1
|
Esteca MV, Divino IA, Vieira da Silva AL, Severino MB, Braga RR, Ropelle ER, Simabuco FM, Baptista IL. Parkin is a critical player in the effects of caffeine over mitochondrial quality control pathways during skeletal muscle regeneration in mice. Acta Physiol (Oxf) 2024; 240:e14111. [PMID: 38314948 DOI: 10.1111/apha.14111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 01/04/2024] [Accepted: 01/12/2024] [Indexed: 02/07/2024]
Abstract
AIM This study aimed to investigate the effects of caffeine on pathways associated with mitochondrial quality control and mitochondrial capacity during skeletal muscle regeneration, focusing on the role of Parkin, a key protein involved in mitophagy. METHODS We used in vitro C2C12 myoblast during differentiation with and without caffeine in the medium, and we evaluated several markers of mitochondrial quality control pathways and myotube growth. In vivo experiments, we used C57BL/6J (WT) and Parkintm 1Shn lineage (Parkin-/- ) mice and injured tibial anterior muscle. The mice regenerated TA muscle for 3, 10, and 21 days with or without caffeine ingestion. TA muscle was used to analyze the protein content of several markers of mitochondrial quality pathways, muscle satellite cell differentiation, and protein synthesis. Furthermore, it analyzed mtDNA, mitochondrial respiration, and myofiber growth. RESULTS C2C12 differentiation experiments showed that caffeine decreased Parkin content, potentially leading to increased DRP1 and PGC-1α content and altered mitochondrial population, thereby enhancing growth capacity. Using Parkin-/- mice, we found that caffeine intake during the regenerative process induces an increase in AMPKα phosphorylation and PGC-1α and TFAM content, changes that were partly Parkin-dependent. In addition, the absence of Parkin potentiates the ergogenic effect of caffeine by increasing mitochondrial capacity and myotube growth. Those effects are related to increased ATF4 content and activation of protein synthesis pathways, such as increased 4E-BP1 phosphorylation. CONCLUSION These findings demonstrate that caffeine ingestion changes mitochondrial quality control during skeletal muscle regeneration, and Parkin is a central player in those mechanisms.
Collapse
Affiliation(s)
- M V Esteca
- Laboratory of Cell and Tissue Biology, School of Applied Sciences, University of Campinas, Limeira, Brazil
| | - I A Divino
- Laboratory of Cell and Tissue Biology, School of Applied Sciences, University of Campinas, Limeira, Brazil
| | - A L Vieira da Silva
- Laboratory of Cell and Tissue Biology, School of Applied Sciences, University of Campinas, Limeira, Brazil
| | - M B Severino
- Laboratory of Cell and Tissue Biology, School of Applied Sciences, University of Campinas, Limeira, Brazil
- Multidisciplinarity Laboratory of Food and Health, School of Applied Sciences, University of Campinas, Limeira, Brazil
| | - R R Braga
- Laboratory of Molecular Biology of Exercise, School of Applied Sciences, University of Campinas, Limeira, Brazil
| | - E R Ropelle
- Laboratory of Molecular Biology of Exercise, School of Applied Sciences, University of Campinas, Limeira, Brazil
| | - F M Simabuco
- Multidisciplinarity Laboratory of Food and Health, School of Applied Sciences, University of Campinas, Limeira, Brazil
- Department of Biochemistry, Federal University of São Paulo, São Paulo, Brazil
| | - I L Baptista
- Laboratory of Cell and Tissue Biology, School of Applied Sciences, University of Campinas, Limeira, Brazil
| |
Collapse
|
2
|
Martins RS, Rombo DM, Gonçalves-Ribeiro J, Meneses C, Borges-Martins VPP, Ribeiro JA, Vaz SH, Kubrusly RCC, Sebastião AM. Caffeine has a dual influence on NMDA receptor-mediated glutamatergic transmission at the hippocampus. Purinergic Signal 2020; 16:503-518. [PMID: 33025424 DOI: 10.1007/s11302-020-09724-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Accepted: 08/20/2020] [Indexed: 12/13/2022] Open
