1
|
Yardimci A, Ulker Ertugrul N, Ozgen A, Ozbeg G, Ridvan Ozdede M, Ercan EC, Canpolat S. Effects of chronic irisin treatment on brain monoamine levels in the hypothalamic and subcortical nuclei of adult male and female rats: An HPLC-ECD study. Neurosci Lett 2023; 806:137245. [PMID: 37061025 DOI: 10.1016/j.neulet.2023.137245] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Revised: 04/04/2023] [Accepted: 04/10/2023] [Indexed: 04/17/2023]
Abstract
Monoaminergic systems are known to be involved in the pathophysiology of neuropsychiatric disorders and vegetative functions due to their established influence on hypothalamic and subcortical areas. These systems can be modulated by lifestyle factors, especially exercise, which is known to produce several beneficial effects on reproduction, brain health, and mental disorders. The fact that exercise is sensed by the brain shows that muscle-stimulated secretion of myokines allows direct crosstalk between the muscles and the brain. One of such exercise-induced beneficial effects on the brain is exhibited by irisin-a recently discovered PGC-1α-dependent adipo-myokine mainly secreted from skeletal muscle during exercise. Thus, we hypothesized that irisin may affect central monoamine levels and thus play an important role in the muscle-brain endocrine loop. To test this assertion, for 10 weeks, vehicle (deionized water) or 100 ng/kg irisin was injected intraperitoneally once a day to 12 male and 12 female rats after which the levels of monoamines and their metabolites were determined by HPLC-ECD. In the hypothalamic nuclei, irisin significantly decreased dopamine (DA) metabolite 3,4-dihydroxyphenylacetic acid (DOPAC) (p<0.05), DOPAC/DA ratio (p<0.01) and noradrenaline (NA, p<0.05) levels in the anteroventral periventricular nucleus (AVPV), and DOPAC and NA levels in the medial preoptic area (mPOA) (p<0.05), having a crucial role in reproduction and sexual motivation, respectively. On the other hand, irisin significantly increased DOPAC levels in the lateral hypothalamic area (LHA) (p<0.05), which acts as a hunger center, while it significantly decreased the levels of DA, NA, and its metabolite 3,4-dihydroxyphenylglycol (DHPG) in the ventromedial hypothalamic nucleus (VMH) as a known satiety center (p<0.05). In nucleus accumbens (NaC), irisin significantly reduced 5-hydroxyindoleacetic acid (5-HIAA) levels (p<0.05), which are implicated in autism spectrum disorder (ASD) physiopathology. It also significantly increased DA levels in this area, thus exhibiting positive effects on depression and sexual dysfunction in men. On the other hand, it significantly decreased serotonin (5-HT) (p<0.01) and its metabolite 5-HIAA levels in the medial amygdala (MeA) (p<0.05), indicating that it may play a role in social behaviors. Moreover, it significantly attenuated NA levels in the same hypothalamic area, which is directly involved in stress-induced activation of the central noradrenergic system. These findings demonstrate for the first time that irisin induces significant changes in monoamine levels in many hypothalamic nuclei involved in feeding behavior and vegetative functions, as well as in subcortical nuclei related to neuropsychiatric disorders.
Collapse
Affiliation(s)
- Ahmet Yardimci
- Department of Physiology, Faculty of Medicine, Firat University, Elazig, Turkey.
