1
|
Liu H, Bai Y, Zheng Q, Liu J, Zhu J, Ni G. Electrophysiological correlation of auditory selective spatial attention in the "cocktail party" situation. Hum Brain Mapp 2024; 45:e26793. [PMID: 39037186 PMCID: PMC11261592 DOI: 10.1002/hbm.26793] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 07/04/2024] [Accepted: 07/09/2024] [Indexed: 07/23/2024] Open
Abstract
The auditory system can selectively attend to the target source in complex environments, the phenomenon known as the "cocktail party" effect. However, the spatiotemporal dynamics of electrophysiological activity associated with auditory selective spatial attention (ASSA) remain largely unexplored. In this study, single-source and multiple-source paradigms were designed to simulate different auditory environments, and microstate analysis was introduced to reveal the electrophysiological correlates of ASSA. Furthermore, cortical source analysis was employed to reveal the neural activity regions of these microstates. The results showed that five microstates could explain the spatiotemporal dynamics of ASSA, ranging from MS1 to MS5. Notably, MS2 and MS3 showed significantly lower partial properties in multiple-source situations than in single-source situations, whereas MS4 had shorter durations and MS5 longer durations in multiple-source situations than in single-source situations. MS1 had insignificant differences between the two situations. Cortical source analysis showed that the activation regions of these microstates initially transferred from the right temporal cortex to the temporal-parietal cortex, and subsequently to the dorsofrontal cortex. Moreover, the neural activity of the single-source situations was greater than that of the multiple-source situations in MS2 and MS3, correlating with the N1 and P2 components, with the greatest differences observed in the superior temporal gyrus and inferior parietal lobule. These findings suggest that these specific microstates and their associated activation regions may serve as promising substrates for decoding ASSA in complex environments.
Collapse
Affiliation(s)
- Hongxing Liu
- Academy of Medical Engineering and Translational MedicineTianjin UniversityTianjinChina
- State Key Laboratory of Advanced Medical Materials and DevicesTianjin UniversityTianjinChina
| | - Yanru Bai
- Academy of Medical Engineering and Translational MedicineTianjin UniversityTianjinChina
- State Key Laboratory of Advanced Medical Materials and DevicesTianjin UniversityTianjinChina
- Haihe Laboratory of Brain‐computer Interaction and Human‐machine IntegrationTianjinChina
| | - Qi Zheng
- Academy of Medical Engineering and Translational MedicineTianjin UniversityTianjinChina
- State Key Laboratory of Advanced Medical Materials and DevicesTianjin UniversityTianjinChina
| | - Jihan Liu
- Academy of Medical Engineering and Translational MedicineTianjin UniversityTianjinChina
- State Key Laboratory of Advanced Medical Materials and DevicesTianjin UniversityTianjinChina
| | - Jianing Zhu
- Academy of Medical Engineering and Translational MedicineTianjin UniversityTianjinChina
- State Key Laboratory of Advanced Medical Materials and DevicesTianjin UniversityTianjinChina
| | - Guangjian Ni
- Academy of Medical Engineering and Translational MedicineTianjin UniversityTianjinChina
- State Key Laboratory of Advanced Medical Materials and DevicesTianjin UniversityTianjinChina
- Haihe Laboratory of Brain‐computer Interaction and Human‐machine IntegrationTianjinChina
- Tianjin Key Laboratory of Brain Science and NeuroengineeringTianjinChina
| |
Collapse
|
2
|
Mandal A, Liesefeld AM, Liesefeld HR. Tracking the Misallocation and Reallocation of Spatial Attention toward Auditory Stimuli. J Neurosci 2024; 44:e2196232024. [PMID: 38886058 PMCID: PMC11270513 DOI: 10.1523/jneurosci.2196-23.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 05/04/2024] [Accepted: 05/06/2024] [Indexed: 06/20/2024] Open
Abstract
Completely ignoring a salient distractor presented concurrently with a target is difficult, and sometimes attention is involuntarily attracted to the distractor's location (attentional capture). Employing the N2ac component as a marker of attention allocation toward sounds, in this study we investigate the spatiotemporal dynamics of auditory attention across two experiments. Human participants (male and female) performed an auditory search task, where the target was accompanied by a distractor in two-third of the trials. For a distractor more salient than the target (Experiment 1), we observe not only a distractor N2ac (indicating attentional capture) but the full chain of attentional dynamics implied by the notion of attentional capture, namely, (1) the distractor captures attention before the target is attended, (2) allocation of attention to the target is delayed by distractor presence, and (3) the target is attended after the distractor. Conversely, for a distractor less salient than the target (Experiment 2), although responses were delayed, no attentional capture was observed. Together, these findings reveal two types of spatial attentional dynamics in the auditory modality (distraction with and without attentional capture).