Abstract
Caffeine, a stimulant largely consumed around the world, is a non-selective adenosine receptor antagonist, and therefore caffeine actions at synapses usually, but not always, mirror those of adenosine. Importantly, different adenosine receptors with opposing regulatory actions co-exist at synapses. Through both inhibitory and excitatory high-affinity receptors (A1R and A2R, respectively), adenosine affects NMDA receptor (NMDAR) function at the hippocampus, but surprisingly, there is a lack of knowledge on the effects of caffeine upon this ionotropic glutamatergic receptor deeply involved in both positive (plasticity) and negative (excitotoxicity) synaptic actions. We thus aimed to elucidate the effects of caffeine upon NMDAR-mediated excitatory post-synaptic currents (NMDAR-EPSCs), and its implications upon neuronal Ca2+ homeostasis. We found that caffeine (30-200 μM) facilitates NMDAR-EPSCs on pyramidal CA1 neurons from Balbc/ByJ male mice, an action mimicked, as well as occluded, by 1,3-dipropyl-cyclopentylxantine (DPCPX, 50 nM), thus likely mediated by blockade of inhibitory A1Rs. This action of caffeine cannot be attributed to a pre-synaptic facilitation of transmission because caffeine even increased paired-pulse facilitation of NMDA-EPSCs, indicative of an inhibition of neurotransmitter release. Adenosine A2ARs are involved in this likely pre-synaptic action since the effect of caffeine was mimicked by the A2AR antagonist, SCH58261 (50 nM). Furthermore, caffeine increased the frequency of Ca2+ transients in neuronal cell culture, an action mimicked by the A1R antagonist, DPCPX, and prevented by NMDAR blockade with AP5 (50 μM). Altogether, these results show for the first time an influence of caffeine on NMDA receptor activity at the hippocampus, with impact in neuronal Ca2+ homeostasis.
Collapse
Affiliation(s)
- Robertta S Martins
- Instituto de Farmacologia e Neurociências, Faculdade de Medicina da Universidade de Lisboa, Lisbon, Portugal.,Laboratório de Neurofarmacologia, Departamento de Fisiologia e Farmacologia, Pós-Graduação em Neurociências, Universidade Federal Fluminense, Niterói, Brazil
| | - Diogo M Rombo
- Instituto de Farmacologia e Neurociências, Faculdade de Medicina da Universidade de Lisboa, Lisbon, Portugal.,Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina da Universidade de Lisboa, Lisbon, Portugal
| | - Joana Gonçalves-Ribeiro
- Instituto de Farmacologia e Neurociências, Faculdade de Medicina da Universidade de Lisboa, Lisbon, Portugal.,Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina da Universidade de Lisboa, Lisbon, Portugal
| | - Carlos Meneses
- Área Departamental de Engenharia de Electrónica e Telecomunicações e de Computadores, Instituto Superior de Engenharia de Lisboa, Lisbon, Portugal
| | - Vladimir P P Borges-Martins
- Laboratório de Neurofarmacologia, Departamento de Fisiologia e Farmacologia, Pós-Graduação em Neurociências, Universidade Federal Fluminense, Niterói, Brazil
| | - Joaquim A Ribeiro
- Instituto de Farmacologia e Neurociências, Faculdade de Medicina da Universidade de Lisboa, Lisbon, Portugal.,Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina da Universidade de Lisboa, Lisbon, Portugal
| | - Sandra H Vaz
- Instituto de Farmacologia e Neurociências, Faculdade de Medicina da Universidade de Lisboa, Lisbon, Portugal.,Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina da Universidade de Lisboa, Lisbon, Portugal
| | - Regina C C Kubrusly
- Laboratório de Neurofarmacologia, Departamento de Fisiologia e Farmacologia, Pós-Graduação em Neurociências, Universidade Federal Fluminense, Niterói, Brazil
| | - Ana M Sebastião
- Instituto de Farmacologia e Neurociências, Faculdade de Medicina da Universidade de Lisboa, Lisbon, Portugal. .,Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina da Universidade de Lisboa, Lisbon, Portugal.
