1
|
Rychlik M, Starnowska-Sokol J, Mlyniec K. Chronic memantine disrupts spatial memory and up-regulates Htr1a gene expression in the hippocampus of GPR39 (zinc-sensing receptor) KO male mice. Brain Res 2023; 1821:148577. [PMID: 37716463 DOI: 10.1016/j.brainres.2023.148577] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 08/29/2023] [Accepted: 09/11/2023] [Indexed: 09/18/2023]
Abstract
GPR39 is a receptor involved in zincergic neurotransmission, and its role in regulating psychological functions is an active area of research. The purported roles of GPR39 at the cellular level include regulation of inflammatory and oxidative stress response, and modulation of GABAergic and endocannabinoid neurotransmission. GPR39 knock-out (KO) mice exhibit episodic-like and spatial memory (ELM and SM, respectively) deficits throughout their lifetime, and are similar in that respect to senescent wild-type (WT) conspecifics. Since a role for zinc has been postulated in neurodegenerative disorders, in this study we investigated the possibility of a pharmacological rescue of both types of declarative memory with memantine - a noncompetitive NMDAR antagonist used for slowing down dementia; or, a putative GPR39 agonist - TC-G 1008. First, we tested adult WT and GPR39KO male mice under acute 5 mg/kg memantine or vehicle treatment in an object recognition task designed to simultaneously probe the "what?", "where?" and "when?" components of ELM. Next, we investigated the impact of chronic memantine or TC-G 1008 on ELM and SM (Morris water maze, MWM) in both WT and GPR39KO mice. Following chronic experiments, we assessed with qRT-PCR hippocampal gene expression of targets previously associated with GPR39. We report: no effects of acute memantine on ELM; a tendency to improve the "where?" component of ELM in both WT and GPR39 KO mice following 12 days of memantine; and, a disruption of SM in GPR39KO mice after 24 days of memantine treatment. The latter result was associated with upregulation of Htr1a hippocampal expression.
Collapse
Affiliation(s)
- Michal Rychlik
- Department of Pharmacobiology, Jagiellonian University Medical College, Medyczna 9, PL 30-688 Krakow, Poland.
| | - Joanna Starnowska-Sokol
- Department of Pharmacobiology, Jagiellonian University Medical College, Medyczna 9, PL 30-688 Krakow, Poland
| | - Katarzyna Mlyniec
- Department of Pharmacobiology, Jagiellonian University Medical College, Medyczna 9, PL 30-688 Krakow, Poland
| |
Collapse
|
2
|
Baghcheghi Y, Mansouri S, Beheshti F, Shafei MN, Salmani H, Reisi P, Anaeigoudari A, Bideskan AE, Hosseini M. Neuroprotective and long term potentiation improving effects of vitamin E in juvenile hypothyroid rats. INT J VITAM NUTR RES 2020; 90:156-168. [DOI: 10.1024/0300-9831/a000533] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Abstract. Protective effects of vitamin E (Vit E) on long term potentiation (LTP) impairment, neuronal apoptosis and increase of nitric oxide (NO) metabolites in the hippocampus of juvenile rats were examined. The rats were grouped (n=13) as: (1) control; (2) hypothyroid (Hypo) and (3) Hypo-Vit E. Propylthiouracil (PTU) was given in drinking water (0.05%) during 6 weeks. Vit E (20 mg/ kg) was daily injected (IP). To evaluate synaptic plasticity, LTP from the CA1 area of the hippocampus followed by high frequency stimulation to the ipsilateral Schafer collateral pathway was carried out. The cortical and hippocampal tissues were then removed to measure NO metabolites. The brains of 5 animals in each group were removed for apoptosis study. The hypothyroidism status decreased the slope, 10–90% slope and amplitude of field excitatory post synaptic potential (fEPSP) compared to the control group (P<0.01–P<0.001). Injection of Vit E increased the slope, 10–90% slope and amplitude of the fEPSP in the Hypo-Vit E group in comparison to the Hypo group (P<0.05–P<0.01). TUNEL positive neurons and NO metabolites were higher in the hippocampus of the Hypo rats, as compared to those in the hippocampus of the control ones (P<0.001). Treatment of the Hypo rats by Vit E decreased apoptotic neurons (P<0.01–P<0.001) and NO metabolites (P<0.001) in the hippocampus compared to the Hypo rats. The results of the present study showed that Vit E prevented the LTP impairment and neuronal apoptosis in the hippocampus of juvenile hypothyroid rats.
