1
|
Liao Y, Sloan DC, Widjaja JH, Muntean BS. KCTD5 Forms Hetero-Oligomeric Complexes with Various Members of the KCTD Protein Family. Int J Mol Sci 2023; 24:14317. [PMID: 37762619 PMCID: PMC10531988 DOI: 10.3390/ijms241814317] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 09/14/2023] [Accepted: 09/15/2023] [Indexed: 09/29/2023] Open
Abstract
Potassium Channel Tetramerization Domain 5 (KCTD5) regulates diverse aspects of physiology, ranging from neuronal signaling to colorectal cancer. A key feature of KCTD5 is its self-assembly into multi-subunit oligomers that seemingly enables participation in an array of protein-protein interactions. KCTD5 has recently been reported to form hetero-oligomeric complexes with two similar KCTDs (KCTD2 and KCTD17). However, it is not known if KCTD5 forms hetero-oligomeric complexes with the remaining KCTD protein family which contains over two dozen members. Here, we demonstrate that KCTD5 interacts with various KCTD proteins when assayed through co-immunoprecipitation in lysed cells. We reinforced this dataset by examining KCTD5 interactions in a live-cell bioluminescence resonance energy transfer (BRET)-based approach. Finally, we developed an IP-luminescence approach to map regions on KCTD5 required for interaction with a selection of KCTD that have established roles in neuronal signaling. We report that different regions on KCTD5 are responsible for uniquely contributing to interactions with other KCTD proteins. While our results help unravel additional interaction partners for KCTD5, they also reveal additional complexities in KCTDs' biology. Moreover, our findings also suggest that KCTD hetero-oligomeric interactions may occur throughout the KCTD family.
Collapse
Affiliation(s)
| | | | | | - Brian S. Muntean
- Department of Pharmacology and Toxicology, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA; (Y.L.); (J.H.W.)
| |
Collapse
|
2
|
Multiple potassium channel tetramerization domain (KCTD) family members interact with Gβγ, with effects on cAMP signaling. J Biol Chem 2023; 299:102924. [PMID: 36736897 PMCID: PMC9976452 DOI: 10.1016/j.jbc.2023.102924] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Revised: 01/04/2023] [Accepted: 01/05/2023] [Indexed: 02/04/2023] Open
Abstract
G protein-coupled receptors (GPCRs) initiate an array of intracellular signaling programs by activating heterotrimeric G proteins (Gα and Gβγ subunits). Therefore, G protein modifiers are well positioned to shape GPCR pharmacology. A few members of the potassium channel tetramerization domain (KCTD) protein family have been found to adjust G protein signaling through interaction with Gβγ. However, comprehensive details on the KCTD interaction with Gβγ remain unresolved. Here, we report that nearly all the 25 KCTD proteins interact with Gβγ. In this study, we screened Gβγ interaction capacity across the entire KCTD family using two parallel approaches. In a live cell bioluminescence resonance energy transfer-based assay, we find that roughly half of KCTD proteins interact with Gβγ in an agonist-induced fashion, whereas all KCTD proteins except two were found to interact through coimmunoprecipitation. We observed that the interaction was dependent on an amino acid hot spot in the C terminus of KCTD2, KCTD5, and KCTD17. While KCTD2 and KCTD5 require both the Bric-à-brac, Tramtrack, Broad complex domain and C-terminal regions for Gβγ interaction, we uncovered that the KCTD17 C terminus is sufficient for Gβγ interaction. Finally, we demonstrated the functional consequence of the KCTD-Gβγ interaction by examining sensitization of the adenylyl cyclase-cAMP pathway in live cells. We found that Gβγ-mediated sensitization of adenylyl cyclase 5 was blunted by KCTD. We conclude that the KCTD family broadly engages Gβγ to shape GPCR signal transmission.
