1
|
Mustile M, Kourtis D, Edwards MG, Ladouce S, Volpe D, Pilleri M, Pelosin E, Learmonth G, Donaldson DI, Ietswaart M. Characterizing neurocognitive impairments in Parkinson's disease with mobile EEG when walking and stepping over obstacles. Brain Commun 2023; 5:fcad326. [PMID: 38107501 PMCID: PMC10724048 DOI: 10.1093/braincomms/fcad326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2022] [Revised: 10/03/2023] [Accepted: 11/27/2023] [Indexed: 12/19/2023] Open
Abstract
The neural correlates that help us understand the challenges that Parkinson's patients face when negotiating their environment remain under-researched. This deficit in knowledge reflects the methodological constraints of traditional neuroimaging techniques, which include the need to remain still. As a result, much of our understanding of motor disorders is still based on animal models. Daily life challenges such as tripping and falling over obstacles represent one of the main causes of hospitalization for individuals with Parkinson's disease. Here, we report the neural correlates of naturalistic ambulatory obstacle avoidance in Parkinson's disease patients using mobile EEG. We examined 14 medicated patients with Parkinson's disease and 17 neurotypical control participants. Brain activity was recorded while participants walked freely, and while they walked and adjusted their gait to step over expected obstacles (preset adjustment) or unexpected obstacles (online adjustment) displayed on the floor. EEG analysis revealed attenuated cortical activity in Parkinson's patients compared to neurotypical participants in theta (4-7 Hz) and beta (13-35 Hz) frequency bands. The theta power increase when planning an online adjustment to step over unexpected obstacles was reduced in Parkinson's patients compared to neurotypical participants, indicating impaired proactive cognitive control of walking that updates the online action plan when unexpected changes occur in the environment. Impaired action planning processes were further evident in Parkinson's disease patients' diminished beta power suppression when preparing motor adaptation to step over obstacles, regardless of the expectation manipulation, compared to when walking freely. In addition, deficits in reactive control mechanisms in Parkinson's disease compared to neurotypical participants were evident from an attenuated beta rebound signal after crossing an obstacle. Reduced modulation in the theta frequency band in the resetting phase across conditions also suggests a deficit in the evaluation of action outcomes in Parkinson's disease. Taken together, the neural markers of cognitive control of walking observed in Parkinson's disease reveal a pervasive deficit of motor-cognitive control, involving impairments in the proactive and reactive strategies used to avoid obstacles while walking. As such, this study identified neural markers of the motor deficits in Parkinson's disease and revealed patients' difficulties in adapting movements both before and after avoiding obstacles in their path.
Collapse
Affiliation(s)
- Magda Mustile
- Psychology, Faculty of Natural Sciences, University of Stirling, Stirling, FK9 4LA, UK
- The Psychological Sciences Research Institute, Université catholique de Louvain, 1348 Louvain-la-Neuve, Belgium
| | - Dimitrios Kourtis
- Psychology, Faculty of Natural Sciences, University of Stirling, Stirling, FK9 4LA, UK
| | - Martin G Edwards
- The Psychological Sciences Research Institute, Université catholique de Louvain, 1348 Louvain-la-Neuve, Belgium
| | - Simon Ladouce
- Department of Brain and Cognition, Leuven Brain Institute, KU Leuven, 3000 Leuven, Belgium
| | - Daniele Volpe
- Fresco Parkinson Center, Villa Margherita, S. Stefano Riabilitazione, 36100 Vicenza, Italy
| | - Manuela Pilleri
- Fresco Parkinson Center, Villa Margherita, S. Stefano Riabilitazione, 36100 Vicenza, Italy
| | - Elisa Pelosin
- Ospedale Policlinico San Martino, IRCCS, 16132 Genova, Italy
| | - Gemma Learmonth
- Psychology, Faculty of Natural Sciences, University of Stirling, Stirling, FK9 4LA, UK
- School of Psychology & Neuroscience, University of Glasgow, Glasgow, G12 8QQ, UK
| | - David I Donaldson
- School of Psychology and Neuroscience, University of St Andrews, St. Andrews, KY16 9AJ, UK
| | - Magdalena Ietswaart
- Psychology, Faculty of Natural Sciences, University of Stirling, Stirling, FK9 4LA, UK
| |
Collapse
|
2
|
Chung JW, Knight CA, Bower AE, Martello JP, Jeka JJ, Burciu RG. Rate control deficits during pinch grip and ankle dorsiflexion in early-stage Parkinson's disease. PLoS One 2023; 18:e0282203. [PMID: 36867628 PMCID: PMC9983837 DOI: 10.1371/journal.pone.0282203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Accepted: 02/10/2023] [Indexed: 03/04/2023] Open
