1
|
Xie Z, Abumaria N. Effect of truncation on TRPM7 channel activity. Channels (Austin) 2023; 17:2200874. [PMID: 37040321 PMCID: PMC10761173 DOI: 10.1080/19336950.2023.2200874] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2022] [Accepted: 04/04/2023] [Indexed: 04/12/2023] Open
Abstract
Transient receptor potential melastatin-like 7 (TRPM7) is a key player in various physiological and pathological processes. TRPM7 channel activity is regulated by different factors. The effects of cleavage of different domains on channel activity remain unknown. Here, we constructed several TRPM7 clones and explored the effects of truncating the mouse TRPM7 at different locations on the ion channel activity in two cell lines. We compared the clones' activity with the full-length TRPM7 and the native TRPM7 in transfected and untransfected cells. We also expressed fluorescently tagged truncated clones to examine their protein stability and membrane targeting. We found that truncating the kinase domain induced reduction in TRPM7 channel activity. Further truncations beyond the kinase (serine/threonine rich domain and/or coiled-coil domain) did not result in further reductions in channel activity. Two truncated clones lacking the TRP domain or the melastatin homology domain had a completely nonfunctional channel apparently due to disruption of protein stability. We identified the shortest structure of TRPM7 with measurable channel activity. We found that the truncated TRPM7 containing only S5 and S6 domains retained some channel activity. Adding the TRP domain to the S5-S6 resulted in a significant increase in channel activity. Finally, our analysis showed that TRPM7 outward currents are more sensitive to truncations than inward currents. Our data provide insights on the effects of truncating TRPM7 at different locations on the channel functions, highlighting the importance of different domains in impacting channel activity, protein stability, and/or membrane targeting.
Collapse
Affiliation(s)
- Zhuqing Xie
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai, China
| | - Nashat Abumaria
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai, China
| |
Collapse
|
2
|
Wang ZB, Zhang X, Xiao F, Liu ZQ, Liao QJ, Wu N, Wang J. Roles of TRPM7 in ovarian cancer. Biochem Pharmacol 2023; 217:115857. [PMID: 37839677 DOI: 10.1016/j.bcp.2023.115857] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 10/11/2023] [Accepted: 10/12/2023] [Indexed: 10/17/2023]
Abstract
Ovarian cancer stands as the prevailing gynecologic malignancy, afflicting over 313,959 individuals annually worldwide, accompanied by more than 207,252 fatalities. Perturbations in calcium signaling contribute significantly to the pathogenesis of numerous cancers, including ovarian cancer, wherein alterations in calcium transporter expression have been reported. Overexpression of TRPM7, a prominent calcium transporter, has been linked to adverse prognostic outcomes in various cancer types. The focus of this comprehensive review centers around delineating the oncogenic role of TRPM7 in cancer development and exploring its therapeutic potential as a target in combating this disease. Notably, TRPM7 fosters cancer invasion, metastasis, and uncontrolled cell proliferation, thereby perpetuating the expansion and reinforcement of these malignant entities. Furthermore, this review takes ovarian cancer as an example and summarizes the "dual-mode" regulatory role of TRPM7 in cancer. Within the domain of ovarian cancer, TRPM7 assumes the role of a harsh tyrant, firmly controlling the calcium ion signaling pathway and metabolic reprogramming pathways.
Collapse
Affiliation(s)
- Zhi-Bin Wang
- Hunan Gynecological Tumor Clinical Research Center; Hunan Key Laboratory of Cancer Metabolism; Hunan Cancer Hospital, and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha 410008, PR China
| | - Xiu Zhang
- Hunan Gynecological Tumor Clinical Research Center; Hunan Key Laboratory of Cancer Metabolism; Hunan Cancer Hospital, and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha 410008, PR China
| | - Fen Xiao
- Hunan Gynecological Tumor Clinical Research Center; Hunan Key Laboratory of Cancer Metabolism; Hunan Cancer Hospital, and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha 410008, PR China
| | - Zhao-Qian Liu
- Department of Clinical Pharmacology, Hunan Key Laboratory of Pharmacogenetics, and National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410008, PR China; Institute of Clinical Pharmacology, Engineering Research Center for Applied Technology of Pharmacogenomics of Ministry of Education, Central South University, Changsha 410078, PR China
| | - Qian-Jin Liao
- Hunan Gynecological Tumor Clinical Research Center; Hunan Key Laboratory of Cancer Metabolism; Hunan Cancer Hospital, and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha 410008, PR China
| | - Nayiyuan Wu
- Hunan Gynecological Tumor Clinical Research Center; Hunan Key Laboratory of Cancer Metabolism; Hunan Cancer Hospital, and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha 410008, PR China.