Collapse
|
3
|
Marmonier A, Velt A, Villeroy C, Rustenholz C, Chesnais Q, Brault V. Differential gene expression in aphids following virus acquisition from plants or from an artificial medium. BMC Genomics 2022; 23:333. [PMID: 35488202 PMCID: PMC9055738 DOI: 10.1186/s12864-022-08545-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Accepted: 04/11/2022] [Indexed: 12/03/2022] Open
Abstract
BACKGROUND Poleroviruses, such as turnip yellows virus (TuYV), are plant viruses strictly transmitted by aphids in a persistent and circulative manner. Acquisition of either virus particles or plant material altered by virus infection is expected to induce gene expression deregulation in aphids which may ultimately alter their behavior. RESULTS By conducting an RNA-Seq analysis on viruliferous aphids fed either on TuYV-infected plants or on an artificial medium containing purified virus particles, we identified several hundreds of genes deregulated in Myzus persicae, despite non-replication of the virus in the vector. Only a few genes linked to receptor activities and/or vesicular transport were common between the two modes of acquisition with, however, a low level of deregulation. Behavioral studies on aphids after virus acquisition showed that M. persicae locomotion behavior was affected by feeding on TuYV-infected plants, but not by feeding on the artificial medium containing the purified virus particles. Consistent with this, genes potentially involved in aphid behavior were deregulated in aphids fed on infected plants, but not on the artificial medium. CONCLUSIONS These data show that TuYV particles acquisition alone is associated with a moderate deregulation of a few genes, while higher gene deregulation is associated with aphid ingestion of phloem from TuYV-infected plants. Our data are also in favor of a major role of infected plant components on aphid behavior.
Collapse
Affiliation(s)
- Aurélie Marmonier
- Université de Strasbourg, Institut National de Recherche en Agriculture, Alimentation et Environnement, SVQV UMR-A1131, 68000, Colmar, France
| | - Amandine Velt
- Université de Strasbourg, Institut National de Recherche en Agriculture, Alimentation et Environnement, SVQV UMR-A1131, 68000, Colmar, France
| | - Claire Villeroy
- Université de Strasbourg, Institut National de Recherche en Agriculture, Alimentation et Environnement, SVQV UMR-A1131, 68000, Colmar, France
| | - Camille Rustenholz
- Université de Strasbourg, Institut National de Recherche en Agriculture, Alimentation et Environnement, SVQV UMR-A1131, 68000, Colmar, France
| | - Quentin Chesnais
- Université de Strasbourg, Institut National de Recherche en Agriculture, Alimentation et Environnement, SVQV UMR-A1131, 68000, Colmar, France
| | - Véronique Brault
- Université de Strasbourg, Institut National de Recherche en Agriculture, Alimentation et Environnement, SVQV UMR-A1131, 68000, Colmar, France.
| |
Collapse
|
4
|
Keeping the Balance: GABAB Receptors in the Developing Brain and Beyond. Brain Sci 2022; 12:brainsci12040419. [PMID: 35447949 PMCID: PMC9031223 DOI: 10.3390/brainsci12040419] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Revised: 03/18/2022] [Accepted: 03/21/2022] [Indexed: 12/16/2022] Open
Abstract
The main neurotransmitter in the brain responsible for the inhibition of neuronal activity is γ-aminobutyric acid (GABA). It plays a crucial role in circuit formation during development, both via its primary effects as a neurotransmitter and also as a trophic factor. The GABAB receptors (GABABRs) are G protein-coupled metabotropic receptors; on one hand, they can influence proliferation and migration; and, on the other, they can inhibit cells by modulating the function of K+ and Ca2+ channels, doing so on a slower time scale and with a longer-lasting effect compared to ionotropic GABAA receptors. GABABRs are expressed pre- and post-synaptically, at both glutamatergic and GABAergic terminals, thus being able to shape neuronal activity, plasticity, and the balance between excitatory and inhibitory synaptic transmission in response to varying levels of extracellular GABA concentration. Furthermore, given their subunit composition and their ability to form complexes with several associated proteins, GABABRs display heterogeneity with regard to their function, which makes them a promising target for pharmacological interventions. This review will describe (i) the latest results concerning GABABRs/GABABR-complex structures, their function, and the developmental time course of their appearance and functional integration in the brain, (ii) their involvement in manifestation of various pathophysiological conditions, and (iii) the current status of preclinical and clinical studies involving GABABR-targeting drugs.
Collapse
|
5
|
Kiryk A, Janusz A, Zglinicki B, Turkes E, Knapska E, Konopka W, Lipp HP, Kaczmarek L. IntelliCage as a tool for measuring mouse behavior - 20 years perspective. Behav Brain Res 2020; 388:112620. [PMID: 32302617 DOI: 10.1016/j.bbr.2020.112620] [Citation(s) in RCA: 63] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2020] [Accepted: 03/23/2020] [Indexed: 12/21/2022]
Abstract
Since the 1980s, we have witnessed the rapid development of genetically modified mouse models of human diseases. A large number of transgenic and knockout mice have been utilized in basic and applied research, including models of neurodegenerative and neuropsychiatric disorders. To assess the biological function of mutated genes, modern techniques are critical to detect changes in behavioral phenotypes. We review the IntelliCage, a high-throughput system that is used for behavioral screening and detailed analyses of complex behaviors in mice. The IntelliCage was introduced almost two decades ago and has been used in over 150 studies to assess both spontaneous and cognitive behaviors. We present a critical analysis of experimental data that have been generated using this device.