| | | | - Aslisah Ozgen
- Department of Physiology, Faculty of Medicine, Firat University, Elazig, Turkey
| | - Gulendam Ozbeg
- Department of Physiology, Faculty of Medicine, Firat University, Elazig, Turkey
| | | | - Eda Coban Ercan
- Department of Physiology, Faculty of Medicine, Firat University, Elazig, Turkey
| | - Sinan Canpolat
- Department of Physiology, Faculty of Medicine, Firat University, Elazig, Turkey
| |
Collapse
|
2
|
Hoobehfekr S, Moghaddam HS, Shalbafan M, Hashemi MG, Pirmoradi MM, Sakenian A, Poopak A, Kashefinejad S, Yarahmadi M, Akhondzadeh S. Efficacy and safety of tipepidine as adjunctive therapy in major depressive disorder: A randomized, double-blind, placebo-controlled clinical trial. Psychiatry Clin Neurosci 2021; 75:57-62. [PMID: 33247483 DOI: 10.1111/pcn.13180] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Revised: 10/29/2020] [Accepted: 11/24/2020] [Indexed: 11/29/2022]
Abstract
AIM Tipepidine, a synthetic, non-opioid expectorant, has been shown to improve depressive-like behavior in animal models of depression. In this study, we assessed the efficacy and tolerability of tipepidine combination therapy with citalopram in treatment of major depressive disorder (MDD). METHODS In a randomized, double-blinded, placebo-controlled clinical trial, 62 patients with MDD were assigned into two parallel groups to receive citalopram (up to 40 mg/day) plus placebo or citalopram plus tipepidine (30 mg twice daily) for 6 weeks. Participants were assessed with the Hamilton Rating Scale for Depression (HAM-D) at baseline and Weeks 2, 4, and 6. RESULTS Fifty-six patients completed the trial. The tipepidine group showed greater improvement in HAM-D scores from baseline to all three study time points (P = 0.048 for all). The remission and response-to-treatment rates were significantly higher in the tipepidine group (53.6% and 100%) compared to the placebo group (25.0% and 75%) at the study end-point (P = 0.029 and 0.005, respectively). The remission and response times in patients in the tipepidine group were also shorter compared with the placebo group (log-rank P = 0.020 and 0.004). There was no significant difference between the two groups in baseline parameters or frequency of side-effects. CONCLUSION Tipepidine combination therapy with citalopram can effectively improve symptoms of patients with MDD in a shorter period of treatment. However, further studies with larger sample sizes and longer follow-up treatment are needed to confirm our findings.
Collapse
Affiliation(s)
- Saba Hoobehfekr
- Psychiatric Research Center, Roozbeh Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | | | - Mohammadreza Shalbafan
- Mental Health Research Center, Department of Psychiatry, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Maryam Ghazizadeh Hashemi
- Mental Health Research Center, Department of Psychiatry, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Mohammad Mehdi Pirmoradi
- Psychiatric Research Center, Roozbeh Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Amirhossein Sakenian
- Psychiatric Research Center, Roozbeh Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Amirhossein Poopak
- Psychiatric Research Center, Roozbeh Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Shayan Kashefinejad
- Mental Health Research Center, Department of Psychiatry, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Masoomeh Yarahmadi
- Department of Health Psychology, Khorramshahr - Persian Gulf International Branch, Islamic Azad University, Khorramshahr, Iran
| | - Shahin Akhondzadeh
- Psychiatric Research Center, Roozbeh Hospital, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
3
|
Zhao Y, Gameiro-Ros I, Glaaser IW, Slesinger PA. Advances in Targeting GIRK Channels in Disease. Trends Pharmacol Sci 2021; 42:203-215. [PMID: 33468322 DOI: 10.1016/j.tips.2020.12.002] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Revised: 11/30/2020] [Accepted: 12/11/2020] [Indexed: 12/12/2022]
Abstract
G protein-gated inwardly rectifying potassium (GIRK) channels are essential regulators of cell excitability in the brain. While they are implicated in a variety of neurological diseases in both human and animal model studies, their therapeutic potential has been largely untapped. Here, we review recent advances in the development of small molecule compounds that specifically modulate GIRK channels and compare them with first-generation compounds that exhibit off-target activity. We describe the method of discovery of these small molecule modulators, their chemical features, and their effects in vivo. These studies provide a promising outlook on the future development of subunit-specific GIRK modulators to regulate neuronal excitability in a brain region-specific manner.
Collapse
Affiliation(s)
- Yulin Zhao
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Isabel Gameiro-Ros
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Ian W Glaaser
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Paul A Slesinger
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA.
| |
Collapse
|
4
|
Kawaura K, Ogata Y, Honda S, Soeda F, Shirasaki T, Takahama K. Tipepidine, a non-narcotic antitussive, exerts an antidepressant-like effect in the forced swimming test in adrenocorticotropic hormone-treated rats. Behav Brain Res 2016; 302:269-78. [DOI: 10.1016/j.bbr.2015.12.008] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2015] [Revised: 12/03/2015] [Accepted: 12/09/2015] [Indexed: 01/27/2023]
|
5
|
Soeda F, Fujieda Y, Kinoshita M, Shirasaki T, Takahama K. Centrally acting non-narcotic antitussives prevent hyperactivity in mice: Involvement of GIRK channels. Pharmacol Biochem Behav 2016; 144:26-32. [PMID: 26892760 DOI: 10.1016/j.pbb.2016.02.006] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/07/2015] [Revised: 01/18/2016] [Accepted: 02/14/2016] [Indexed: 12/30/2022]
Abstract
We have previously reported that centrally acting non-narcotic antitussives inhibited G protein-coupled inwardly rectifying potassium (GIRK) channel-activated currents, and that the antitussives had multiple pharmacological actions on various models of intractable brain diseases in rodents. In this study, the question of whether these antitussives inhibit drug-induced hyperactivity in mice was investigated. Antitussives, such as cloperastine and tipepidine, at cough suppressant doses, inhibited an increase in ambulation of mice neonatally treated with 6-hydroxydopamine. In addition, all antitussives studied inhibited an increase in methamphetamine-induced hyperactivity in mice. Methylphenidate, which is used for treatment of ADHD, inhibited 6-hydroxydopamine-lesion-induced, but not methamphetamine-induced, hyperactivity in mice. By the rota-rod test, the drugs had little effect on motor coordination of the hyperactive mice. Significant correlation was found between the ameliorating effects of antitussives on methamphetamine-induced hyperactivity and their inhibitory actions on GIRK channel currents (coefficient factor, 0.998). Furthermore, tertiapin, a GIRK channel blocker, prevented an increase in methamphetamine-induced hyperactivity of mice. These results demonstrated that antitussive drugs (cloperastine, tipepidine and caramiphen) possessing inhibitory action on GIRK channels inhibit drug-induced hyperactivity in mice, suggesting that such antitussives may potentially be therapeutic for patients with ADHD.