Abstract
BACKGROUND Much of our understanding of the deficits in force control in Parkinson's disease (PD) relies on findings in the upper extremity. Currently, there is a paucity of data pertaining to the effect of PD on lower limb force control. OBJECTIVE The purpose of this study was to concurrently evaluate upper- and lower-limb force control in early-stage PD and a group of age- and gender-matched healthy controls. METHODS Twenty individuals with PD and twenty-one healthy older adults participated in this study. Participants performed two visually guided, submaximal (15% of maximum voluntary contractions) isometric force tasks: a pinch grip task and an ankle dorsiflexion task. PD were tested on their more affected side and after overnight withdrawal from antiparkinsonian medication. The tested side in controls was randomized. Differences in force control capacity were assessed by manipulating speed-based and variability-based task parameters. RESULTS Compared with controls, PD demonstrated slower rates of force development and force relaxation during the foot task, and a slower rate of relaxation during the hand task. Force variability was similar across groups but greater in the foot than in the hand in both PD and controls. Lower limb rate control deficits were greater in PD with more severe symptoms based on the Hoehn and Yahr stage. CONCLUSIONS Together, these results provide quantitative evidence of an impaired capacity in PD to produce submaximal and rapid force across multiple effectors. Moreover, results suggest that force control deficits in the lower limb may become more severe with disease progression.
Collapse
Affiliation(s)
- Jae Woo Chung
- Department of Kinesiology and Applied Physiology, University of Delaware, Newark, DE, United States of America
| | - Christopher A. Knight
- Department of Kinesiology and Applied Physiology, University of Delaware, Newark, DE, United States of America
- Interdisciplinary Neuroscience Graduate Program, University of Delaware, Newark, DE, United States of America
| | - Abigail E. Bower
- Department of Kinesiology and Applied Physiology, University of Delaware, Newark, DE, United States of America
| | - Justin P. Martello
- Department of Neurosciences, Christiana Care Health System, Newark, DE, United States of America
| | - John J. Jeka
- Department of Kinesiology and Applied Physiology, University of Delaware, Newark, DE, United States of America
- Interdisciplinary Neuroscience Graduate Program, University of Delaware, Newark, DE, United States of America
| | - Roxana G. Burciu
- Department of Kinesiology and Applied Physiology, University of Delaware, Newark, DE, United States of America
- Interdisciplinary Neuroscience Graduate Program, University of Delaware, Newark, DE, United States of America
| |
Collapse
|
3
|
Shimizu Y, Tanikawa M, Horiba M, Sahashi K, Kawashima S, Kandori A, Yamanaka T, Nishikawa Y, Matsukawa N, Ueki Y, Mase M. Clinical utility of paced finger tapping assessment in idiopathic normal pressure hydrocephalus. Front Hum Neurosci 2023; 17:1109670. [PMID: 36908708 PMCID: PMC9996087 DOI: 10.3389/fnhum.2023.1109670] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Accepted: 02/07/2023] [Indexed: 02/25/2023] Open
Abstract
Background The Finger Tapping (F-T) test is useful for assessing motor function of the upper limbs in patients with idiopathic normal pressure hydrocephalus (iNPH). However, quantitative evaluation of F-T for iNPH has not yet been established. The purpose of this study was to investigate the usefulness of the quantitative F-T test and optimal measurement conditions as a motor evaluation and screening test for iNPH. Methods Sixteen age-matched healthy controls (mean age 73 ± 5 years; 7/16 male) and fifteen participants with a diagnosis of definitive iNPH (mean age 76 ± 5 years; 8/15 male) completed the study (mean ± standard deviation). F-T performance of the index finger and thumb was quantified using a magnetic sensing device. The performance of repetitive F-T by participants was recorded in both not timing-regulated and timing-regulated conditions. The mean value of the maximum amplitude of F-T was defined as M-Amplitude, and the mean value of the maximum velocity of closure of F-T was defined as cl-Velocity. Results Finger Tapping in the iNPH group, with or without timing control, showed a decrease in M-Amplitude and cl-Velocity compared to the control group. We found the only paced F-T with 2.0 Hz auditory stimuli was found to improve both M-Amplitude and cl-Velocity after shunt surgery. Conclusion The quantitative assessment of F-T with auditory stimuli at the rate of 2.0 Hz may be a useful and potentially supplemental screening method for motor assessment in patients with iNPH.