Collapse
Affiliation(s)
- Anna Kiryk
- Nencki Institute of Experimental Biology, Polish Academy of Sciences, Warsaw, Poland
| | - Artur Janusz
- Nencki Institute of Experimental Biology, Polish Academy of Sciences, Warsaw, Poland
| | - Bartosz Zglinicki
- Nencki Institute of Experimental Biology, Polish Academy of Sciences, Warsaw, Poland
| | - Emir Turkes
- Taub Institute for Research on Alzheimer's Disease and the Aging Brain, Columbia University, Irving Medical Center, New York, NY, USA
| | - Ewelina Knapska
- BRAINCITY, Nencki Institute of Experimental Biology, Polish Academy of Sciences, Warsaw, Poland
| | - Witold Konopka
- Nencki Institute of Experimental Biology, Polish Academy of Sciences, Warsaw, Poland
| | - Hans-Peter Lipp
- Institute of Anatomy, University of Zurich, Zurich, Switzerland; Institute of Evolutionary Medicine, University of Zurich, Zurich, Switzerland
| | - Leszek Kaczmarek
- BRAINCITY, Nencki Institute of Experimental Biology, Polish Academy of Sciences, Warsaw, Poland.
| |
Collapse
|
6
|
Sereikaite V, Fritzius T, Kasaragod VB, Bader N, Maric HM, Schindelin H, Bettler B, Strømgaard K. Targeting the γ-Aminobutyric Acid Type B (GABA B) Receptor Complex: Development of Inhibitors Targeting the K + Channel Tetramerization Domain (KCTD) Containing Proteins/GABA B Receptor Protein-Protein Interaction. J Med Chem 2019; 62:8819-8830. [PMID: 31509708 DOI: 10.1021/acs.jmedchem.9b01087] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Targeting multiprotein receptor complexes, rather than receptors directly, is a promising concept in drug discovery. This is particularly relevant to the GABAB receptor complex, which plays a prominent role in many brain functions and diseases. Here, we provide the first studies targeting a key protein-protein interaction of the GABAB receptor complex-the interaction with KCTD proteins. By employing the μSPOT technology, we first defined the GABAB receptor-binding epitope mediating the KCTD interaction. Subsequently, we developed a highly potent peptide-based inhibitor that interferes with the KCTD/GABAB receptor complex and efficiently isolates endogenous KCTD proteins from mouse brain lysates. X-ray crystallography and SEC-MALS revealed inhibitor induced oligomerization of KCTD16 into a distinct hexameric structure. Thus, we provide a template for modulating the GABAB receptor complex, revealing a fundamentally novel approach for targeting GABAB receptor-associated neuropsychiatric disorders.
Collapse
Affiliation(s)
- Vita Sereikaite
- Center for Biopharmaceuticals, Department of Drug Design and Pharmacology , University of Copenhagen , 2100 Copenhagen , Denmark
| | - Thorsten Fritzius
- Department of Biomedicine , University of Basel , CH-4056 Basel , Switzerland
| | - Vikram B Kasaragod
- Rudolf Virchow Center for Experimental Biomedicine , University of Würzburg , 97080 Würzburg , Germany
| | - Nicole Bader
- Rudolf Virchow Center for Experimental Biomedicine , University of Würzburg , 97080 Würzburg , Germany
| | - Hans M Maric
- Center for Biopharmaceuticals, Department of Drug Design and Pharmacology , University of Copenhagen , 2100 Copenhagen , Denmark
| | - Hermann Schindelin
- Rudolf Virchow Center for Experimental Biomedicine , University of Würzburg , 97080 Würzburg , Germany
| | - Bernhard Bettler
- Department of Biomedicine , University of Basel , CH-4056 Basel , Switzerland
| | - Kristian Strømgaard
- Center for Biopharmaceuticals, Department of Drug Design and Pharmacology , University of Copenhagen , 2100 Copenhagen , Denmark
| |
Collapse
|
7
|