| |
Collapse
|
3
|
Sánchez-Melgar A, Albasanz JL, Pallàs M, Martín M. Adenosine Metabolism in the Cerebral Cortex from Several Mice Models during Aging. Int J Mol Sci 2020; 21:ijms21197300. [PMID: 33023260 PMCID: PMC7582336 DOI: 10.3390/ijms21197300] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2020] [Revised: 09/27/2020] [Accepted: 10/01/2020] [Indexed: 12/12/2022] Open
Abstract
Adenosine is a neuromodulator that has been involved in aging and neurodegenerative diseases as Alzheimer’s disease (AD). In the present work, we analyzed the possible modulation of purine metabolites, 5’nucleotidase (5′NT) and adenosine deaminase (ADA) activities, and adenosine monophosphate (AMP)-activated protein kinase (AMPK) and its phosphorylated form during aging in the cerebral cortex. Three murine models were used: senescence-accelerated mouse-resistant 1 (SAMR1, normal senescence), senescence-accelerated mouse-prone 8 (SAMP8, a model of AD), and the wild-type C57BL/6J (model of aging) mice strains. Glutamate and excitatory amino acid transporter 2 (EAAT2) levels were also measured in these animals. HPLC, Western blotting, and enzymatic activity evaluation were performed to this aim. 5′-Nucleotidase (5′NT) activity was decreased at six months and recovered at 12 months in SAMP8 while opposite effects were observed in SAMR1 at the same age, and no changes in C57BL/6J mice. ADA activity significantly decreased from 3 to 12 months in the SAMR1 mice strain, while a significant decrease from 6 to 12 months was observed in the SAMP8 mice strain. Regarding purine metabolites, xanthine and guanosine levels were increased at six months in SAMR1 without significant differences in SAMP8 mice. In C57BL/6J mice, inosine and xanthine were increased, while adenosine decreased, from 4 to 24 months. The AMPK level was decreased at six months in SAMP8 without significant changes nor in SAMR1 or C57BL/6J strains. Glutamate and EAAT2 levels were also modulated during aging. Our data show a different modulation of adenosine metabolism participants in the cerebral cortex of these animal models. Interestingly, the main differences between SAMR1 and SAMP8 mice were found at six months of age, SAMP8 being the most affected strain. As SAMP8 is an AD model, results suggest that adenosinergic metabolism is involved in the neurodegeneration of AD.
Collapse
Affiliation(s)
- Alejandro Sánchez-Melgar
- Department of Inorganic, Organic and Biochemistry, Faculty of Chemical and Technological Sciences, Universidad de Castilla-La Mancha, School of Medicine of Ciudad Real, Regional Center of Biomedical Research (CRIB), 13071 Ciudad Real, Spain; (A.S.-M.); (M.M.)
| | - José Luis Albasanz
- Department of Inorganic, Organic and Biochemistry, Faculty of Chemical and Technological Sciences, Universidad de Castilla-La Mancha, School of Medicine of Ciudad Real, Regional Center of Biomedical Research (CRIB), 13071 Ciudad Real, Spain; (A.S.-M.); (M.M.)
- Correspondence:
| | - Mercè Pallàs
- Department of Pharmacology and Therapeutic Chemistry, Faculty of Pharmacy and Food Sciences, Institute of Neuroscience, University of Barcelona, 08028 Barcelona, Spain;
| | - Mairena Martín
- Department of Inorganic, Organic and Biochemistry, Faculty of Chemical and Technological Sciences, Universidad de Castilla-La Mancha, School of Medicine of Ciudad Real, Regional Center of Biomedical Research (CRIB), 13071 Ciudad Real, Spain; (A.S.-M.); (M.M.)
| |
Collapse
|
4
|
Periodical reactivation under the effect of caffeine attenuates fear memory expression in rats. Sci Rep 2018; 8:7260. [PMID: 29740084 PMCID: PMC5940846 DOI: 10.1038/s41598-018-25648-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2018] [Accepted: 04/20/2018] [Indexed: 11/17/2022] Open
Abstract
In the last decade, several studies have shown that fear memories can be attenuated by interfering with reconsolidation. However, most of the pharmacological agents used in preclinical studies cannot be administered to humans. Caffeine is one of the world’s most popular psychoactive drugs and its effects on cognitive and mood states are well documented. Nevertheless, the influence of caffeine administration on fear memory processing is not as clear. We employed contextual fear conditioning in rats and acute caffeine administration under a standard memory reconsolidation protocol or periodical memory reactivation. Additionally, potential rewarding/aversion and anxiety effects induced by caffeine were evaluated by conditioning place preference or open field, respectively. Caffeine administration was able to attenuate weak fear memories in a standard memory reconsolidation protocol; however, periodical memory reactivation under caffeine effect was necessary to attenuate strong and remote memories. Moreover, caffeine promoted conditioned place preference and anxiolytic-like behavior, suggesting that caffeine weakens the initial learning during reactivation through counterconditioning mechanisms. Thus, our study shows that rewarding and anxiolytic effects of caffeine during fear reactivation can change the emotional valence of fear memory. It brings a new promising pharmacological approach based on drugs widely used such as caffeine to treat fear-related disorders.