Collapse
Affiliation(s)
- Yoko Shimizu
- Department of Rehabilitation Medicine, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan.,Department of Neurosurgery, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
| | - Motoki Tanikawa
- Department of Neurosurgery, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
| | - Mitsuya Horiba
- Department of Rehabilitation Medicine, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
| | - Kento Sahashi
- Department of Rehabilitation Medicine, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
| | - Shoji Kawashima
- Department of Neurology and Neuroscience, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
| | - Akihiko Kandori
- Hitachi, Ltd., Research and Development Group, Center for Exploratory Research, Tokyo, Japan
| | - Tomoyasu Yamanaka
- Department of Neurosurgery, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
| | - Yusuke Nishikawa
- Department of Neurosurgery, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
| | - Noriyuki Matsukawa
- Department of Neurology and Neuroscience, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
| | - Yoshino Ueki
- Department of Rehabilitation Medicine, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
| | - Mitsuhito Mase
- Department of Neurosurgery, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
| |
Collapse
|
4
|
Topka M, Schneider M, Zrenner C, Belardinelli P, Ziemann U, Weiss D. Motor cortex excitability is reduced during freezing of upper limb movement in Parkinson's disease. NPJ Parkinsons Dis 2022; 8:161. [PMID: 36424411 PMCID: PMC9691624 DOI: 10.1038/s41531-022-00420-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Accepted: 10/26/2022] [Indexed: 11/27/2022] Open
Abstract
Whilst involvement of the motor cortex in the phenomenon of freezing in Parkinson's disease has been previously suggested, few empiric studies have been conducted to date. We investigated motor cortex (M1) excitability in eleven right-handed Parkinson's disease patients (aged 69.7 ± 9.6 years, disease duration 11.2 ± 3.9 years, akinesia-rigidity type) with verified gait freezing using a single-pulse transcranial magnetic stimulation (TMS) repetitive finger tapping paradigm. We delivered single TMS pulses at 120% of the active motor threshold at the 'ascending (contraction)' and 'descending (relaxation)' slope of the tap cycle during i) regular tapping, ii) the transition period of the three taps prior to a freeze and iii) during freezing of upper limb movement. M1 excitability was modulated along the tap cycle with greater motor evoked potentials (MEPs) during 'ascending' than 'descending'. Furthermore, MEPs during the 'ascending' phase of regular tapping, but not during the transition period, were greater compared to the MEPs recorded throughout a freeze. Neither force nor EMG activity 10-110 s before the stimulus predicted MEP size. This piloting study suggests that M1 excitability is reduced during freezing and the transition period preceding a freeze. This supports that M1 excitability is critical to freezing in Parkinson's disease.