Serikawa T, Kunisawa N, Shimizu S, Kato M, Alves Iha H, Kinboshi M, Nishikawa H, Shirakawa Y, Voigt B, Nakanishi S, Kuramoto T, Kaneko T, Yamamoto T, Mashimo T, Sasa M, Ohno Y. Increased seizure sensitivity, emotional defects and cognitive impairment in PHD finger protein 24 (Phf24)-null rats. Behav Brain Res 2019; 369:111922. [PMID: 31039378 DOI: 10.1016/j.bbr.2019.111922] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2019] [Revised: 04/18/2019] [Accepted: 04/19/2019] [Indexed: 12/18/2022]
Abstract
Phf24 is known as Gαi-interacting protein (GINIP) and is associated with the GABAB receptor. To study the function of Phf24 protein in the central nervous system (CNS), we have newly developed Phf24-null rats and investigated their behavioral phenotypes, especially changes in seizure sensitivity, emotional responses and cognitive functions. Phf24-null rats did not exhibit any spontaneous seizures. However, they showed a higher sensitivity to pentylenetetrazol (PTZ)- or pilocarpine-induced convulsive seizures. Phf24-null rats also showed an elevated susceptibility to kindling development with repeated PTZ treatments, suggesting that Phf24 acts as an inhibitory modulator in epileptogenesis. Although young Phf24-null rats showed normal gross behaviors, elevated spontaneous locomotor activity, especially in terms of the circadian dark period, emotional hyper-reactivity, reduced anxiety behaviors in the elevated plus-maze (EPM) test, and cognitive deficits in the Morris water maze test were explicitly observed at older age (20-week-old). The present results suggest that Phf24 is essential for proper functioning of the CNS, especially in preventing epileptogenesis and controlling emotional and cognitive functions.
Collapse
Affiliation(s)
- Tadao Serikawa
- Institute of Laboratory Animals, Graduate School of Medicine, Kyoto University, Kyoto 606-8501, Japan; Department of Pharmacology, Osaka University of Pharmacological Sciences, Osaka 569-1094, Japan
| | - Naofumi Kunisawa
- Department of Pharmacology, Osaka University of Pharmacological Sciences, Osaka 569-1094, Japan
| | - Saki Shimizu
- Department of Pharmacology, Osaka University of Pharmacological Sciences, Osaka 569-1094, Japan
| | - Masaki Kato
- Department of Pharmacology, Osaka University of Pharmacological Sciences, Osaka 569-1094, Japan
| | - Higor Alves Iha
- Department of Pharmacology, Osaka University of Pharmacological Sciences, Osaka 569-1094, Japan
| | - Masato Kinboshi
- Department of Pharmacology, Osaka University of Pharmacological Sciences, Osaka 569-1094, Japan
| | | | | | - Birger Voigt
- Institute of Laboratory Animals, Graduate School of Medicine, Kyoto University, Kyoto 606-8501, Japan
| | - Satoshi Nakanishi
- Institute of Laboratory Animals, Graduate School of Medicine, Kyoto University, Kyoto 606-8501, Japan
| | - Takashi Kuramoto
- Institute of Laboratory Animals, Graduate School of Medicine, Kyoto University, Kyoto 606-8501, Japan; Department of Animal Science, Tokyo University of Agriculture, Kanagawa 243-0034, Japan
| | - Takehito Kaneko
- Institute of Laboratory Animals, Graduate School of Medicine, Kyoto University, Kyoto 606-8501, Japan; Department of Chemistry and Biological Sciences, Fuculty of Science and Engineering, Iwate University, Iwate 020-8551, Japan
| | - Takashi Yamamoto
- Department of Molecular Genetics, Graduate School of Mathematical and Life Sciences, Hiroshima University, Hiroshima 739-8526, Japan
| | - Tomoji Mashimo
- Institute of Laboratory Animals, Graduate School of Medicine, Kyoto University, Kyoto 606-8501, Japan; Genome Editing Research and Development Center, Graduate School of Medicine, Osaka University, Osaka 565-0871, Japan
| | | | - Yukihiro Ohno
- Department of Pharmacology, Osaka University of Pharmacological Sciences, Osaka 569-1094, Japan.