| | - Jing Wang
- Hunan Gynecological Tumor Clinical Research Center; Hunan Key Laboratory of Cancer Metabolism; Hunan Cancer Hospital, and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha 410008, PR China.
| |
Collapse
|
3
|
Chang J, Chen C, Li W, Abumaria N. TRPM7 Kinase Domain is Part of the Rac1-SSH2-cofilin Complex Regulating F-actin in the Mouse Nervous System. Neurosci Bull 2023; 39:989-993. [PMID: 36920646 PMCID: PMC10264340 DOI: 10.1007/s12264-023-01045-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Accepted: 11/19/2022] [Indexed: 03/16/2023] Open
Affiliation(s)
- Junzhuang Chang
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Department of Laboratory Animal Science, Institutes of Brain Science, Fudan University, Shanghai, 200032, China
| | - Cui Chen
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Department of Laboratory Animal Science, Institutes of Brain Science, Fudan University, Shanghai, 200032, China
| | - Wei Li
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Department of Laboratory Animal Science, Institutes of Brain Science, Fudan University, Shanghai, 200032, China
| | - Nashat Abumaria
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Department of Laboratory Animal Science, Institutes of Brain Science, Fudan University, Shanghai, 200032, China.
| |
Collapse
|
4
|
Neuroprotective Effects of TRPM7 Deletion in Parvalbumin GABAergic vs. Glutamatergic Neurons following Ischemia. Cells 2022; 11:cells11071178. [PMID: 35406741 PMCID: PMC8997982 DOI: 10.3390/cells11071178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Revised: 03/28/2022] [Accepted: 03/29/2022] [Indexed: 11/25/2022] Open
Abstract
Oxidative stress induced by brain ischemia upregulates transient receptor potential melastatin-like-7 (TRPM7) expression and currents, which could contribute to neurotoxicity and cell death. Accordingly, suppression of TRPM7 reduces neuronal death, tissue damage and motor deficits. However, the neuroprotective effects of TRPM7 suppression in different cell types have not been investigated. Here, we found that induction of ischemia resulted in loss of parvalbumin (PV) gamma-aminobutyric acid (GABAergic) neurons more than Ca2+/calmodulin-kinase II (CaMKII) glutamatergic neurons in the mouse cortex. Furthermore, brain ischemia increased TRPM7 expression in PV neurons more than that in CaMKII neurons. We generated two lines of conditional knockout mice of TRPM7 in GABAergic PV neurons (PV-TRPM7−/−) and in glutamatergic neurons (CaMKII-TRPM7−/−). Following exposure to brain ischemia, we found that deleting TRPM7 reduced the infarct volume in both lines of transgenic mice. However, the volume in PV-TRPM7−/− mice was more significantly lower than that in the control group. Neuronal survival of both GABAergic and glutamatergic neurons was increased in PV-TRPM7−/− mice; meanwhile, only glutamatergic neurons were protected in CaMKII-TRPM7−/−. At the behavioral level, only PV-TRPM7−/− mice exhibited significant reductions in neurological and motor deficits. Inflammatory mediators such as GFAP, Iba1 and TNF-α were suppressed in PV-TRPM7−/− more than in CaMKII-TRPM7−/−. Mechanistically, p53 and cleaved caspase-3 were reduced in both groups, but the reduction in PV-TRPM7−/− mice was more than that in CaMKII-TRPM7−/− following ischemia. Upstream from these signaling molecules, the Akt anti-oxidative stress signaling was activated only in PV-TRPM7−/− mice. Therefore, deleting TRPM7 in GABAergic PV neurons might have stronger neuroprotective effects against ischemia pathologies than doing so in glutamatergic neurons.
Collapse
|
5
|
Jiang ZJ, Li W, Yao LH, Saed B, Rao Y, Grewe BS, McGinley A, Varga K, Alford S, Hu YS, Gong LW. TRPM7 is critical for short-term synaptic depression by regulating synaptic vesicle endocytosis. eLife 2021; 10:e66709. [PMID: 34569930 PMCID: PMC8516418 DOI: 10.7554/elife.66709] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Accepted: 09/10/2021] [Indexed: 12/15/2022] Open
Abstract
Transient receptor potential melastatin 7 (TRPM7) contributes to a variety of physiological and pathological processes in many tissues and cells. With a widespread distribution in the nervous system, TRPM7 is involved in animal behaviors and neuronal death induced by ischemia. However, the physiological role of TRPM7 in central nervous system (CNS) neuron remains unclear. Here, we identify endocytic defects in neuroendocrine cells and neurons from TRPM7 knockout (KO) mice, indicating a role of TRPM7 in synaptic vesicle endocytosis. Our experiments further pinpoint the importance of TRPM7 as an ion channel in synaptic vesicle endocytosis. Ca2+ imaging detects a defect in presynaptic Ca2+ dynamics in TRPM7 KO neuron, suggesting an importance of Ca2+ influx via TRPM7 in synaptic vesicle endocytosis. Moreover, the short-term depression is enhanced in both excitatory and inhibitory synaptic transmissions from TRPM7 KO mice. Taken together, our data suggests that Ca2+ influx via TRPM7 may be critical for short-term plasticity of synaptic strength by regulating synaptic vesicle endocytosis in neurons.