Collapse
Affiliation(s)
- Yousef Baghcheghi
- Student Research Committee, Department of Physiology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Somaieh Mansouri
- Department of Anatomy and Cell Biology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Farimah Beheshti
- Neuroscience Research Center, Torbat Heydariyeh University of Medical Sciences, Torbat Heydariyeh, Iran
- Division of Neurocognitive Sciences, Psychiatry and Behavioral Sciences Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mohammad Naser Shafei
- Division of Neurocognitive Sciences, Psychiatry and Behavioral Sciences Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Hossien Salmani
- Student Research Committee, Department of Physiology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Parham Reisi
- Department of Physiology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Akbar Anaeigoudari
- Department of Physiology, School of Medicine, Jiroft University of Medical Sciences, Jiroft, Iran
| | | | - Mahmoud Hosseini
- Neurogenic Inflammation Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
3
|
Zhang T, Shi Z, Wang Y, Wang L, Zhang B, Chen G, Wan Q, Chen L. Akt3 deletion in mice impairs spatial cognition and hippocampal CA1 long long-term potentiation through downregulation of mTOR. Acta Physiol (Oxf) 2019; 225:e13167. [PMID: 30053339 DOI: 10.1111/apha.13167] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2018] [Revised: 07/20/2018] [Accepted: 07/24/2018] [Indexed: 11/30/2022]
Abstract
AIM Loss-of-function mutation of Akt3 in humans has been associated with microcephaly and cognitive defects. Two Akt isoforms, Akt1 and Akt3, are highly expressed in hippocampal pyramidal cells. We explored the roles of Akt1 and Akt3, respectively, in spatial cognition and underlying mechanisms. METHODS We used Akt1 knockout (Akt1-KO) and Akt3 knockout (Akt3-KO) mice to examine the influence of Akt1 and Akt3 deficiency on spatial memory, as well as induction and maintenance of hippocampal CA1 NMDA receptor-dependent and protein synthesis-dependent long-term potentiation (LTP). RESULTS Long-term spatial memory was impaired in Akt3-KO mice, but not in Akt1-KO mice, as assessed by the Morris water maze task. Akt3-KO and Akt1-KO mice displayed reductions in brain size without concurrent changes in the number of pyramidal cells or basal properties of synaptic transmission. One-train high-frequency stimulation (HFS × 1) induced NMDA receptor-dependent LTP in Akt3-KO mice and Akt1-KO mice. Four-train HFS (HFS × 4) induced rapamycin-sensitive long-LTP in Akt1-KO mice, but not Akt3-KO mice. Basal level of mTOR phosphorylation was reduced in Akt3-KO mice rather than Akt1-KO mice. HFS × 4 induced an elevation of mTOR and p70S6K phosphorylation in Akt1-KO mice, which led to enhanced 4EBP2 and eIF4E phosphorylation along with an increase in AMPA receptor protein. However, the same protocol of HFS × 4 failed to trigger the mTOR-p70S6K signalling cascade or increase 4EBP2 and eIF4E phosphorylation in Akt3-KO mice. CONCLUSION The Akt3 deficiency via inactivation of mTOR suppresses HFS × 4-induced mTOR-p70S6K signalling to reduce phosphorylation of 4EBP and eIF4E, which impairs protein synthesis-dependent long-LTP and long-term spatial cognitive function.