Collapse
Affiliation(s)
- Ananya Mandal
- General and Experimental Psychology, Ludwig-Maximilians-Universität Munich, Munich 80802, Germany
- Graduate School for Systemic Neurosciences, Ludwig-Maximilians-Universität Munich, Planegg 82152, Germany
| | - Anna M Liesefeld
- General and Experimental Psychology, Ludwig-Maximilians-Universität Munich, Munich 80802, Germany
| | - Heinrich R Liesefeld
- Graduate School for Systemic Neurosciences, Ludwig-Maximilians-Universität Munich, Planegg 82152, Germany
- Department of Psychology, Universität Bremen, Bremen 28359, Germany
| |
Collapse
|
3
|
Liu H, Bai Y, Xu Z, Liu J, Ni G, Ming D. The scalp time-varying network of auditory spatial attention in "cocktail-party" situations. Hear Res 2024; 442:108946. [PMID: 38150794 DOI: 10.1016/j.heares.2023.108946] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/09/2023] [Revised: 12/21/2023] [Accepted: 12/22/2023] [Indexed: 12/29/2023]
Abstract
Sound source localization in "cocktail-party" situations is a remarkable ability of the human auditory system. However, the neural mechanisms underlying auditory spatial attention are still largely unknown. In this study, the "cocktail-party" situations are simulated through multiple sound sources and presented through head-related transfer functions and headphones. Furthermore, the scalp time-varying network of auditory spatial attention is constructed using the high-temporal resolution electroencephalogram, and its network properties are measured quantitatively using graph theory analysis. The results show that the time-varying network of auditory spatial attention in "cocktail-party" situations is more complex and partially different than in simple acoustic situations, especially in the early- and middle-latency periods. The network coupling strength increases continuously over time, and the network hub shifts from the posterior temporal lobe to the parietal lobe and then to the frontal lobe region. In addition, the right hemisphere has a stronger network strength for processing auditory spatial information in "cocktail-party" situations, i.e., the right hemisphere has higher clustering levels, higher transmission efficiency, and more node degrees during the early- and middle-latency periods, while this phenomenon disappears and appears symmetrically during the late-latency period. These findings reveal different network patterns and properties of auditory spatial attention in "cocktail-party" situations during different periods and demonstrate the dominance of the right hemisphere in the dynamic processing of auditory spatial information.
Collapse
Affiliation(s)
- Hongxing Liu
- Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin 300072 China
| | - Yanru Bai
- Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin 300072 China; Tianjin Key Laboratory of Brain Science and Neuroengineering, Tianjin 300072 China; Haihe Laboratory of Brain-Computer Interaction and Human-Machine Integration, Tianjin 300392 China
| | - Zihao Xu
- Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin 300072 China
| | - Jihan Liu
- Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin 300072 China
| | - Guangjian Ni
- Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin 300072 China; Tianjin Key Laboratory of Brain Science and Neuroengineering, Tianjin 300072 China; Haihe Laboratory of Brain-Computer Interaction and Human-Machine Integration, Tianjin 300392 China.
| | - Dong Ming
- Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin 300072 China; Tianjin Key Laboratory of Brain Science and Neuroengineering, Tianjin 300072 China; Haihe Laboratory of Brain-Computer Interaction and Human-Machine Integration, Tianjin 300392 China
| |
Collapse
|
4
|
Chen Y, Leng X, Yao J, Chen T, Liao Y, Jiang Y, Feng C, Feng W. Attentional biases toward auditory weight-related information among females with weight dissatisfaction. Psychophysiology 2023; 60:e14318. [PMID: 37118969 DOI: 10.1111/psyp.14318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Revised: 11/21/2022] [Accepted: 04/11/2023] [Indexed: 04/30/2023]
Abstract
Although there is substantial evidence of visual attentional biases in processing weight-related information among individuals with weight dissatisfaction, few studies have examined auditory attentional biases in these individuals. The identification of attentional biases may provide an impetus for interventions to reduce distress, negative body image, and pathological eating patterns among weight-dissatisfied individuals. Therefore, the present study aimed to investigate the attentional biases, as well as the neural consequences, toward auditory weight-related information among weight-dissatisfied young females. In this experiment, young female participants were assigned to an experimental group with high weight dissatisfaction (HWD) and a control group with low weight dissatisfaction (LWD) according to the levels of weight dissatisfaction. Using a spatial cueing paradigm, auditory fatness-related, thinness-related, and neutral household words were presented laterally as cue stimuli, followed by visual stimuli presented at either the cued or uncued location. The results revealed that auditory fatness-related words elicited significantly larger N2ac amplitudes than auditory thinness-related and neutral words in the HWD group. However, for the LWD group, thinness-related words elicited a significantly larger N2ac than fatness-related and neutral words. These results suggest an orienting attentional bias toward auditory fatness-related body words among females with HWD and an orienting attentional bias toward auditory thinness-related words among females with LWD.