Collapse
Affiliation(s)
- Zhong-Jiao Jiang
- Department of Biological Sciences, University of Illinois at ChicagoChicagoUnited States
| | - Wenping Li
- Department of Biological Sciences, University of Illinois at ChicagoChicagoUnited States
| | - Li-Hua Yao
- Department of Biological Sciences, University of Illinois at ChicagoChicagoUnited States
- School of Life Science, Jiangxi Science & Technology Normal UniversityNanchangChina
| | - Badeia Saed
- Department of Chemistry, University of Illinois at ChicagoChicagoUnited States
| | - Yan Rao
- Department of Biological Sciences, University of Illinois at ChicagoChicagoUnited States
| | - Brian S Grewe
- Department of Biological Sciences, University of Illinois at ChicagoChicagoUnited States
| | - Andrea McGinley
- Department of Biological Sciences, University of Illinois at ChicagoChicagoUnited States
| | - Kelly Varga
- Department of Biological Sciences, University of Illinois at ChicagoChicagoUnited States
- Department of Biological Sciences, University of North Texas at DallasDallasUnited States
| | - Simon Alford
- Department of Anatomy and Cell Biology, University of Illinois at ChicagoChicagoUnited States
| | - Ying S Hu
- Department of Chemistry, University of Illinois at ChicagoChicagoUnited States
| | - Liang-Wei Gong
- Department of Biological Sciences, University of Illinois at ChicagoChicagoUnited States
| |
Collapse
|
6
|
Zöphel D, Hof C, Lis A. Altered Ca 2+ Homeostasis in Immune Cells during Aging: Role of Ion Channels. Int J Mol Sci 2020; 22:ijms22010110. [PMID: 33374304 PMCID: PMC7794837 DOI: 10.3390/ijms22010110] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Revised: 12/21/2020] [Accepted: 12/22/2020] [Indexed: 12/29/2022] Open
Abstract
Aging is an unstoppable process and begins shortly after birth. Each cell of the organism is affected by the irreversible process, not only with equal density but also at varying ages and with different speed. Therefore, aging can also be understood as an adaptation to a continually changing cellular environment. One of these very prominent changes in age affects Ca2+ signaling. Especially immune cells highly rely on Ca2+-dependent processes and a strictly regulated Ca2+ homeostasis. The intricate patterns of impaired immune cell function may represent a deficit or compensatory mechanisms. Besides, altered immune function through Ca2+ signaling can profoundly affect the development of age-related disease. This review attempts to summarize changes in Ca2+ signaling due to channels and receptors in T cells and beyond in the context of aging.
Collapse
Affiliation(s)
| | | | - Annette Lis
- Correspondence: ; Tel.: +49-(0)-06841-1616318; Fax: +49-(0)-6841-1616302
| |
Collapse
|
7
|
Zhang S, Zhao D, Jia W, Wang Y, Liang H, Liu L, Wang W, Yu Z, Guo F. A bibliometric analysis and review of recent researches on TRPM7. Channels (Austin) 2020; 14:203-215. [PMID: 32643506 PMCID: PMC7515573 DOI: 10.1080/19336950.2020.1788355] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
The transient receptor potential melastatin-subfamily member 7 (TRPM7) is a ubiquitously expressed protein that contains both an ion channel and an active kinase. TRPM7 has involved in a variety of cellular functions and critically participates in various diseases mainly including cancer and neurodegenerative disorders. However, the theme trends and knowledge structures for TRPM7 have not yet been studied bibliometrically. The main purposes of this research are to compare the scientific production in the research field of TRPM7 among countries and to evaluate the publication trend between 2004 and 2019. All publications were extracted from the Web of Science Core Collection (WoSCC) database from 2004 to 2019. Microsoft Excel 2018, Prism 6, and CiteSpace V were applied to analyze the scientific research outputs including journals, countries, territories, institutions, authors, and research hotspots. In this report, a total of 860 publications related to TRPM7 were analyzed. Biophysical Journal ranked top for publishing 31 papers. The United States of America had the largest number of publications (320) with a high citation frequency (11,298) and H-index (58). Chubanov V (38 publications) and Gudermann T (38 citations), who from Ludwig Maximilian University of Munich, were the most productive authors and had the greatest co-citation counts. Our study also combined the bibliometric study with a systematic review on TRPM7, highlighting the four research frontiers of TRPM7. This is the first study that demonstrated the trends and future development in TRPM7 publications, providing a clear and intuitive profile for the contributions in this field.