Collapse
Affiliation(s)
- Tingting Zhang
- State Key Lab of Reproductive Medicine; Nanjing Medical University; Nanjing China
- Department of Physiology; Nanjing Medical University; Nanjing China
| | - Zhaochun Shi
- Department of Neurology; First Affiliated Hospital of Nanjing Medical University; Nanjing China
| | - Ya Wang
- Department of Physiology; Nanjing Medical University; Nanjing China
| | - Ling Wang
- Department of Physiology; Nanjing Medical University; Nanjing China
| | - Baofeng Zhang
- Department of Physiology; Nanjing Medical University; Nanjing China
| | - Guiquan Chen
- State Key Laboratory of Pharmaceutical Biotechnology; MOE Key Laboratory of Model Animal for Disease Study; Model Animal Research Center; Nanjing University; Nanjing China
| | - Qi Wan
- Department of Neurology; First Affiliated Hospital of Nanjing Medical University; Nanjing China
| | - Ling Chen
- State Key Lab of Reproductive Medicine; Nanjing Medical University; Nanjing China
- Department of Physiology; Nanjing Medical University; Nanjing China
| |
Collapse
|
4
|
Tian T, Zhang Y, Wu T, Yang L, Chen C, Li N, Li Y, Xu S, Fu Z, Cui X, Ji C, Chi X, Tong M, Chen R, Hong Q, Hu Y. miRNA profiling in the hippocampus of attention‐deficit/hyperactivity disorder rats. J Cell Biochem 2018; 120:3621-3629. [PMID: 30270454 DOI: 10.1002/jcb.27639] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2017] [Accepted: 08/15/2018] [Indexed: 01/01/2023]
Affiliation(s)
- Tian Tian
- Department of Child Health Care The First Affiliated Hospital of Nanjing Medical University Nanjing China
| | - Yan Zhang
- Department of Pediatrics Xuzhou Central Hospital, Xuzhou Clinical School of Xuzhou Medical College, The Affiliated XuZhou Hospital of Medical College of Southeast University Jiangsu China
| | - Tianqi Wu
- Department of Cancer Institute Fudan University Shanghai Cancer Center Fudan University Shanghai China
| | - Lei Yang
- Department of Child Health Care Nanjing Maternity and Child Health Care Hospital, Obsterics and Gynecology Hospital Affiliated to Nanjing Medical University Nanjing China
| | - Chunxiao Chen
- Department of Child Health Care Yancheng Maternity and Child Health Care Hospital Yancheng China
| | - Nan Li
- Department of Child Health Care Nanjing Maternity and Child Health Care Hospital, Obsterics and Gynecology Hospital Affiliated to Nanjing Medical University Nanjing China
| | - Yue Li
- Department of Child Health Care The First Affiliated Hospital of Nanjing Medical University Nanjing China
| | - Siliang Xu
- Department of Child Health Care The First Affiliated Hospital of Nanjing Medical University Nanjing China
| | - Ziyi Fu
- Department of Child Health Care Nanjing Maternity and Child Health Care Hospital, Obsterics and Gynecology Hospital Affiliated to Nanjing Medical University Nanjing China
| | - Xianwei Cui
- Department of Child Health Care Nanjing Maternity and Child Health Care Hospital, Obsterics and Gynecology Hospital Affiliated to Nanjing Medical University Nanjing China
| | - Chenbo Ji
- Department of Child Health Care Nanjing Maternity and Child Health Care Hospital, Obsterics and Gynecology Hospital Affiliated to Nanjing Medical University Nanjing China
| | - Xia Chi
- Department of Child Health Care Nanjing Maternity and Child Health Care Hospital, Obsterics and Gynecology Hospital Affiliated to Nanjing Medical University Nanjing China
| | - Meiling Tong
- Department of Child Health Care Nanjing Maternity and Child Health Care Hospital, Obsterics and Gynecology Hospital Affiliated to Nanjing Medical University Nanjing China
| | - Ronghua Chen
- Department of Child Health Care Nanjing Maternity and Child Health Care Hospital, Obsterics and Gynecology Hospital Affiliated to Nanjing Medical University Nanjing China
| | - Qin Hong
- Department of Child Health Care Nanjing Maternity and Child Health Care Hospital, Obsterics and Gynecology Hospital Affiliated to Nanjing Medical University Nanjing China
| | - Youfang Hu
- Department of Child Health Care The First Affiliated Hospital of Nanjing Medical University Nanjing China