Collapse
Affiliation(s)
- Yixuan Chen
- Department of Psychology, School of Education, Soochow University, Suzhou, China
- College of Teacher Education, Lishui University, Lishui, China
| | - Xuechen Leng
- Department of Psychology, School of Education, Soochow University, Suzhou, China
| | - Jiayi Yao
- Department of Psychology, School of Education, Soochow University, Suzhou, China
| | - Tingji Chen
- Department of Psychology, School of Education, Soochow University, Suzhou, China
| | - Yu Liao
- Department of Psychology, School of Education, Soochow University, Suzhou, China
| | - Yiyao Jiang
- Research College of Arts and Sciences, Syracuse University, Syracuse, New York, USA
| | - Chengzhi Feng
- Department of Psychology, School of Education, Soochow University, Suzhou, China
| | - Wenfeng Feng
- Department of Psychology, School of Education, Soochow University, Suzhou, China
- Research Center for Psychology and Behavioral Sciences, Soochow University, Suzhou, China
| |
Collapse
|
5
|
Han JH, Lee J, Lee HJ. The effect of noise on the cortical activity patterns of speech processing in adults with single-sided deafness. Front Neurol 2023; 14:1054105. [PMID: 37006498 PMCID: PMC10060629 DOI: 10.3389/fneur.2023.1054105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Accepted: 02/27/2023] [Indexed: 03/18/2023] Open
Abstract
The most common complaint in people with single-sided deafness (SSD) is difficulty in understanding speech in a noisy environment. Moreover, the neural mechanism of speech-in-noise (SiN) perception in SSD individuals is still poorly understood. In this study, we measured the cortical activity in SSD participants during a SiN task to compare with a speech-in-quiet (SiQ) task. Dipole source analysis revealed left hemispheric dominance in both left- and right-sided SSD group. Contrary to SiN listening, this hemispheric difference was not found during SiQ listening in either group. In addition, cortical activation in the right-sided SSD individuals was independent of the location of sound whereas activation sites in the left-sided SSD group were altered by the sound location. Examining the neural-behavioral relationship revealed that N1 activation is associated with the duration of deafness and the SiN perception ability of individuals with SSD. Our findings indicate that SiN listening is processed differently in the brains of left and right SSD individuals.
Collapse
Affiliation(s)
- Ji-Hye Han
- Laboratory of Brain and Cognitive Sciences for Convergence Medicine, Hallym University College of Medicine, Anyang, Republic of Korea
- Ear and Interaction Center, Doheun Institute for Digital Innovation in Medicine (D.I.D.I.M.), Hallym University Medical Center, Anyang, Republic of Korea
| | - Jihyun Lee
- Laboratory of Brain and Cognitive Sciences for Convergence Medicine, Hallym University College of Medicine, Anyang, Republic of Korea
- Ear and Interaction Center, Doheun Institute for Digital Innovation in Medicine (D.I.D.I.M.), Hallym University Medical Center, Anyang, Republic of Korea
| | - Hyo-Jeong Lee
- Laboratory of Brain and Cognitive Sciences for Convergence Medicine, Hallym University College of Medicine, Anyang, Republic of Korea
- Ear and Interaction Center, Doheun Institute for Digital Innovation in Medicine (D.I.D.I.M.), Hallym University Medical Center, Anyang, Republic of Korea
- Department of Otorhinolaryngology-Head and Neck Surgery, Hallym University College of Medicine, Chuncheon, Republic of Korea
- *Correspondence: Hyo-Jeong Lee
| |
Collapse
|
6
|
Fu T, Li B, Yin W, Huang S, Liu H, Song Y, Li X, Shang H, Zhou Y, Cheng D, Cao L, Dang CP. Sound localization and auditory selective attention in school-aged children with ADHD. Front Neurosci 2022; 16:1051585. [PMID: 36620456 PMCID: PMC9812578 DOI: 10.3389/fnins.2022.1051585] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Accepted: 11/14/2022] [Indexed: 12/23/2022] Open
Abstract
This study aimed to identify the neurophysiologic bases of auditory attention deficits in children with attention-deficit/hyperactivity disorder (ADHD), focusing on the electroencephalography component of auditory spatial selective attention [the N2 anterior contralateral component (N2ac)]. EEG data were collected from 7- to 11-year-old children with ADHD (n = 54) and age-, sex-, and IQ-matched typically developing (TD) children (n = 61), while they performed an auditory spatial selective task. For behavior, the children with ADHD showed a shorter reaction time (RT) but a higher RT coefficient of variability (RTCV) than TD children. For ERPs, the TD group showed a significant "adult-like" N2ac component; however, the N2ac component was absent in children with ADHD. More importantly, the smaller N2ac component could predict longer RT in both groups, as well as higher severity of inattentive symptoms in children with ADHD. Our results indicated that 7- to 11-year-old TD children have developed an "adult-like" ability to balance auditory target selection and distractor suppression; the absence of N2ac in children with ADHD provided novel evidence supporting their dysfunctional auditory spatial selective attention.