Collapse
Affiliation(s)
- Marlene Topka
- Department of Neurodegenerative Diseases, and Hertie Institute for Clinical Brain Research (HIH), University of Tübingen, Tübingen, Germany
| | - Marlieke Schneider
- Department of Neurodegenerative Diseases, and Hertie Institute for Clinical Brain Research (HIH), University of Tübingen, Tübingen, Germany
| | - Christoph Zrenner
- Department of Neurology & Stroke, and Hertie Institute for Clinical Brain Research (HIH), University of Tübingen, Tübingen, Germany
- Department of Psychiatry, University of Toronto, and Temerty Centre for Therapeutic Brain Intervention, Centre for Addiction and Mental Health, Toronto, Canada
| | - Paolo Belardinelli
- Department of Neurology & Stroke, and Hertie Institute for Clinical Brain Research (HIH), University of Tübingen, Tübingen, Germany
- Center for Mind/Brain Sciences - CIMeC, University of Trento, Rovereto (TN), Italy
| | - Ulf Ziemann
- Department of Neurology & Stroke, and Hertie Institute for Clinical Brain Research (HIH), University of Tübingen, Tübingen, Germany
| | - Daniel Weiss
- Department of Neurodegenerative Diseases, and Hertie Institute for Clinical Brain Research (HIH), University of Tübingen, Tübingen, Germany.
| |
Collapse
|
5
|
D'Cruz N, Nieuwboer A. Can Motor Arrests in Other Effectors Be Used as Valid Markers of Freezing of Gait? Front Hum Neurosci 2021; 15:808734. [PMID: 34975441 PMCID: PMC8716925 DOI: 10.3389/fnhum.2021.808734] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Accepted: 11/22/2021] [Indexed: 11/20/2022] Open
Affiliation(s)
| | - Alice Nieuwboer
- KU Leuven, Department of Rehabilitation Sciences, Neurorehabilitation Research Group, Leuven, Belgium
| |
Collapse
|
6
|
Stegemöller EL, Ferguson TD, Zaman A, Hibbing P, Izbicki P, Krigolson OE. Finger tapping to different styles of music and changes in cortical oscillations. Brain Behav 2021; 11:e2324. [PMID: 34423594 PMCID: PMC8442589 DOI: 10.1002/brb3.2324] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 06/30/2021] [Accepted: 07/27/2021] [Indexed: 12/02/2022] Open
Abstract
Music has been a therapeutic strategy proposed to improve impaired movement performance, but there remains a lack of understanding of how music impacts motor cortical activity. Thus, the purpose of this study is to use a time-frequency analysis (i.e., wavelet) of electroencephalographic (EEG) data to determine differences in motor and auditory cortical activity when moving to music at two different rates. Twenty healthy young adults tapped their index finger while electroencephalography was collected. There were three conditions (tapping in time with a tone and with two contrasting music styles), and each condition was repeated at two different rates (70 and 140 beats per minute). A time-frequency Morlet wavelet analysis was completed for electrodes of interest over the sensorimotor areas (FC3, FC4, FCz, C3, C4, Cz) and the primary auditory areas (T7, T8). Cluster-based permutation testing was applied to the electrodes of interest for all conditions. Results showed few differences between cortical oscillations when moving to music versus a tone. However, the two music conditions elicited a variety of distinct responses, particularly at the slower movement rate. These results suggest that music style and movement rate should be considered when designing therapeutic applications that include music to target motor performance.