| |
Collapse
|
5
|
NMDA Receptor Subunits Change after Synaptic Plasticity Induction and Learning and Memory Acquisition. Neural Plast 2018; 2018:5093048. [PMID: 29706992 PMCID: PMC5863338 DOI: 10.1155/2018/5093048] [Citation(s) in RCA: 77] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2017] [Revised: 07/17/2017] [Accepted: 01/04/2018] [Indexed: 01/16/2023] Open
Abstract
NMDA ionotropic glutamate receptors (NMDARs) are crucial in activity-dependent synaptic changes and in learning and memory. NMDARs are composed of two GluN1 essential subunits and two regulatory subunits which define their pharmacological and physiological profile. In CNS structures involved in cognitive functions as the hippocampus and prefrontal cortex, GluN2A and GluN2B are major regulatory subunits; their expression is dynamic and tightly regulated, but little is known about specific changes after plasticity induction or memory acquisition. Data strongly suggest that following appropriate stimulation, there is a rapid increase in surface GluN2A-NMDAR at the postsynapses, attributed to lateral receptor mobilization from adjacent locations. Whenever synaptic plasticity is induced or memory is consolidated, more GluN2A-NMDARs are assembled likely using GluN2A from a local translation and GluN1 from local ER. Later on, NMDARs are mobilized from other pools, and there are de novo syntheses at the neuron soma. Changes in GluN1 or NMDAR levels induced by synaptic plasticity and by spatial memory formation seem to occur in different waves of NMDAR transport/expression/degradation, with a net increase at the postsynaptic side and a rise in expression at both the spine and neuronal soma. This review aims to put together that information and the proposed hypotheses.
Collapse
|
6
|
Kristofova M, Aher YD, Ilic M, Radoman B, Kalaba P, Dragacevic V, Aher NY, Leban J, Korz V, Zanon L, Neuhaus W, Wieder M, Langer T, Urban E, Sitte HH, Hoeger H, Lubec G, Aradska J. A daily single dose of a novel modafinil analogue CE-123 improves memory acquisition and memory retrieval. Behav Brain Res 2018; 343:83-94. [PMID: 29410048 DOI: 10.1016/j.bbr.2018.01.032] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2017] [Revised: 01/28/2018] [Accepted: 01/29/2018] [Indexed: 01/25/2023]
Abstract
Dopamine reuptake inhibitors have been shown to improve cognitive parameters in various tasks and animal models. We recently reported a series of modafinil analogues, of which the most promising, 5-((benzhydrylsulfinyl)methyl) thiazole (CE-123), was selected for further development. The present study aims to characterize pharmacological properties of CE-123 and to investigate the potential to enhance memory performance in a rat model. In vitro transporter assays were performed in cells expressing human transporters. CE-123 blocked uptake of [3H] dopamine (IC50 = 4.606 μM) while effects on serotonin (SERT) and the norepinephrine transporter (NET) were negligible. Blood-brain barrier and pharmacokinetic studies showed that the compound reached the brain and lower elimination than R-modafinil. The Pro-cognitive effect was evaluated in a spatial hole-board task in male Sprague-Dawley rats and CE-123 enhances memory acquisition and memory retrieval, represented by significantly increased reference memory indices and shortened latency. Since DAT blockers can be considered as indirect dopamine receptor agonists, western blotting was used to quantify protein levels of dopamine receptors D1R, D2R and D5R and DAT in the synaptosomal fraction of hippocampal subregions CA1, CA3 and dentate gyrus (DG). CE-123 administration in rats increased total DAT levels and D1R protein levels were significantly increased in CA1 and CA3 in treated/trained groups. The increase of D5R was observed in DG only. Dopamine receptors, particularly D1R, seem to play a role in mediating CE-123-induced memory enhancement. Dopamine reuptake inhibition by CE-123 may represent a novel and improved stimulant therapeutic for impairments of cognitive functions.