Collapse
Affiliation(s)
- Tong Fu
- The Affiliated Brain Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, China,Institute of Psychiatry and Psychology, The Affiliated Brain Hospital of Guangzhou Medical University, Guangzhou, China
| | - Bingkun Li
- State Key Laboratory of Cognitive Neuroscience and Learning and IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, China
| | - Weizhen Yin
- The Affiliated Brain Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, China,Institute of Psychiatry and Psychology, The Affiliated Brain Hospital of Guangzhou Medical University, Guangzhou, China
| | - Shitao Huang
- The Affiliated Brain Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, China,Institute of Psychiatry and Psychology, The Affiliated Brain Hospital of Guangzhou Medical University, Guangzhou, China
| | - Hongyu Liu
- State Key Laboratory of Cognitive Neuroscience and Learning and IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, China
| | - Yan Song
- State Key Laboratory of Cognitive Neuroscience and Learning and IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, China,Center for Collaboration and Innovation in Brain and Learning Sciences, Beijing Normal University, Beijing, China
| | - Xiaoli Li
- State Key Laboratory of Cognitive Neuroscience and Learning and IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, China
| | - Herui Shang
- Department of Applied Psychology, Guangzhou Medical University, Guangzhou, China
| | - Yanling Zhou
- The Affiliated Brain Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, China,Institute of Psychiatry and Psychology, The Affiliated Brain Hospital of Guangzhou Medical University, Guangzhou, China
| | - Daomeng Cheng
- The Affiliated Brain Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, China,Institute of Psychiatry and Psychology, The Affiliated Brain Hospital of Guangzhou Medical University, Guangzhou, China
| | - Liping Cao
- The Affiliated Brain Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, China,Institute of Psychiatry and Psychology, The Affiliated Brain Hospital of Guangzhou Medical University, Guangzhou, China,Liping Cao
| | - Cai-Ping Dang
- The Affiliated Brain Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, China,Department of Applied Psychology, Guangzhou Medical University, Guangzhou, China,Institute of Psychiatry and Psychology, The Affiliated Brain Hospital of Guangzhou Medical University, Guangzhou, China,*Correspondence: Cai-Ping Dang
| |
Collapse
|
7
|
Dellaferrera G, Asabuki T, Fukai T. Modeling the Repetition-Based Recovering of Acoustic and Visual Sources With Dendritic Neurons. Front Neurosci 2022; 16:855753. [PMID: 35573290 PMCID: PMC9097820 DOI: 10.3389/fnins.2022.855753] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2022] [Accepted: 03/31/2022] [Indexed: 11/13/2022] Open
Abstract
In natural auditory environments, acoustic signals originate from the temporal superimposition of different sound sources. The problem of inferring individual sources from ambiguous mixtures of sounds is known as blind source decomposition. Experiments on humans have demonstrated that the auditory system can identify sound sources as repeating patterns embedded in the acoustic input. Source repetition produces temporal regularities that can be detected and used for segregation. Specifically, listeners can identify sounds occurring more than once across different mixtures, but not sounds heard only in a single mixture. However, whether such a behavior can be computationally modeled has not yet been explored. Here, we propose a biologically inspired computational model to perform blind source separation on sequences of mixtures of acoustic stimuli. Our method relies on a somatodendritic neuron model trained with a Hebbian-like learning rule which was originally conceived to detect spatio-temporal patterns recurring in synaptic inputs. We show that the segregation capabilities of our model are reminiscent of the features of human performance in a variety of experimental settings involving synthesized sounds with naturalistic properties. Furthermore, we extend the study to investigate the properties of segregation on task settings not yet explored with human subjects, namely natural sounds and images. Overall, our work suggests that somatodendritic neuron models offer a promising neuro-inspired learning strategy to account for the characteristics of the brain segregation capabilities as well as to make predictions on yet untested experimental settings.
Collapse
Affiliation(s)
- Giorgia Dellaferrera
- Neural Coding and Brain Computing Unit, Okinawa Institute of Science and Technology, Okinawa, Japan
- Institute of Neuroinformatics, University of Zurich and Swiss Federal Institute of Technology Zurich (ETH), Zurich, Switzerland
| | - Toshitake Asabuki
- Neural Coding and Brain Computing Unit, Okinawa Institute of Science and Technology, Okinawa, Japan
| | - Tomoki Fukai
- Neural Coding and Brain Computing Unit, Okinawa Institute of Science and Technology, Okinawa, Japan
| |
Collapse
|
8
|
Hanenberg C, Schlüter MC, Getzmann S, Lewald J. Short-Term Audiovisual Spatial Training Enhances Electrophysiological Correlates of Auditory Selective Spatial Attention. Front Neurosci 2021; 15:645702. [PMID: 34276281 PMCID: PMC8280319 DOI: 10.3389/fnins.2021.645702] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Accepted: 06/09/2021] [Indexed: 11/13/2022] Open
Abstract
Audiovisual cross-modal training has been proposed as a tool to improve human spatial hearing. Here, we investigated training-induced modulations of event-related potential (ERP) components that have been associated with processes of auditory selective spatial attention when a speaker of interest has to be localized in a multiple speaker ("cocktail-party") scenario. Forty-five healthy participants were tested, including younger (19-29 years; n = 21) and older (66-76 years; n = 24) age groups. Three conditions of short-term training (duration 15 min) were compared, requiring localization of non-speech targets under "cocktail-party" conditions with either (1) synchronous presentation of co-localized auditory-target and visual stimuli (audiovisual-congruency training) or (2) immediate visual feedback on correct or incorrect localization responses (visual-feedback training), or (3) presentation of spatially incongruent auditory-target and visual stimuli presented at random positions with synchronous onset (control condition). Prior to and after training, participants were tested in an auditory spatial attention task (15 min), requiring localization of a predefined spoken word out of three distractor words, which were presented with synchronous stimulus onset from different positions. Peaks of ERP components were analyzed with a specific focus on the N2, which is known to be a correlate of auditory selective spatial attention. N2 amplitudes were significantly larger after audiovisual-congruency training compared with the remaining training conditions for younger, but not older, participants. Also, at the time of the N2, distributed source analysis revealed an enhancement of neural activity induced by audiovisual-congruency training in dorsolateral prefrontal cortex (Brodmann area 9) for the younger group. These findings suggest that cross-modal processes induced by audiovisual-congruency training under "cocktail-party" conditions at a short time scale resulted in an enhancement of correlates of auditory selective spatial attention.