Collapse
Affiliation(s)
| | - Thomas D Ferguson
- Theoretical and Applied Neuroscience Laboratory, University of Victoria, Victoria, British Columbia, Canada.,Department of Psychology, University of Victoria, Victoria, British Columbia, Canada
| | - Andrew Zaman
- Department of Kinesiology, Iowa State University, Ames, Iowa, USA
| | - Paul Hibbing
- Department of Kinesiology, Iowa State University, Ames, Iowa, USA
| | - Patricia Izbicki
- Department of Kinesiology, Iowa State University, Ames, Iowa, USA
| | - Olave E Krigolson
- Theoretical and Applied Neuroscience Laboratory, University of Victoria, Victoria, British Columbia, Canada.,School of Exercise Science, Physical and Health Education, University of Victoria, Victoria, British Columbia, Canada
| |
Collapse
|
7
|
Disruptions of cortico-kinematic interactions in Parkinson's disease. Behav Brain Res 2021; 404:113153. [PMID: 33571571 DOI: 10.1016/j.bbr.2021.113153] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Revised: 01/08/2021] [Accepted: 01/27/2021] [Indexed: 11/21/2022]
Abstract
The cortical role of the motor symptoms reflected by kinematic characteristics in Parkinson's disease (PD) is poorly understood. In this study, we aim to explore how PD affects cortico-kinematic interactions. Electroencephalographic (EEG) and kinematic data were recorded from seven healthy participants and eight participants diagnosed with PD during a set of self-paced finger tapping tasks. Event-related desynchronization (ERD) was compared between groups in the α (8-14 Hz), low-ß (14-20 Hz), and high-ß (20-35 Hz) frequency bands to investigate between-group differences in the cortical activities associated with movement. Average kinematic peak amplitudes and latencies were extracted alongside Sample Entropy (SaEn), a measure of signal complexity, as variables for comparison between groups. These variables were further correlated with average EEG power in each frequency band to establish within-group interactions between cortical motor functions and kinematic motor output. High ß-band power correlated with mean kinematic peak latency and signal complexity in the healthy group, while no correlation was found in the PD group. Also, the healthy group demonstrated stronger ERD in the broad ß-band than the PD participants. Our results suggest that cortical ß-band power in healthy populations is graded to finger tapping latency and complexity of movement, but this relationship is impaired in PD. These insights could help further enhance our understanding of the role of cortical ß-band oscillations in healthy movement and the possible disruption of that relationship in PD. These outcomes can provide further directions for treatment and therapeutic applications and potentially establish cortical biomarkers of Parkinson's disease.
Collapse
|
8
|
Mustile M, Kourtis D, Ladouce S, Learmonth G, Edwards MG, Donaldson DI, Ietswaart M. Mobile EEG reveals functionally dissociable dynamic processes supporting real-world ambulatory obstacle avoidance: Evidence for early proactive control. Eur J Neurosci 2021; 54:8106-8119. [PMID: 33465827 DOI: 10.1111/ejn.15120] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Revised: 12/07/2020] [Accepted: 12/28/2020] [Indexed: 11/29/2022]
Abstract
The ability to safely negotiate the world on foot takes humans years to develop, reflecting the extensive cognitive demands associated with real-time planning and control of walking. Despite the importance of walking, methodological limitations mean that surprisingly little is known about the neural and cognitive processes that support ambulatory motor control. Here, we report mobile EEG data recorded from 32 healthy young adults during real-world ambulatory obstacle avoidance. Participants walked along a path while stepping over expected and unexpected obstacles projected on the floor, allowing us to capture the dynamic oscillatory response to changes in environmental demands. Compared to obstacle-free walking, time-frequency analysis of the EEG data revealed clear neural markers of proactive and reactive forms of movement control (occurring before and after crossing an obstacle), visible as increases in frontal theta and centro-parietal beta power respectively. Critically, the temporal profile of changes in frontal theta allowed us to arbitrate between early selection and late adaptation mechanisms of proactive control. Our data show that motor plans are updated as soon as an upcoming obstacle appears, rather than when the obstacle is reached. In addition, regardless of whether motor plans required updating, a clear beta rebound was present after obstacles were crossed, reflecting the resetting of the motor system. Overall, mobile EEG recorded during real-world walking provides novel insight into the cognitive and neural basis of dynamic motor control in humans, suggesting new routes to the monitoring and rehabilitation of motor disorders such as dyspraxia and Parkinson's disease.