Collapse
Affiliation(s)
- Martina Kristofova
- Department of Pharmaceutical Chemistry, Faculty of Life Sciences, University of Vienna, Vienna, Austria
| | - Yogesh D Aher
- Department of Pediatrics, Medical University of Vienna, Vienna, Austria
| | - Marija Ilic
- Department of Pharmaceutical Chemistry, Faculty of Life Sciences, University of Vienna, Vienna, Austria
| | - Bojana Radoman
- Department of Pediatrics, Medical University of Vienna, Vienna, Austria
| | - Predrag Kalaba
- Department of Pharmaceutical Chemistry, Faculty of Life Sciences, University of Vienna, Vienna, Austria
| | - Vladimir Dragacevic
- Department of Pharmaceutical Chemistry, Faculty of Life Sciences, University of Vienna, Vienna, Austria
| | - Nilima Y Aher
- Department of Pharmaceutical Chemistry, Faculty of Life Sciences, University of Vienna, Vienna, Austria
| | - Johann Leban
- Department of Pharmaceutical Chemistry, Faculty of Life Sciences, University of Vienna, Vienna, Austria
| | - Volker Korz
- Department of Pediatrics, Medical University of Vienna, Vienna, Austria
| | - Lisa Zanon
- Department of Pharmaceutical Chemistry, Faculty of Life Sciences, University of Vienna, Vienna, Austria
| | - Winfried Neuhaus
- Competence Unit Molecular Diagnostics, Competence Center Health and Bioresources, Austrian Institute of Technology (AIT) GmbH, Vienna, Austria
| | - Marcus Wieder
- Department of Pharmaceutical Chemistry, Faculty of Life Sciences, University of Vienna, Vienna, Austria
| | - Thierry Langer
- Department of Pharmaceutical Chemistry, Faculty of Life Sciences, University of Vienna, Vienna, Austria
| | - Ernst Urban
- Department of Pharmaceutical Chemistry, Faculty of Life Sciences, University of Vienna, Vienna, Austria
| | - Harald H Sitte
- Institute of Pharmacology, Center for Physiology and Pharmacology, Medical University of Vienna, Vienna, Austria
| | - Harald Hoeger
- Core Unit of Biomedical Research, Division of Laboratory Animal Science and Genetics, Medical University of Vienna, Himberg, Austria
| | - Gert Lubec
- Department of Neuroproteomics, Paracelsus Medical University, Salzburg, Austria.
| | - Jana Aradska
- Department of Neuroproteomics, Paracelsus Medical University, Salzburg, Austria.
| |
Collapse
|
7
|
Cercato MC, Vázquez CA, Kornisiuk E, Aguirre AI, Colettis N, Snitcofsky M, Jerusalinsky DA, Baez MV. GluN1 and GluN2A NMDA Receptor Subunits Increase in the Hippocampus during Memory Consolidation in the Rat. Front Behav Neurosci 2017; 10:242. [PMID: 28133447 PMCID: PMC5233710 DOI: 10.3389/fnbeh.2016.00242] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2016] [Accepted: 12/12/2016] [Indexed: 01/14/2023] Open
Abstract
It is widely accepted that NMDA receptors (NMDAR) are required for learning and memory formation, and for synaptic plasticity induction. We have previously shown that hippocampal GluN1 and GluN2A NMDAR subunits significantly increased following habituation of rats to an open field (OF), while GluN2B remained unchanged. Similar results were obtained after CA1-long-term potentiation (LTP) induction in rat hippocampal slices. Other studies have also shown NMDAR up regulation at earlier and later time points after LTP induction or learning acquisition. In this work, we have studied NMDAR subunits levels in the hippocampus and prefrontal cortex (PFC) after OF habituation and after object recognition (OR), to find out whether rising of NMDAR subunits is a general and structure-specific feature during memory formation. In 1, 2 and 3 month old rats there was an increase in hippocampal GluN1 and GluN2A, but not in GluN2B levels 70 min after OF habituation. This rise overlaps with early phase of memory consolidation, suggesting a putative relationship between them. The increases fell down to control levels 90 min after training. Similar results were obtained in the hippocampus of adult rats 70 min after OR training, without changes in PFC. Following OF test or OR discrimination phase, NMDAR subunits remained unchanged. Hence, rising of hippocampal GluN1 and GluN2A appears to be a general feature after novel “spatial/discrimination” memory acquisition. To start investigating the dynamics and possible mechanisms of these changes, we have studied hippocampal neuron cultures stimulated by KCl to induce plasticity. GluN1 and GluN2A increased both in dendrites and neuronal bodies, reaching a maximum 75 min later and returning to control levels at 90 min. Translation and/or transcription and mobilization differentially contribute to this rise in subunits in bodies and dendrites. Our results showed that the NMDAR subunits increase follows a similar time course both in vitro and in vivo. These changes happen in the hippocampus where a spatial representation of the environment is being formed making possible short term and long term memories (STM and LTM); appear to be structure-specific; are preserved along life; and could be related to synaptic tagging and/or to memory consolidation of new spatial/discrimination information.