Collapse
|
5
|
Selected Literature Watch. JOURNAL OF CAFFEINE RESEARCH 2016. [DOI: 10.1089/jcr.2016.29000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
6
|
Hullinger R, Puglielli L. Molecular and cellular aspects of age-related cognitive decline and Alzheimer's disease. Behav Brain Res 2016; 322:191-205. [PMID: 27163751 DOI: 10.1016/j.bbr.2016.05.008] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2016] [Revised: 04/19/2016] [Accepted: 05/03/2016] [Indexed: 01/14/2023]
Abstract
As the population of people aged 60 or older continues to rise, it has become increasingly important to understand the molecular basis underlying age-related cognitive decline. In fact, a better understanding of aging biology will help us identify ways to maintain high levels of cognitive functioning throughout the aging process. Many cellular and molecular aspects of brain aging are shared with other organ systems; however, certain age-related changes are unique to the nervous system due to its structural, cellular and molecular complexity. Importantly, the brain appears to show differential changes throughout the aging process, with certain regions (e.g. frontal and temporal regions) being more vulnerable than others (e.g. brain stem). Within the medial temporal lobe, the hippocampus is especially susceptible to age-related changes. The important role of the hippocampus in age-related cognitive decline and in vulnerability to disease processes such as Alzheimer's disease has prompted this review, which will focus on the complexity of changes that characterize aging, and on the molecular connections that exist between normal aging and Alzheimer's disease. Finally, it will discuss behavioral interventions and emerging insights for promoting healthy cognitive aging.
Collapse
Affiliation(s)
- Rikki Hullinger
- Department of Medicine, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Luigi Puglielli
- Department of Medicine, University of Wisconsin-Madison, Madison, WI 53705, USA; Department of Neuroscience, University of Wisconsin-Madison, Madison, WI 53705, USA; Wisconsin Alzheimer's Disease Research Center, University of Wisconsin-Madison, Madison, WI 53705, USA; Geriatric Research Education Clinical Center, VA Medical Center, Madison, WI 53705, USA.
| |
Collapse
|
7
|
Szczepanik JC, de Oliveira PA, de Oliveira J, Mack JM, Engel DF, Rial D, Moreira ELG, de Bem AF, Prediger RD. Caffeine Mitigates the Locomotor Hyperactivity in Middle-aged Low-density Lipoprotein Receptor (LDLr)-Knockout Mice. CNS Neurosci Ther 2016; 22:420-2. [PMID: 27012312 DOI: 10.1111/cns.12544] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2016] [Revised: 02/22/2016] [Accepted: 03/06/2016] [Indexed: 12/01/2022] Open
Affiliation(s)
- Jozimar C Szczepanik
- Departamento de Farmacologia, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina (UFSC), Florianópolis, Brazil.,Programa de Pós-Graduação em Neurociências, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina (UFSC), Florianópolis, Brazil
| | - Paulo A de Oliveira
- Departamento de Farmacologia, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina (UFSC), Florianópolis, Brazil
| | - Jade de Oliveira
- Programa de Pós-Graduação em Neurociências, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina (UFSC), Florianópolis, Brazil.,Departamento de Bioquímica, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina (UFSC), Florianópolis, Brazil
| | - Josiel M Mack
- Departamento de Farmacologia, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina (UFSC), Florianópolis, Brazil
| | - Daiane F Engel
- Departamento de Bioquímica, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina (UFSC), Florianópolis, Brazil
| | - Daniel Rial
- Departamento de Farmacologia, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina (UFSC), Florianópolis, Brazil
| | - Eduardo L G Moreira
- Programa de Pós-Graduação em Neurociências, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina (UFSC), Florianópolis, Brazil.,Departamento de Ciências Fisiológicas, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina (UFSC), Florianópolis, Brazil
| | - Andreza F de Bem
- Programa de Pós-Graduação em Neurociências, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina (UFSC), Florianópolis, Brazil.,Departamento de Bioquímica, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina (UFSC), Florianópolis, Brazil
| | - Rui D Prediger
- Departamento de Farmacologia, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina (UFSC), Florianópolis, Brazil.,Programa de Pós-Graduação em Neurociências, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina (UFSC), Florianópolis, Brazil
| |
Collapse
|
8
|
Kim JH. Youth is not wasted on the young: Commentary on a BBR themed issue on developmental regulation of memory in anxiety and addiction. Behav Brain Res 2015; 298:1-3. [PMID: 26546879 DOI: 10.1016/j.bbr.2015.10.043] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Jee Hyun Kim
- Behavioural Neuroscience Division, The Florey Institute of Neuroscience and Mental Health, Parkville, VIC 3052, Australia; Florey Department of Neuroscience and Mental Health, University of Melbourne, Parkville, VIC 3052, Australia.
| |
Collapse
|