| |
Collapse
|
8
|
Structural basis for auxiliary subunit KCTD16 regulation of the GABA B receptor. Proc Natl Acad Sci U S A 2019; 116:8370-8379. [PMID: 30971491 DOI: 10.1073/pnas.1903024116] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Metabotropic GABAB receptors mediate a significant fraction of inhibitory neurotransmission in the brain. Native GABAB receptor complexes contain the principal subunits GABAB1 and GABAB2, which form an obligate heterodimer, and auxiliary subunits, known as potassium channel tetramerization domain-containing proteins (KCTDs). KCTDs interact with GABAB receptors and modify the kinetics of GABAB receptor signaling. Little is known about the molecular mechanism governing the direct association and functional coupling of GABAB receptors with these auxiliary proteins. Here, we describe the high-resolution structure of the KCTD16 oligomerization domain in complex with part of the GABAB2 receptor. A single GABAB2 C-terminal peptide is bound to the interior of an open pentamer formed by the oligomerization domain of five KCTD16 subunits. Mutation of specific amino acids identified in the structure of the GABAB2-KCTD16 interface disrupted both the biochemical association and functional modulation of GABAB receptors and G protein-activated inwardly rectifying K+ channel (GIRK) channels. These interfacial residues are conserved among KCTDs, suggesting a common mode of KCTD interaction with GABAB receptors. Defining the binding interface of GABAB receptor and KCTD reveals a potential regulatory site for modulating GABAB-receptor function in the brain.
Collapse
|
9
|
Ulrich D, Lalanne T, Gassmann M, Bettler B. GABA B receptor subtypes differentially regulate thalamic spindle oscillations. Neuropharmacology 2017; 136:106-116. [PMID: 29106983 DOI: 10.1016/j.neuropharm.2017.10.033] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2017] [Revised: 10/23/2017] [Accepted: 10/24/2017] [Indexed: 12/14/2022]
Abstract
Following the discovery of GABAB receptors by Norman Bowery and colleagues, cloning and biochemical efforts revealed that GABAB receptors assemble multi-subunit complexes composed of principal and auxiliary subunits. The principal receptor subunits GABAB1a, GABAB1b and GABAB2 form two heterodimeric GABAB(1a,2) and GABAB(1b,2) receptors that can associate with tetramers of auxiliary KCTD (K+ channel tetramerization domain) subunits. Experiments with subunit knock-out mice revealed that GABAB(1b,2) receptors activate slow inhibitory postsynaptic currents (sIPSCs) while GABAB(1a,2) receptors function as heteroreceptors and inhibit glutamate release. Both GABAB(1a,2) and GABAB(1b,2) receptors can serve as autoreceptors and inhibit GABA release. Auxiliary KCTD subunits regulate the duration of sIPSCs and scaffold effector channels at the receptor. GABAB receptors are well known to contribute to thalamic spindle oscillations. Spindles are generated through alternating burst-firing in reciprocally connected glutamatergic thalamocortical relay (TCR) and GABAergic thalamic reticular nucleus (TRN) neurons. The available data implicate postsynaptic GABAB receptors in TCR cells in the regulation of spindle frequency. We now used electrical or optogenetic activation of thalamic spindles and pharmacological experiments in acute slices of knock-out mice to study the impact of GABAB(1a,2) and GABAB(1b,2) receptors on spindle oscillations. We found that selectively GABAB(1a,2) heteroreceptors at TCR to TRN cell synapses regulate oscillation strength, while GABAB(1b,2) receptors control oscillation frequency. The auxiliary subunit KCTD16 influences both oscillation strength and frequency, supporting that KCTD16 regulates network activity through GABAB(1a,2) and GABAB(1b,2) receptors. This article is part of the "Special Issue Dedicated to Norman G. Bowery".
Collapse
Affiliation(s)
- Daniel Ulrich
- Dept. Biomedicine, Institute of Physiology, University of Basel, 4056 Basel, Switzerland
| | - Txomin Lalanne
- Dept. Biomedicine, Institute of Physiology, University of Basel, 4056 Basel, Switzerland
| | - Martin Gassmann
- Dept. Biomedicine, Institute of Physiology, University of Basel, 4056 Basel, Switzerland
| | - Bernhard Bettler
- Dept. Biomedicine, Institute of Physiology, University of Basel, 4056 Basel, Switzerland.