Collapse
Affiliation(s)
- Magali C Cercato
- Laboratorio de Neuroplasticidad y Neurotoxinas, Instituto de Biología Celular y Neurociencia, Universidad de Buenos Aires (UBA)-CONICET Buenos Aires, Argentina
| | - Cecilia A Vázquez
- Laboratorio de Neuroplasticidad y Neurotoxinas, Instituto de Biología Celular y Neurociencia, Universidad de Buenos Aires (UBA)-CONICET Buenos Aires, Argentina
| | - Edgar Kornisiuk
- Laboratorio de Neuroplasticidad y Neurotoxinas, Instituto de Biología Celular y Neurociencia, Universidad de Buenos Aires (UBA)-CONICET Buenos Aires, Argentina
| | - Alejandra I Aguirre
- Laboratorio de Neuroplasticidad y Neurotoxinas, Instituto de Biología Celular y Neurociencia, Universidad de Buenos Aires (UBA)-CONICET Buenos Aires, Argentina
| | - Natalia Colettis
- Laboratorio de Neuroplasticidad y Neurotoxinas, Instituto de Biología Celular y Neurociencia, Universidad de Buenos Aires (UBA)-CONICET Buenos Aires, Argentina
| | - Marina Snitcofsky
- Laboratorio de Neuroplasticidad y Neurotoxinas, Instituto de Biología Celular y Neurociencia, Universidad de Buenos Aires (UBA)-CONICET Buenos Aires, Argentina
| | - Diana A Jerusalinsky
- Laboratorio de Neuroplasticidad y Neurotoxinas, Instituto de Biología Celular y Neurociencia, Universidad de Buenos Aires (UBA)-CONICETBuenos Aires, Argentina; Ciclo Básico Común-Universidad de Buenos AiresBuenos Aires, Argentina
| | - María V Baez
- Laboratorio de Neuroplasticidad y Neurotoxinas, Instituto de Biología Celular y Neurociencia, Universidad de Buenos Aires (UBA)-CONICETBuenos Aires, Argentina; 1UA de Biología Celular, Histología, Embriología y Genética, Departamento de Histología, Facultad de Medicina, Universidad de Buenos AiresBuenos Aires, Argentina
| |
Collapse
|
8
|
Hippocampal GluA2 and GluA4 protein but not corresponding mRNA and promoter methylation levels are modulated at retrieval in spatial learning of the rat. Amino Acids 2016; 49:117-127. [DOI: 10.1007/s00726-016-2335-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2016] [Accepted: 09/16/2016] [Indexed: 01/24/2023]
|
9
|
Silkis IG. The contribution of dopamine to the functioning of the hippocampus during spatial learning (a hypothetical mechanism). NEUROCHEM J+ 2016. [DOI: 10.1134/s181971241601013x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
10
|
Salehi I, Karamian R, Komaki A, Tahmasebi L, Taheri M, Nazari M, Shahidi S, Sarihi A. Effects of vitamin E on lead-induced impairments in hippocampal synaptic plasticity. Brain Res 2015; 1629:270-81. [PMID: 26462654 DOI: 10.1016/j.brainres.2015.10.007] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2015] [Revised: 09/20/2015] [Accepted: 10/01/2015] [Indexed: 10/22/2022]
Abstract
Lead (Pb) exposure during development is associated with impaired cognitive function and long-term potentiation (LTP). Vitamin E (VE) is an antioxidant that could have protective effects against Pb intoxication. In this study, we examined the protective effects of vitamin E against Pb-induced LTP impairments. Forty-six adult male Wistar rats were randomly divided into 6 treatment groups: (1) control; (2) Pb exposure; (3) VE; (4) Pb +VE; (5) Pb exposure followed by VE 2 months after exposure; (6) VE followed by Pb exposure 1 month after treatment. Rats were exposed to Pb through daily consumption of Pb-contaminated distilled water; VE was administered by daily gavage for 3 months. After