes are found in complex symmetric movements but, surprisingly, there is a dearth of information about changes in the more challenging and ubiquitous non-symmetric bilateral movements. Future investigations should focus on broadening the understanding of age-related changes in complex, functionally relevant bilateral movements, such that the real-world implications of these changes may be derived.
Collapse
|
13
|
Zappasodi F, Marzetti L, Olejarczyk E, Tecchio F, Pizzella V. Age-Related Changes in Electroencephalographic Signal Complexity. PLoS One 2015; 10:e0141995. [PMID: 26536036 PMCID: PMC4633126 DOI: 10.1371/journal.pone.0141995] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2015] [Accepted: 10/15/2015] [Indexed: 01/31/2023] Open
Abstract
The study of active and healthy aging is a primary focus for social and neuroscientific communities. Here, we move a step forward in assessing electrophysiological neuronal activity changes in the brain with healthy aging. To this end, electroencephalographic (EEG) resting state activity was acquired in 40 healthy subjects (age 16–85). We evaluated Fractal Dimension (FD) according to the Higuchi algorithm, a measure which quantifies the presence of statistical similarity at different scales in temporal fluctuations of EEG signals. Our results showed that FD increases from age twenty to age fifty and then decreases. The curve that best fits the changes in FD values across age over the whole sample is a parabola, with the vertex located around age fifty. Moreover, FD changes are site specific, with interhemispheric FD asymmetry being pronounced in elderly individuals in the frontal and central regions. The present results indicate that fractal dimension well describes the modulations of brain activity with age. Since fractal dimension has been proposed to be related to the complexity of the signal dynamics, our data demonstrate that the complexity of neuronal electric activity changes across the life span of an individual, with a steady increase during young adulthood and a decrease in the elderly population.
Collapse
Affiliation(s)
- Filippo Zappasodi
- Dept. of Neuroscience, Imaging and Clinical Sciences, ‘G. d’Annunzio’ University, Chieti, Italy
- Institute for Advanced Biomedical Technologies, ‘G. d'Annunzio’ University, Chieti, Italy
- * E-mail:
| | - Laura Marzetti
- Dept. of Neuroscience, Imaging and Clinical Sciences, ‘G. d’Annunzio’ University, Chieti, Italy
- Institute for Advanced Biomedical Technologies, ‘G. d'Annunzio’ University, Chieti, Italy
| | - Elzbieta Olejarczyk
- Nalecz Institute of Biocybernetics and Biomedical Engineering, Polish Academy of Sciences, Warsaw, Poland
| | - Franca Tecchio
- Laboratory of Electrophysiology for Translational neuroScience (LET’S), ISTC, National Research Council (CNR), Rome, Italy
- Unit of Imaging, IRCCS San Raffale Pisana, Cassino, Italy
| | - Vittorio Pizzella
- Dept. of Neuroscience, Imaging and Clinical Sciences, ‘G. d’Annunzio’ University, Chieti, Italy
- Institute for Advanced Biomedical Technologies, ‘G. d'Annunzio’ University, Chieti, Italy
| |
Collapse
|
14
|
Blais M, Albaret JM, Tallet J. Is there a link between sensorimotor coordination and inter-manual coordination? Differential effects of auditory and/or visual rhythmic stimulations. Exp Brain Res 2015; 233:3261-9. [PMID: 26238405 DOI: 10.1007/s00221-015-4394-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2015] [Accepted: 07/22/2015] [Indexed: 12/29/2022]
Abstract
The purpose of this study was to test how the sensory modality of rhythmic stimuli affects the production of bimanual coordination patterns. To this aim, participants had to synchronize the taps of their two index fingers with auditory and visual stimuli presented separately (auditory or visual) or simultaneously (audio-visual). This kind of task requires two levels of coordination: (1) sensorimotor coordination, which can be measured by the mean asynchrony between the beat of the stimulus and the corresponding tap and by mean asynchrony stability, and (2) inter-manual coordination, which can be assessed by the accuracy and stability of the relative phase between the right-hand and left-hand taps. Previous studies show that sensorimotor coordination is better during the synchronization with auditory or audio-visual metronomes than with visual metronome, but it is not known whether inter-manual coordination is affected by stimulation modalities. To answer this question, 13 participants were required to tap their index fingers in synchrony with the beat of auditory and/or visual stimuli specifying three coordination patterns: two preferred inphase and antiphase patterns and a non-preferred intermediate pattern. A first main result demonstrated that inphase tapping had the best inter-manual stability, but the worst asynchrony stability. The second main finding revealed that for all patterns, audio-visual stimulation improved the stability of sensorimotor coordination but not of inter-manual coordination. The combination of visual and auditory modalities results in multisensory integration, which improves sensorimotor coordination but not inter-manual coordination. Both results suggest that there is dissociation between processes underlying sensorimotor synchronization (anticipation or reactivity) and processes underlying inter-manual coordination (motor control). This finding opens new perspectives to evaluate separately the possible sensorimotor and inter-manual coordination deficits present in movement disorders.
Collapse
Affiliation(s)
- Mélody Blais
- Laboratory PRISSMH-LAPMA (EA 4651), University of Paul Sabatier Toulouse 3, 31062, Toulouse, France
| | - Jean-Michel Albaret
- Laboratory PRISSMH-LAPMA (EA 4651), University of Paul Sabatier Toulouse 3, 31062, Toulouse, France
| | - Jessica Tallet
- Laboratory PRISSMH-LAPMA (EA 4651), University of Paul Sabatier Toulouse 3, 31062, Toulouse, France.
| |
Collapse
|