| |
Collapse
|
10
|
Carletti R, Tacconi S, Mugnaini M, Gerrard P. Receptor distribution studies. Curr Opin Pharmacol 2017; 35:94-100. [PMID: 28803835 DOI: 10.1016/j.coph.2017.07.008] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2017] [Accepted: 07/23/2017] [Indexed: 12/18/2022]
Abstract
Receptor distribution studies have played a key role in the characterization of receptor systems (e.g. GABAB, NMDA (GluNRs), and Neurokinin 1) and in generating hypotheses to exploit these systems as potential therapeutic targets. Distribution studies can provide important information on the potential role of candidate receptors in normal physiology/disease and alert for possible adverse effects of targeting the receptors. Moreover, they can provide valuable information relating to quantitative target engagement (e.g. % receptor occupancy) to drive mechanistic pharmacokinetic/pharmacodynamic (PK/PD) hypotheses for compounds in the Drug Discovery process. Finally, receptor distribution and quantitative target engagement studies can be used to validate truly translational technologies such as PET ligands and pharmacoEEG paradigms to facilitate bridging of the preclinical/clinical interface and thus increase probability of success.
Collapse
Affiliation(s)
- Renzo Carletti
- Center of Drug Discovery & Development, Aptuit S.r.l., via Fleming 4, 37135 Verona, Italy.
| | - Stefano Tacconi
- Center of Drug Discovery & Development, Aptuit S.r.l., via Fleming 4, 37135 Verona, Italy
| | - Manolo Mugnaini
- Neuroscience Discovery, AbbVie Deutschland GmbH & Co. KG, Knollstraße 50, 67061 Ludwigshafen, Germany
| | - Philip Gerrard
- Center of Drug Discovery & Development, Aptuit S.r.l., via Fleming 4, 37135 Verona, Italy
| |
Collapse
|
11
|
KCTD Hetero-oligomers Confer Unique Kinetic Properties on Hippocampal GABAB Receptor-Induced K+ Currents. J Neurosci 2016; 37:1162-1175. [PMID: 28003345 DOI: 10.1523/jneurosci.2181-16.2016] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2016] [Revised: 11/29/2016] [Accepted: 12/12/2016] [Indexed: 11/21/2022] Open
Abstract
GABAB receptors are the G-protein coupled receptors for the main inhibitory neurotransmitter in the brain, GABA. GABAB receptors were shown to associate with homo-oligomers of auxiliary KCTD8, KCTD12, KCTD12b, and KCTD16 subunits (named after their T1 K+-channel tetramerization domain) that regulate G-protein signaling of the receptor. Here we provide evidence that GABAB receptors also associate with hetero-oligomers of KCTD subunits. Coimmunoprecipitation experiments indicate that two-thirds of the KCTD16 proteins in the hippocampus of adult mice associate with KCTD12. We show that the KCTD proteins hetero-oligomerize through self-interacting T1 and H1 homology domains. Bioluminescence resonance energy transfer measurements in live cells reveal that KCTD12/KCTD16 hetero-oligomers associate with both the receptor and the G-protein. Electrophysiological experiments demonstrate that KCTD12/KCTD16 hetero-oligomers impart unique kinetic properties on G-protein-activated Kir3 currents. During prolonged receptor activation (one min) KCTD12/KCTD16 hetero-oligomers produce moderately desensitizing fast deactivating K+ currents, whereas KCTD12 and KCTD16 homo-oligomers produce strongly desensitizing fast deactivating currents and nondesensitizing slowly deactivating currents, respectively. During short activation (2 s) KCTD12/KCTD16 hetero-oligomers produce nondesensitizing slowly deactivating currents. Electrophysiological recordings from hippocampal neurons of KCTD knock-out mice are consistent with these findings and indicate that KCTD12/KCTD16 hetero-oligomers increase the duration of slow IPSCs. In summary, our data demonstrate that simultaneous assembly of distinct KCTDs at the receptor increases the molecular and functional repertoire of native GABAB receptors and modulates physiologically induced K+ current responses in the hippocampus. SIGNIFICANCE STATEMENT The KCTD proteins 8, 12, and 16 are auxiliary subunits of GABAB receptors that differentially regulate G-protein signaling of the receptor. The KCTD proteins are generally assumed to function as homo-oligomers. Here we show that the KCTD proteins also assemble hetero-oligomers in all possible dual combinations. Experiments in live cells demonstrate that KCTD hetero-oligomers form at least tetramers and that these tetramers directly interact with the receptor and the G-protein. KCTD12/KCTD16 hetero-oligomers impart unique kinetic properties to GABAB receptor-induced Kir3 currents in heterologous cells. KCTD12/KCTD16 hetero-oligomers are abundant in the hippocampus, where they prolong the duration of slow IPSCs in pyramidal cells. Our data therefore support that KCTD hetero-oligomers modulate physiologically induced K+ current responses in the brain.
Collapse
|