this period, the population spike (PS) amplitudes and the slopes of excitatory postsynaptic potentials (EPSPs) were measured in the dentate gyrus (DG) area of the hippocampus in adult rats in response to electrical stimulation applied to the perforant pathway in vivo. Blood samples were also collected to evaluate malondialdehyde (MDA) levels, total antioxidant capacity (TAC), and total oxidant status (TOS). Biochemical analyses demonstrated significant increases in plasma MDA and TOS levels in the Pb-exposed group compared to the control group. VE-protected groups revealed significant increases in TAC levels. Our results demonstrate that Pb decreased EPSP slopes and PS amplitudes compared to the control group, whereas VE increased these parameters compared to the control group. Co-administration of VE with Pb exposure inhibited Pb-induced effects. These findings suggest that VE via its antioxidant activity reverses Pb-induced impairments of synaptic plasticity in the DG.
Collapse
Affiliation(s)
- Iraj Salehi
- Neurophysiology Research Center, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Ruhollah Karamian
- Neurophysiology Research Center, Hamadan University of Medical Sciences, Hamadan, Iran.
| | - Alireza Komaki
- Neurophysiology Research Center, Hamadan University of Medical Sciences, Hamadan, Iran.
| | - Lida Tahmasebi
- Neurophysiology Research Center, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Masoumeh Taheri
- Neurophysiology Research Center, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Masoumeh Nazari
- Neurophysiology Research Center, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Siamak Shahidi
- Neurophysiology Research Center, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Abdolrahman Sarihi
- Neurophysiology Research Center, Hamadan University of Medical Sciences, Hamadan, Iran
| |
Collapse
|
11
|
Abstract
Diverse neuropsychiatric disorders present dysfunctional memory and no effective treatment exits for them; likely as result of the absence of neural markers associated to memory. Neurotransmitter systems and signaling pathways have been implicated in memory and dysfunctional memory; however, their role is poorly understood. Hence, neural markers and cerebral functions and dysfunctions are revised. To our knowledge no previous systematic works have been published addressing these issues. The interactions among behavioral tasks, control groups and molecular changes and/or pharmacological effects are mentioned. Neurotransmitter receptors and signaling pathways, during normal and abnormally functioning memory with an emphasis on the behavioral aspects of memory are revised. With focus on serotonin, since as it is a well characterized neurotransmitter, with multiple pharmacological tools, and well characterized downstream signaling in mammals' species. 5-HT1A, 5-HT4, 5-HT5, 5-HT6, and 5-HT7 receptors as well as SERT (serotonin transporter) seem to be useful neural markers and/or therapeutic targets. Certainly, if the mentioned evidence is replicated, then the translatability from preclinical and clinical studies to neural changes might be confirmed. Hypothesis and theories might provide appropriate limits and perspectives of evidence.
Collapse
Affiliation(s)
- Alfredo Meneses
- Departamento de Farmacobiología, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional Mexico City, Mexico
| |
Collapse
|