Collapse
Affiliation(s)
- Fumio Soeda
- Department of Environmental and Molecular Health Sciences, Graduate School of Pharmaceutical Sciences, Kumamoto University, 5-1 Oe-honmachi, Kumamoto 862-0973, Japan
| | - Yoshiko Fujieda
- Department of Environmental and Molecular Health Sciences, Graduate School of Pharmaceutical Sciences, Kumamoto University, 5-1 Oe-honmachi, Kumamoto 862-0973, Japan
| | - Mizue Kinoshita
- Department of Environmental and Molecular Health Sciences, Graduate School of Pharmaceutical Sciences, Kumamoto University, 5-1 Oe-honmachi, Kumamoto 862-0973, Japan
| | - Tetsuya Shirasaki
- Department of Environmental and Molecular Health Sciences, Graduate School of Pharmaceutical Sciences, Kumamoto University, 5-1 Oe-honmachi, Kumamoto 862-0973, Japan
| | - Kazuo Takahama
- Department of Environmental and Molecular Health Sciences, Graduate School of Pharmaceutical Sciences, Kumamoto University, 5-1 Oe-honmachi, Kumamoto 862-0973, Japan.
| |
Collapse
|
6
|
Abstract
OBJECTIVE Treatment-resistant depression is a challenging problem in the clinical setting. Tipepidine has been used as a non-narcotic antitussive in Japan since 1959. METHODS We administered tipepidine to 11 patients with treatment-resistant depression. Tipepidine was given for 8 weeks as an augmentation. RESULTS Tipepidine significantly improved depression scores on the Hamilton Rating Scale for depression. Add-on treatment with tipepidine significantly improved scores on the trail making test and Rey auditory verbal learning test. However, no changes were observed in blood concentrations of stress-related hormones (adrenocorticotropic hormone, cortisol, dehydroepiandrosterone sulphate) with tipepidine augmentation. CONCLUSION Tipepidine might be a potential therapeutic drug for treatment-resistant depression.
Collapse
|
7
|
Glaaser IW, Slesinger PA. Structural Insights into GIRK Channel Function. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2015; 123:117-60. [PMID: 26422984 DOI: 10.1016/bs.irn.2015.05.014] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
G protein-gated inwardly rectifying potassium (GIRK; Kir3) channels, which are members of the large family of inwardly rectifying potassium channels (Kir1-Kir7), regulate excitability in the heart and brain. GIRK channels are activated following stimulation of G protein-coupled receptors that couple to the G(i/o) (pertussis toxin-sensitive) G proteins. GIRK channels, like all other Kir channels, possess an extrinsic mechanism of inward rectification involving intracellular Mg(2+) and polyamines that occlude the conduction pathway at membrane potentials positive to E(K). In the past 17 years, more than 20 high-resolution atomic structures containing GIRK channel cytoplasmic domains and transmembrane domains have been solved. These structures have provided valuable insights into the structural determinants of many of the properties common to all inward rectifiers, such as permeation and rectification, as well as revealing the structural bases for GIRK channel gating. In this chapter, we describe advances in our understanding of GIRK channel function based on recent high-resolution atomic structures of inwardly rectifying K(+) channels discussed in the context of classical structure-function experiments.
Collapse
Affiliation(s)
- Ian W Glaaser
- Department of Neuroscience, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Paul A Slesinger
- Department of Neuroscience, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, New York, USA.
| |
Collapse
|