Collapse
Affiliation(s)
- Shiqi Zhang
- Department of Pharmaceutical Toxicology, School of Pharmaceutical Science, China Medical University, Shenyang, China
| | - Dongyi Zhao
- Department of Pharmaceutical Toxicology, School of Pharmaceutical Science, China Medical University, Shenyang, China
| | - Wanying Jia
- Department of Pharmaceutical Toxicology, School of Pharmaceutical Science, China Medical University, Shenyang, China
| | - Yuting Wang
- Department of Pharmaceutical Toxicology, School of Pharmaceutical Science, China Medical University, Shenyang, China
| | - Hongyue Liang
- Department of Pharmaceutical Toxicology, School of Pharmaceutical Science, China Medical University, Shenyang, China
| | - Lei Liu
- Human Aging Research Institute, School of Life Sciences, Nanchang University, Nanchang, Jiangxi, China
| | - Wuyang Wang
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, Xuzhou, China
| | - Zhiyi Yu
- Division of Medicinal Chemistry, School of Pharmaceutical Sciences, Shandong University, Shandong, China
| | - Feng Guo
- Department of Pharmaceutical Toxicology, School of Pharmaceutical Science, China Medical University, Shenyang, China
| |
Collapse
|
8
|
Liu Y, Chen C, Liu Y, Li W, Wang Z, Sun Q, Zhou H, Chen X, Yu Y, Wang Y, Abumaria N. TRPM7 Is Required for Normal Synapse Density, Learning, and Memory at Different Developmental Stages. Cell Rep 2019; 23:3480-3491. [PMID: 29924992 DOI: 10.1016/j.celrep.2018.05.069] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2017] [Revised: 01/29/2018] [Accepted: 05/18/2018] [Indexed: 10/28/2022] Open
Abstract
The TRPM7 chanzyme contributes to several biological and pathological processes in different tissues. However, its role in the CNS under physiological conditions remains unclear. Here, we show that TRPM7 knockdown in hippocampal neurons reduces structural synapse density. The synapse density is rescued by the α-kinase domain in the C terminus but not by the ion channel region of TRPM7 or by increasing extracellular concentrations of Mg2+ or Zn2+. Early postnatal conditional knockout of TRPM7 in mice impairs learning and memory and reduces synapse density and plasticity. TRPM7 knockdown in the hippocampus of adult rats also impairs learning and memory and reduces synapse density and synaptic plasticity. In knockout mice, restoring expression of the α-kinase domain in the brain rescues synapse density/plasticity and memory, probably by interacting with and phosphorylating cofilin. These results suggest that brain TRPM7 is important for having normal synaptic and cognitive functions under physiological, non-pathological conditions.
Collapse
Affiliation(s)
- Yuqiang Liu
- Department of Neurology, Huashan Hospital, and Institutes of Brain Science, State Key Laboratory of Medical Neurobiology, Fudan University, Shanghai 200032, China
| | - Cui Chen
- Department of Neurology, Huashan Hospital, and Institutes of Brain Science, State Key Laboratory of Medical Neurobiology, Fudan University, Shanghai 200032, China
| | - Yunlong Liu
- School of Medicine, Tsinghua University, Beijing 100084, China
| | - Wei Li
- Department of Neurology, Huashan Hospital, and Institutes of Brain Science, State Key Laboratory of Medical Neurobiology, Fudan University, Shanghai 200032, China
| | - Zhihong Wang
- Department of Neurology, Huashan Hospital, and Institutes of Brain Science, State Key Laboratory of Medical Neurobiology, Fudan University, Shanghai 200032, China
| | - Qifeng Sun
- School of Medicine, Tsinghua University, Beijing 100084, China
| | - Hang Zhou
- School of Medicine, Tsinghua University, Beijing 100084, China
| | - Xiangjun Chen
- Department of Neurology, Huashan Hospital, and Institutes of Brain Science, State Key Laboratory of Medical Neurobiology, Fudan University, Shanghai 200032, China
| | - Yongchun Yu
- Department of Neurology, Huashan Hospital, and Institutes of Brain Science, State Key Laboratory of Medical Neurobiology, Fudan University, Shanghai 200032, China
| | - Yun Wang
- Department of Neurology, Huashan Hospital, and Institutes of Brain Science, State Key Laboratory of Medical Neurobiology, Fudan University, Shanghai 200032, China
| | - Nashat Abumaria
- Department of Neurology, Huashan Hospital, and Institutes of Brain Science, State Key Laboratory of Medical Neurobiology, Fudan University, Shanghai 200032, China; Department of Laboratory Animal Science, Shanghai Medical College, Fudan University, Shanghai 200032, China.