Collapse
Affiliation(s)
| | | | - Stephan Getzmann
- Leibniz Research Centre for Working Environment and Human Factors, Dortmund, Germany
| | - Jörg Lewald
- Faculty of Psychology, Ruhr University Bochum, Bochum, Germany
| |
Collapse
|
9
|
EEG correlates of spatial shifts of attention in a dynamic multi-talker speech perception scenario in younger and older adults. Hear Res 2020; 398:108077. [PMID: 32987238 DOI: 10.1016/j.heares.2020.108077] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Revised: 08/13/2020] [Accepted: 09/10/2020] [Indexed: 12/23/2022]
Abstract
Speech perception under "cocktail-party" conditions critically depends on the focusing of attention toward the talker of interest. In dynamic auditory scenes, changes in talker settings require rapid shifts of attention, which is especially relevant when the position of a target talker switches from one location to another. Here, we explored electrophysiological correlates of shifts in spatial auditory attention, using a free-field speech perception task, in which sequences of short words (a company name, followed by a numeric value, e.g., "Bosch-6") were presented in the participants' left and right horizontal plane. Younger and older participants responded to the value of a pre-defined target company, while ignoring three simultaneously presented pairs of concurrent company names and values from different locations. All four stimulus pairs were spoken by different talkers, alternating from trial-to-trial. The location of the target company was within either the left or right hemisphere for a variable number of consecutive trials (between 3 and 42 trials) and then changed, switching from the left to the right hemispace or vice versa. Thus, when a switch occurred, the participants had to search for the new position of the target company among the concurrent streams of auditory information and re-focus their attention on the relevant location. As correlates of lateralized spatial auditory attention, the anterior contralateral N2 subcomponent (N2ac) and the posterior alpha power lateralization were analyzed in trials immediately before and after switches of the target location. Both measures were increased after switches, while only the increase in N2ac was related to better speech perception performance (i.e., a reduced post-switch decline in accuracy). While both age groups showed a similar pattern of switch-related attentional modulations, N2ac and alpha lateralization to the task-relevant stimulus (the target company's value) was overall greater in the younger, than older, group. The results suggest that N2ac and alpha lateralization reflect different attentional processes in multi-talker speech perception, the first being primarily associated with auditory search and the focusing of attention, and the second with the in-depth attentional processing of task-relevant information. Especially the second process appears to be prone to age-related cognitive decline.
Collapse
|
10
|
Effects of Transcranial Electrical Stimulation on Human Auditory Processing and Behavior-A Review. Brain Sci 2020; 10:brainsci10080531. [PMID: 32784358 PMCID: PMC7464917 DOI: 10.3390/brainsci10080531] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Revised: 07/29/2020] [Accepted: 08/03/2020] [Indexed: 01/11/2023] Open
Abstract
Transcranial electrical stimulation (tES) can adjust the membrane potential by applying a weak current on the scalp to change the related nerve activity. In recent years, tES has proven its value in studying the neural processes involved in human behavior. The study of central auditory processes focuses on the analysis of behavioral phenomena, including sound localization, auditory pattern recognition, and auditory discrimination. To our knowledge, studies on the application of tES in the field of hearing and the electrophysiological effects are limited. Therefore, we reviewed the neuromodulatory effect of tES on auditory processing, behavior, and cognitive function and have summarized the physiological effects of tES on the auditory cortex.
Collapse
|
11
|
Cai W, Wang L, Chen T, Zhao S, Feng C, Feng W. Auditory attentional biases in young males with physical stature dissatisfaction. Psychophysiology 2020; 57:e13635. [PMID: 32659054 DOI: 10.1111/psyp.13635] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Revised: 04/25/2020] [Accepted: 06/15/2020] [Indexed: 11/28/2022]
Abstract
The attentional biases toward body-related information for individuals with weight concerns and eating disorders have been well documented. However, our knowledge of the attentional biases toward body-related information for subjects with physical stature concerns is only at the beginning. And the research on the auditory attentional biases for individuals with physical stature concerns is rare. The identification of attentional biases may provide an impetus for interventions to reduce distress among height dissatisfied individuals. Therefore, the present study investigated the neural mechanisms of attentional bias toward auditory physical stature-related words among height dissatisfied young males by using event-related potential recordings. Forty-four young male participants screened by Negative Physical Self Scale-Stature Concerns subscale (NPS-S) were assigned into an experimental group with high levels of height dissatisfaction (HHD) and a control group with low levels of height dissatisfaction (LHD). Task irrelevant auditory tall-related words, short-related words and neutral words were presented unilaterally to the participants as the cue in a cue-target paradigm. Participants were required to respond to the visual target preceded by the task-irrelevant auditory cue. The results found that significantly larger N2ac was elicited by tall-related words than short-related words and neutral words only for the HHD group, but not for the LHD group. LPCpc amplitudes did not differ significantly by the functions of word types and experimental groups. These results suggest an attentional orienting bias toward auditory tall-related words for young males with high levels of height dissatisfaction.