Collapse
Affiliation(s)
- Magda Mustile
- Psychology, Faculty of Natural Sciences, University of Stirling, Stirling, UK
| | - Dimitrios Kourtis
- Psychology, Faculty of Natural Sciences, University of Stirling, Stirling, UK
| | - Simon Ladouce
- Institut Supérieur de l'Aéronautique et de l'Espace (ISAE), Toulouse, France
| | - Gemma Learmonth
- Institute of Neuroscience & Psychology, University of Glasgow, Glasgow, UK
| | - Martin G Edwards
- Institute of Research in the Psychological Sciences, Université catholique de Louvain, Louvain-la-Neuve, Belgium
| | - David I Donaldson
- School of Psychology and Neuroscience, University of St Andrews, St. Andrews, UK
| | - Magdalena Ietswaart
- Psychology, Faculty of Natural Sciences, University of Stirling, Stirling, UK
| |
Collapse
|
9
|
Scholten M, Schoellmann A, Ramos-Murguialday A, López-Larraz E, Gharabaghi A, Weiss D. Transitions between repetitive tapping and upper limb freezing show impaired movement-related beta band modulation. Clin Neurophysiol 2020; 131:2499-2507. [PMID: 32684329 DOI: 10.1016/j.clinph.2020.05.037] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2019] [Revised: 04/08/2020] [Accepted: 05/23/2020] [Indexed: 10/23/2022]
Abstract
OBJECTIVE Freezing phenomena in idiopathic Parkinson's disease (PD) constitute an important unaddressed therapeutic need. Changes in cortical neurophysiological signatures may precede a single freezing episode and indicate the evolution of abnormal motor network processes. Here, we hypothesize that the movement-related power modulation in the beta-band observed during regular finger tapping, deteriorates in the transition period before upper limb freezing (ULF). METHODS We analyzed a 36-channel EEG of 13 patients with PD during self-paced repetitive tapping of the right index finger. In offline analysis, we compared the transition period immediately before ULF ('transition') with regular tapping regarding movement-related power modulation and interregional phase synchronization. RESULTS From time-frequency analyses, we observed that the tap cycle related beta-band power modulation over the left sensorimotor area was diminished in the transition period before ULF. Furthermore, increased beta-band power was observed in the transition period compared to regular tapping centered over the left centro-parietal and right frontal areas. Phase synchronization between the left fronto-parietal areas and the left sensorimotor area was elevated during transition compared to regular tapping. CONCLUSION Together, these results indicate that diminished beta band power modulation and increased phase synchronization precede ULF. SIGNIFICANCE We demonstrate that pathological cortical motor processing is present in the transition phase from regular tapping to an ULF episode.
Collapse
Affiliation(s)
- Marlieke Scholten
- Department of Neurodegenerative Diseases, and Hertie Institute for Clinical Brain Research (HIH), University of Tuebingen, Tuebingen, Germany; German Centre of Neurodegenerative Diseases (DZNE), University of Tuebingen, Tuebingen, Germany.
| | - Anna Schoellmann
- Department of Neurodegenerative Diseases, and Hertie Institute for Clinical Brain Research (HIH), University of Tuebingen, Tuebingen, Germany; German Centre of Neurodegenerative Diseases (DZNE), University of Tuebingen, Tuebingen, Germany
| | - Ander Ramos-Murguialday
- Institute of Medical Psychology and Behavioural Neurobiology, University of Tuebingen, Tuebingen, Germany; TECNALIA, Health Division, Neurotechnology Laboratory, San Sebastian, Spain
| | - Eduardo López-Larraz
- Institute of Medical Psychology and Behavioural Neurobiology, University of Tuebingen, Tuebingen, Germany
| | - Alireza Gharabaghi
- Division of Functional and Restorative Neurosurgery, Center for Integrative Neuroscience, and Tuebingen NeuroCampus, University of Tuebingen, 72076 Tuebingen, Germany
| | - Daniel Weiss
- Department of Neurodegenerative Diseases, and Hertie Institute for Clinical Brain Research (HIH), University of Tuebingen, Tuebingen, Germany; German Centre of Neurodegenerative Diseases (DZNE), University of Tuebingen, Tuebingen, Germany.