| |
Collapse
|
9
|
Abumaria N, Li W, Clarkson AN. Role of the chanzyme TRPM7 in the nervous system in health and disease. Cell Mol Life Sci 2019; 76:3301-3310. [PMID: 31073743 PMCID: PMC11105578 DOI: 10.1007/s00018-019-03124-2] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2018] [Revised: 04/25/2019] [Accepted: 04/29/2019] [Indexed: 12/13/2022]
Abstract
The channel kinase (chanzyme) transient receptor potential melastatin-like 7 (TRPM7) has a unique dual protein structure composed of an ion channel with an α-kinase domain on its C-terminus. In the nervous system, under physiological conditions, TRPM7 contributes to critical neurobiological processes ranging from synaptic transmission to cognitive functions. Following certain pathological triggers, TRPM7 mediates neurotoxicity, neuro-injuries, and neuronal death. Here, we summarize the current knowledge of TRPM7 functions in neuronal systems in health and disease. The molecular mechanisms by which this chanzyme might regulate synaptic and cognitive functions are discussed. We also discuss the lack of knowledge regarding the molecular mechanisms responsible for turning TRPM7 into "a vicious tool" that mediates neuronal death following certain pathological triggers. Some synthetic and natural pharmacological modulators of the TRPM7 channel and its α-kinase are reviewed. We suggest that based on current knowledge, we should reshape our thinking regarding the implications of TRPM7 in neurological and neurodegenerative disorders. Moreover, we propose a paradigm shift concerning the targeting of TRPM7 as a therapeutic approach for treating certain neurological diseases. We agree that TRPM7 overexpression or overactivation may mediate neurodegenerative processes following certain triggers. However, TRPM7 dysfunction and/or downregulation might also be among the pathological changes leading to neurodegeneration. Consequently, further investigations are required before we decide whether blocking or activating the chanzyme is the correct therapeutic approach to treat certain neurological and/or neurodegenerative diseases.
Collapse
Affiliation(s)
- Nashat Abumaria
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai, 200032, China.
- Department of Laboratory Animal Science, Shanghai Medical College, Fudan University, Shanghai, 200032, China.
| | - Wei Li
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai, 200032, China
| | - Andrew N Clarkson
- Department of Anatomy, Brain Health Research Centre and Brain Research New Zealand, University of Otago, PO Box 913, Dunedin, 9054, New Zealand
| |
Collapse
|
10
|
Hepatocellular differentiation status is characterized by distinct subnuclear localization and form of the chanzyme TRPM7. Differentiation 2017; 96:15-25. [PMID: 28609676 DOI: 10.1016/j.diff.2017.06.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2017] [Revised: 05/14/2017] [Accepted: 06/05/2017] [Indexed: 11/20/2022]
Abstract
The channel-kinase TRPM7 is important for the survival, proliferation, and differentiation, of many cell types. Both plasma membrane channel activity and kinase function are implicated in these roles. Channel activity is greater in less differentiated hepatoma cells compared with non-dividing, terminally differentiated adult hepatocytes, suggesting differences in protein expression and/or localization. We used electrophysiological and immunofluorescence approaches to establish whether hepatocellular differentiation is associated with altered TRPM7 expression. Mean outward current decreased by 44% in WIF-B hepatoma cells incubated with the established hepatic differentiating factors oncostatin M/dexamethasone for 1-8 days. Pre-incubation with pyridone 6, a pan-JAK inhibitor, blocked the current reduction. An antibody targeted to the C-terminus of TRPM7 labelled the cytoplasm in WIF-B cells and intact rat liver. Significant label also localized to the nuclear envelope (NE), with relatively more detected in adult hepatocytes compared with WIF-B cells. Hepatoma cells also exhibited nucleoplasmic labelling with intense signal in the nucleolus. The endogenous labelling pattern closely resembles that of HEK293T cells heterologously expressing a TRPM7 kinase construct containing a putative nucleolar localization sequence. These results suggest that TRPM7 form and distribution between the plasma membrane and nucleus, rather than expression, is altered in parallel with differentiation status in rat hepatic cells.
Collapse
|