Collapse
Affiliation(s)
- Wenguan Cai
- Department of Psychology, School of Education, SooChow University, Suzhou, China
| | - Lili Wang
- School of Educational Science, Huaiyin Normal University, Huai'an, China
| | - Tingji Chen
- Department of Psychology, School of Education, SooChow University, Suzhou, China
| | - Song Zhao
- Department of Psychology, School of Education, SooChow University, Suzhou, China
| | - Chengzhi Feng
- Department of Psychology, School of Education, SooChow University, Suzhou, China
| | - Wenfeng Feng
- Department of Psychology, School of Education, SooChow University, Suzhou, China
| |
Collapse
|
12
|
Fu D, Weber C, Yang G, Kerzel M, Nan W, Barros P, Wu H, Liu X, Wermter S. What Can Computational Models Learn From Human Selective Attention? A Review From an Audiovisual Unimodal and Crossmodal Perspective. Front Integr Neurosci 2020; 14:10. [PMID: 32174816 PMCID: PMC7056875 DOI: 10.3389/fnint.2020.00010] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2019] [Accepted: 02/11/2020] [Indexed: 11/13/2022] Open
Abstract
Selective attention plays an essential role in information acquisition and utilization from the environment. In the past 50 years, research on selective attention has been a central topic in cognitive science. Compared with unimodal studies, crossmodal studies are more complex but necessary to solve real-world challenges in both human experiments and computational modeling. Although an increasing number of findings on crossmodal selective attention have shed light on humans' behavioral patterns and neural underpinnings, a much better understanding is still necessary to yield the same benefit for intelligent computational agents. This article reviews studies of selective attention in unimodal visual and auditory and crossmodal audiovisual setups from the multidisciplinary perspectives of psychology and cognitive neuroscience, and evaluates different ways to simulate analogous mechanisms in computational models and robotics. We discuss the gaps between these fields in this interdisciplinary review and provide insights about how to use psychological findings and theories in artificial intelligence from different perspectives.
Collapse
Affiliation(s)
- Di Fu
- CAS Key Laboratory of Behavioral Science, Institute of Psychology, Beijing, China
- Department of Psychology, University of Chinese Academy of Sciences, Beijing, China
- Department of Informatics, University of Hamburg, Hamburg, Germany
| | - Cornelius Weber
- Department of Informatics, University of Hamburg, Hamburg, Germany
| | - Guochun Yang
- CAS Key Laboratory of Behavioral Science, Institute of Psychology, Beijing, China
- Department of Psychology, University of Chinese Academy of Sciences, Beijing, China
| | - Matthias Kerzel
- Department of Informatics, University of Hamburg, Hamburg, Germany
| | - Weizhi Nan
- Department of Psychology, Center for Brain and Cognitive Sciences, School of Education, Guangzhou University, Guangzhou, China
| | - Pablo Barros
- Department of Informatics, University of Hamburg, Hamburg, Germany
| | - Haiyan Wu
- CAS Key Laboratory of Behavioral Science, Institute of Psychology, Beijing, China
- Department of Psychology, University of Chinese Academy of Sciences, Beijing, China
| | - Xun Liu
- CAS Key Laboratory of Behavioral Science, Institute of Psychology, Beijing, China
- Department of Psychology, University of Chinese Academy of Sciences, Beijing, China
| | - Stefan Wermter
- Department of Informatics, University of Hamburg, Hamburg, Germany
| |
Collapse
|
13
|
Klatt LI, Schneider D, Schubert AL, Hanenberg C, Lewald J, Wascher E, Getzmann S. Unraveling the Relation between EEG Correlates of Attentional Orienting and Sound Localization Performance: A Diffusion Model Approach. J Cogn Neurosci 2020; 32:945-962. [PMID: 31933435 DOI: 10.1162/jocn_a_01525] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
Understanding the contribution of cognitive processes and their underlying neurophysiological signals to behavioral phenomena has been a key objective in recent neuroscience research. Using a diffusion model framework, we investigated to what extent well-established correlates of spatial attention in the electroencephalogram contribute to behavioral performance in an auditory free-field sound localization task. Younger and older participants were instructed to indicate the horizontal position of a predefined target among three simultaneously presented distractors. The central question of interest was whether posterior alpha lateralization and amplitudes of the anterior contralateral N2 subcomponent (N2ac) predict sound localization performance (accuracy, mean RT) and/or diffusion model parameters (drift rate, boundary separation, non-decision time). Two age groups were compared to explore whether, in older adults (who struggle with multispeaker environments), the brain-behavior relationship would differ from younger adults. Regression analyses revealed that N2ac amplitudes predicted drift rate and accuracy, whereas alpha lateralization was not related to behavioral or diffusion modeling parameters. This was true irrespective of age. The results indicate that a more efficient attentional filtering and selection of information within an auditory scene, reflected by increased N2ac amplitudes, was associated with a higher speed of information uptake (drift rate) and better localization performance (accuracy), while the underlying response criteria (threshold separation), mean RTs, and non-decisional processes remained unaffected. The lack of a behavioral correlate of poststimulus alpha power lateralization constrasts with the well-established notion that prestimulus alpha power reflects a functionally relevant attentional mechanism. This highlights the importance of distinguishing anticipatory from poststimulus alpha power modulations.