| |
Collapse
|
10
|
Johari K, Behroozmand R. Event-related desynchronization of alpha and beta band neural oscillations predicts speech and limb motor timing deficits in normal aging. Behav Brain Res 2020; 393:112763. [PMID: 32540134 DOI: 10.1016/j.bbr.2020.112763] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Revised: 05/31/2020] [Accepted: 06/05/2020] [Indexed: 10/24/2022]
Abstract
Normal aging is associated with decline of motor timing mechanisms implicated in planning and execution of movement. Evidence from previous studies has highlighted the relationship between neural oscillatory activities and motor timing processing in neurotypical younger adults; however, it remains unclear how normal aging affects the underlying neural mechanisms of movement in older populations. In the present study, we recorded EEG activities in two groups of younger and older adults while they performed randomized speech and limb motor reaction time tasks cued by temporally predictable and unpredictable sensory stimuli. Our data showed that older adults were significantly slower than their younger counterparts during speech production and limb movement, especially in response to temporally unpredictable sensory stimuli. This behavioral effect was accompanied by significant desynchronization of alpha (7-12 Hz) and beta (13-25 Hz) band neural oscillatory activities in older compared with younger adults, primarily during the preparatory pre-motor phase of responses for speech production and limb movement. In addition, we found that faster motor reaction times in younger adults were significantly correlated with weaker desynchronization of pre-motor alpha and beta band neural activities irrespective of stimulus timing and response modality. However, the pre-motor components of alpha and beta activities were timing-specific in older adults and were more strongly desynchronized in response to temporally predictable sensory stimuli. These findings highlight the role of alpha and beta band neural oscillations in motor timing processing mechanisms and reflect their functional deficits during the planning phase of speech production and limb movement in normal aging.
Collapse
Affiliation(s)
- Karim Johari
- Speech Neuroscience Lab, Department of Communication Sciences and Disorders, University of South Carolina, Columbia, SC, United States; Department of Psychology, University of South Carolina, Columbia, SC, United States
| | - Roozbeh Behroozmand
- Speech Neuroscience Lab, Department of Communication Sciences and Disorders, University of South Carolina, Columbia, SC, United States.
| |
Collapse
|
11
|
Izbicki P, Zaman A, Stegemöller EL. Music Form but Not Music Experience Modulates Motor Cortical Activity in Response to Novel Music. Front Hum Neurosci 2020; 14:127. [PMID: 32372932 PMCID: PMC7179827 DOI: 10.3389/fnhum.2020.00127] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2019] [Accepted: 03/19/2020] [Indexed: 12/03/2022] Open
Abstract
External cues, such as music, improve movement performance in persons with Parkinson’s disease. However, research examining the motor cortical mechanisms by which this occurs is lacking. Research using electroencephalography in healthy young adults has revealed that moving to music can modulate motor cortical activity. Moreover, motor cortical activity is further influenced by music experience. It remains unknown whether these effects extend to corticomotor excitability. Therefore, the primary aim of this study was to determine the effects of novel music on corticomotor excitability using transcranial magnetic stimulation (TMS) in a pilot study of healthy young adults. A secondary aim of this study was to determine the influence of music experience on corticomotor excitability. We hypothesized that corticomotor excitability will change during music conditions, and that it will differ in those with formal music training. Motor evoked potentials (MEPs) were recorded from the first dorsal interosseous using single-pulse TMS in three conditions: (1) No Music, (2) Music Condition I, and (3) Music Condition II. Both pieces were set to novel MIDI piano instrumentation and part-writing conventions typical of early nineteenth-century Western classical practices. Results revealed Music Condition II (i.e., more relaxing music) compared to rest increased MEP amplitude (i.e., corticomotor excitability). Music Condition II as compared to Music Condition I (i.e., more activating music) reduced MEP variability (i.e., corticomotor variability). Finally, years of formal music training did not significantly influence corticomotor excitability while listening to music. Overall, results revealed that unfamiliar music modulates motor cortical excitability but is dependent upon the form of music and possibly music preference. These results will be used to inform planned studies in healthy older adults and people with Parkinson’s disease.
Collapse
Affiliation(s)
- Patricia Izbicki
- Department of Kinesiology, Iowa State University, Ames, IA, United States
| | - Andrew Zaman
- Department of Kinesiology, Iowa State University, Ames, IA, United States
| | | |
Collapse
|
12
|
Stegemöller EL, Zaman A, Uzochukwu J. Repetitive finger movement and circle drawing in persons with Parkinson's disease. PLoS One 2019; 14:e0222862. [PMID: 31545827 PMCID: PMC6756750 DOI: 10.1371/journal.pone.0222862] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2019] [Accepted: 09/09/2019] [Indexed: 11/19/2022] Open
Abstract
Little is known regarding how repetitive finger movement performance impacts other fine motor control tasks, such as circle drawing, in persons with Parkinson's disease (PD). Previous research has shown that impairments in repetitive finger movements emerge at rates near to and above 2 Hz in most persons with PD. Thus, the purpose of this study was to compare circle drawing performance in persons with PD that demonstrate impairment in repetitive finger movement and those that do not. Twenty-two participants with PD and twelve healthy older adults completed the study. Only participants with PD completed the repetitive finger movement task. From the kinematic data for the repetitive finger movement task, participants were grouped into Hasteners and Non-Hasteners. Participants with PD and the healthy older adults completed a series of circle drawing tasks at two different target sizes (1 cm and 2 cm) and three pacing conditions (Self-paced, 1.25 Hz, and 2.5 Hz). Kinematic and electromyography data were recorded and compared between groups. Results revealed that, in general, persons with PD demonstrate impairments in circle drawing and associated electromyography activity compared to healthy older adults. Moreover, persons with PD that hasten during repetitive finger movements demonstrate significantly increased movement rate during circle drawing, while those persons with PD that do not hasten demonstrate a significant increase in width variability. This suggests that differing motor control mechanisms may play a role in the performance of fine motor tasks in persons with PD. Continued research is needed to better understand differences in circle drawing performance among persons with PD to inform future development of patient-centered treatments.
Collapse
Affiliation(s)
| | - Andrew Zaman
- Department of Kinesiology, Iowa State University, Ames, Iowa, United States of America
| | - Jennifer Uzochukwu
- Department of Kinesiology, Iowa State University, Ames, Iowa, United States of America
- Department of Physical Therapy, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
| |
Collapse
|
13
|
Scholten M, Gharabaghi A, Weiss D. P24 Cortical signatures of repetitive finger movement and transition to freezing in upper limb movement in patients with Parkinson’s disease. Clin Neurophysiol 2019. [DOI: 10.1016/j.clinph.2019.04.678] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
14
|
Abstract
Auditory cues, including music, are commonly used in the treatment of persons with Parkinson's disease. Yet, how music style and movement rate modulate movement performance in persons with Parkinson's disease have been neglected and remain limited in healthy young populations. The purpose of this study was to determine how music style and movement rate influence movement performance in healthy young adults. Healthy participants were asked to perform repetitive finger movements at two pacing rates (70 and 140 beats per minute) for the following conditions: (a) a tone only, (b) activating music, and (c) relaxing music. Electromyography, movement kinematics, and variability were collected. Results revealed that the provision of music, regardless of style, reduced amplitude variability at both pacing rates. Intermovement interval was longer, and acceleration variability was reduced during both music conditions at the lower pacing rate only. These results may prove beneficial for designing therapeutic interventions for persons with Parkinson's disease.
Collapse
|
15
|
The influence of moving with music on motor cortical activity. Neurosci Lett 2018; 683:27-32. [PMID: 29928952 DOI: 10.1016/j.neulet.2018.06.030] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2018] [Revised: 06/08/2018] [Accepted: 06/16/2018] [Indexed: 10/28/2022]
Abstract
Although there is a growing interest in using music to improve movement performance in various populations, there remains a need to better understand how music influences motor cortical activity. Listening to music is tightly linked to neural processes within the motor cortex and can modulate motor cortical activity in healthy young adult (HYAs). There is limited evidence regarding how moving to music modulates motor cortical activity. Thus, the purpose of this study was to explore the influence of moving to music on motor cortical activity in HYAs. Electroencephalography was collected while 32 HYAs tapped their index finger in time with a tone and with two contrasting music styles. Two movement rates were presented for each condition. Power spectra were obtained from data collected over the primary sensorimotor region and supplemental motor area and were compared between conditions. Results revealed a significant difference between both music conditions and the tone only condition for both the regions. For both music styles, power was increased in the beta band for low movement rates and increased in the alpha band for high movement rates. A secondary analysis determining the effect of music experience on motor cortical activity revealed a significant difference between musicians and non-musicians. Power in the beta band was increased across all conditions. The results of this study provide the initial step towards a more complete understanding of the neurophysiological underpinnings of music on movement performance which may inform future studies and therapeutic strategies.
Collapse
|