Collapse
Affiliation(s)
| | - Daniel Schneider
- Leibniz Research Centre for Working Environment and Human Factors
| | | | | | - Jörg Lewald
- Leibniz Research Centre for Working Environment and Human Factors.,Ruhr-University Bochum
| | - Edmund Wascher
- Leibniz Research Centre for Working Environment and Human Factors
| | - Stephan Getzmann
- Leibniz Research Centre for Working Environment and Human Factors
| |
Collapse
|
14
|
Feierabend M, Karnath HO, Lewald J. Auditory Space Perception in the Blind: Horizontal Sound Localization in Acoustically Simple and Complex Situations. Perception 2019; 48:1039-1057. [PMID: 31462156 DOI: 10.1177/0301006619872062] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Affiliation(s)
| | - Hans-Otto Karnath
- Center of Neurology, Division of Neuropsychology, Hertie-Institute for Clinical Brain Research, University of Tübingen, Germany
| | - Jörg Lewald
- Department of Cognitive Psychology, Faculty of Psychology, Ruhr University Bochum, Germany; Leibniz Research Centre for Working Environment and Human Factors, Dortmund, Germany
| |
Collapse
|
15
|
Rouhbakhsh N, Mahdi J, Hwo J, Nobel B, Mousave F. Spatial hearing processing: electrophysiological documentation at subcortical and cortical levels. Int J Neurosci 2019; 129:1119-1132. [DOI: 10.1080/00207454.2019.1635129] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Affiliation(s)
- Nematollah Rouhbakhsh
- HEARing Cooperation Research Centre, Melbourne, Australia
- Department of Audiology and Speech Pathology, School of Health Sciences, University of Melbourne, Melbourne, Australia
- National Acoustic Laboratories, Australian Hearing Hub, Macquarie University, Sydney, Australia
- Department of Audiology, School of Rehabilitation, Tehran University of Medical Sciences, Pich-e Shemiran, Tehran, Iran
| | - John Mahdi
- The New York Academy of Sciences, New York, NY, USA
| | - Jacob Hwo
- Department of Biomedical Science, Faculty of Medicine and Health, The University of Sydney, Sydney, Australia
| | - Baran Nobel
- Department of Audiology, School of Health and Rehabilitation Sciences, The University of Queensland, Queensland, Australia
| | - Fati Mousave
- Department of Audiology, School of Health and Rehabilitation Sciences, The University of Queensland, Queensland, Australia
| |
Collapse
|
16
|
Hanenberg C, Getzmann S, Lewald J. Transcranial direct current stimulation of posterior temporal cortex modulates electrophysiological correlates of auditory selective spatial attention in posterior parietal cortex. Neuropsychologia 2019; 131:160-170. [PMID: 31145907 DOI: 10.1016/j.neuropsychologia.2019.05.023] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2018] [Revised: 05/03/2019] [Accepted: 05/25/2019] [Indexed: 01/12/2023]
Abstract
Speech perception in "cocktail-party" situations, in which a sound source of interest has to be extracted out of multiple irrelevant sounds, poses a remarkable challenge to the human auditory system. Studies on structural and electrophysiological correlates of auditory selective spatial attention revealed critical roles of the posterior temporal cortex and the N2 event-related potential (ERP) component in the underlying processes. Here, we explored effects of transcranial direct current stimulation (tDCS) to posterior temporal cortex on neurophysiological correlates of auditory selective spatial attention, with a specific focus on the N2. In a single-blind, sham-controlled crossover design with baseline and follow-up measurements, monopolar anodal and cathodal tDCS was applied for 16 min to the right posterior superior temporal cortex. Two age groups of human subjects, a younger (n = 20; age 18-30 yrs) and an older group (n = 19; age 66-77 yrs), completed an auditory free-field multiple-speakers localization task while ERPs were recorded. The ERP data showed an offline effect of anodal, but not cathodal, tDCS immediately after DC offset for targets contralateral, but not ipsilateral, to the hemisphere of tDCS, without differences between groups. This effect mainly consisted in a substantial increase of the N2 amplitude by 0.9 μV (SE 0.4 μV; d = 0.40) compared with sham tDCS. At the same point in time, cortical source localization revealed a reduction of activity in ipsilateral (right) posterior parietal cortex. Also, localization error was improved after anodal, but not cathodal, tDCS. Given that both the N2 and the posterior parietal cortex are involved in processes of auditory selective spatial attention, these results suggest that anodal tDCS specifically enhanced inhibitory attentional brain processes underlying the focusing onto a target sound source, possibly by improved suppression of irrelevant distracters.
Collapse
Affiliation(s)
- Christina Hanenberg
- Ruhr University Bochum, Faculty of Psychology, D-44780, Bochum, Germany; Leibniz Research Centre for Working Environment and Human Factors, D-44139, Dortmund, Germany
| | - Stephan Getzmann
- Leibniz Research Centre for Working Environment and Human Factors, D-44139, Dortmund, Germany
| | - Jörg Lewald
- Ruhr University Bochum, Faculty of Psychology, D-44780, Bochum, Germany.
| |
Collapse
|
17
|
Bihemispheric anodal transcranial direct-current stimulation over temporal cortex enhances auditory selective spatial attention. Exp Brain Res 2019; 237:1539-1549. [PMID: 30927041 DOI: 10.1007/s00221-019-05525-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2019] [Accepted: 03/20/2019] [Indexed: 10/27/2022]
Abstract
The capacity to selectively focus on a particular speaker of interest in a complex acoustic environment with multiple persons speaking simultaneously-a so-called "cocktail-party" situation-is of decisive importance for human verbal communication. Here, the efficacy of single-dose transcranial direct-current stimulation (tDCS) in improving this ability was tested in young healthy adults (n = 24), using a spatial task that required the localization of a target word in a simulated "cocktail-party" situation. In a sham-controlled crossover design, offline bihemispheric double-monopolar anodal tDCS was applied for 30 min at 1 mA over auditory regions of temporal lobe, and the participant's performance was assessed prior to tDCS, immediately after tDCS, and 1 h after tDCS. A significant increase in the amount of correct localizations by on average 3.7 percentage points (d = 1.04) was found after active, relative to sham, tDCS, with only insignificant reduction of the effect within 1 h after tDCS offset. Thus, the method of bihemispheric tDCS could be a promising tool for enhancement of human auditory attentional functions that are relevant for spatial orientation and communication in everyday life.
Collapse
|
18
|
Klatt LI, Getzmann S, Wascher E, Schneider D. The contribution of selective spatial attention to sound detection and sound localization: Evidence from event-related potentials and lateralized alpha oscillations. Biol Psychol 2018; 138:133-145. [DOI: 10.1016/j.biopsycho.2018.08.019] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2018] [Revised: 08/06/2018] [Accepted: 08/21/2018] [Indexed: 12/13/2022]
|
19
|
Lewald J, Schlüter MC, Getzmann S. Cortical processing of location changes in a “cocktail-party” situation: Spatial oddball effects on electrophysiological correlates of auditory selective attention. Hear Res 2018; 365:49-61. [DOI: 10.1016/j.heares.2018.04.009] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/14/2018] [Revised: 04/12/2018] [Accepted: 04/25/2018] [Indexed: 11/24/2022]
|
20
|
Lewald J, Hanenberg C, Getzmann S. Brain correlates of the orientation of auditory spatial attention onto speaker location in a “cocktail-party” situation. Psychophysiology 2016; 53:1484-95. [DOI: 10.1111/psyp.12692] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2015] [Accepted: 05/24/2016] [Indexed: 11/29/2022]
Affiliation(s)
- Jörg Lewald
- Department of Cognitive Psychology, Faculty of Psychology; Ruhr University Bochum; Bochum Germany
- Leibniz Research Centre for Working Environment and Human Factors; Dortmund Germany
| | - Christina Hanenberg
- Department of Cognitive Psychology, Faculty of Psychology; Ruhr University Bochum; Bochum Germany
- Leibniz Research Centre for Working Environment and Human Factors; Dortmund Germany
| | - Stephan Getzmann
- Leibniz Research Centre for Working Environment and Human Factors; Dortmund Germany
| |
Collapse
|
21
|
Lewald J. Modulation of human auditory spatial scene analysis by transcranial direct current stimulation. Neuropsychologia 2016; 84:282-93. [PMID: 26825012 DOI: 10.1016/j.neuropsychologia.2016.01.030] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2015] [Revised: 01/24/2016] [Accepted: 01/25/2016] [Indexed: 10/22/2022]
Abstract
Localizing and selectively attending to the source of a sound of interest in a complex auditory environment is an important capacity of the human auditory system. The underlying neural mechanisms have, however, still not been clarified in detail. This issue was addressed by using bilateral bipolar-balanced transcranial direct current stimulation (tDCS) in combination with a task demanding free-field sound localization in the presence of multiple sound sources, thus providing a realistic simulation of the so-called "cocktail-party" situation. With left-anode/right-cathode, but not with right-anode/left-cathode, montage of bilateral electrodes, tDCS over superior temporal gyrus, including planum temporale and auditory cortices, was found to improve the accuracy of target localization in left hemispace. No effects were found for tDCS over inferior parietal lobule or with off-target active stimulation over somatosensory-motor cortex that was used to control for non-specific effects. Also, the absolute error in localization remained unaffected by tDCS, thus suggesting that general response precision was not modulated by brain polarization. This finding can be explained in the framework of a model assuming that brain polarization modulated the suppression of irrelevant sound sources, thus resulting in more effective spatial separation of the target from the interfering sound in the complex auditory scene.
Collapse
Affiliation(s)
- Jörg Lewald
- Auditory Cognitive Neuroscience Laboratory, Department of Cognitive Psychology, Ruhr University Bochum, D-44780 Bochum, Germany; Leibniz Research Centre for Working Environment and Human Factors, Ardeystraße 67, D-44139 Dortmund, Germany.
| |
Collapse
|