1
|
Deng Y, Hong JS, Cao YY, Kang N, Han DY, Li YT, Chen L, Li ZQ, Zhan R, Guo XY, Yang N, Shi CM. Specific antagonist of receptor for advanced glycation end‑products attenuates delirium‑like behaviours induced by sevoflurane anaesthesia with surgery in aged mice partially by improving damage to the blood‑brain barrier. Exp Ther Med 2023; 26:317. [PMID: 38895540 PMCID: PMC11184639 DOI: 10.3892/etm.2023.12016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Accepted: 02/16/2023] [Indexed: 06/21/2024] Open
Abstract
Postoperative delirium (POD), which occurs in hospital up to 1-week post-procedure or until discharge, is a common complication, especially in older adult patients. However, the pathogenesis of POD remains unclear. Although damage to blood-brain barrier (BBB) integrity is involved in the neuropathogenesis of POD, the specific role of the BBB in POD requires further elucidation. Anaesthesia using 2% isoflurane for 4 h results in the upregulation of hippocampal receptor for advanced glycation end-products (RAGE) expression and β-amyloid accumulation in aged rats. The present study investigated the role of RAGE in BBB integrity and its mechanisms in POD-like behaviours. The buried food, open field and Y maze tests were used to evaluate neurobehavioural changes in aged mice following 2.5% sevoflurane anaesthesia administration with exploratory laparotomy. Levels of tight junction proteins were assessed by western blotting. Multiphoton in vivo microscopy was used to observe the ultrastructural changes in the BBB in the hippocampal CA1 region. Anaesthesia with surgery decreased the levels of tight junction proteins occludin and claudin 5, increased matrix metalloproteinases (MMPs) 2 and 9, damaged the ultrastructure of the BBB and induced POD-like behaviour. FPS-ZM1, a specific RAGE antagonist, ameliorated POD-like behaviour induced by anaesthesia and surgery in aged mice. Furthermore, FPS-ZM1 also restored decreased levels of occludin and claudin 5 as well as increased levels of MMP2 and MMP9. The present findings suggested that RAGE signalling was involved in BBB damage following anaesthesia with surgery. Thus, RAGE has potential as a novel therapeutic intervention for the prevention of POD.
Collapse
Affiliation(s)
- Ying Deng
- Department of Anaesthesiology, Peking University Third Hospital, Beijing 100191, P.R. China
| | - Jing-Shu Hong
- Department of Anaesthesiology, Peking University Third Hospital, Beijing 100191, P.R. China
| | - Yi-Yun Cao
- Department of Anaesthesiology, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200233, P.R. China
| | - Ning Kang
- Department of Anaesthesiology, Peking University Third Hospital, Beijing 100191, P.R. China
| | - Deng-Yang Han
- Department of Anaesthesiology, Peking University Third Hospital, Beijing 100191, P.R. China
| | - Yi-Tong Li
- Department of Anaesthesiology, Peking University Third Hospital, Beijing 100191, P.R. China
| | - Lei Chen
- Department of Anaesthesiology, Peking University Third Hospital, Beijing 100191, P.R. China
| | - Zheng-Qian Li
- Department of Anaesthesiology, Peking University Third Hospital, Beijing 100191, P.R. China
- Beijing Center of Quality Control and Improvement on Clinical Anesthesia, Beijing 100191, P.R. China
| | - Rui Zhan
- The Institute of Cardiovascular Sciences and Institute of Systems Biomedicine, School of Basic Medical Sciences, Key Laboratory of Molecular Cardiovascular Science of Ministry of Education, NHC Key Laboratory of Cardiovascular Molecular Biology and Regulatory Peptides, Beijing Key Laboratory of Cardiovascular Receptors Research, Health Science Center, Peking University, Beijing 100191, P.R. China
| | - Xiang-Yang Guo
- Department of Anaesthesiology, Peking University Third Hospital, Beijing 100191, P.R. China
- Beijing Center of Quality Control and Improvement on Clinical Anesthesia, Beijing 100191, P.R. China
| | - Ning Yang
- Department of Anaesthesiology, Peking University Third Hospital, Beijing 100191, P.R. China
| | - Cheng-Mei Shi
- Department of Anaesthesiology, Peking University Third Hospital, Beijing 100191, P.R. China
| |
Collapse
|
2
|
Zhang Z, Guo L, Yang F, Peng S, Wang D, Lai X, Su B, Xie H. Adiponectin Attenuates Splenectomy-Induced Cognitive Deficits by Neuroinflammation and Oxidative Stress via TLR4/MyD88/NF-κb Signaling Pathway in Aged Rats. ACS Chem Neurosci 2023; 14:1799-1809. [PMID: 37141577 DOI: 10.1021/acschemneuro.2c00744] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/06/2023] Open
Abstract
Perioperative neurocognitive disorder (PND) is a common adverse event after surgical trauma in elderly patients. The pathogenesis of PND is still unclear. Adiponectin (APN) is a plasma protein secreted by adipose tissue. We have reported that a decreased APN expression is associated with PND patients. APN may be a promising therapeutic agent for PND. However, the neuroprotective mechanism of APN in PND is still unclear. In this study, 18 month old male Sprague-Dawley rats were assigned to six groups: the sham, sham + APN (intragastric (i.g.) administration of 10 μg/kg/day for 20 days before splenectomy), PND (splenectomy), PND + APN, PND + TAK-242 (intraperitoneal (i.p.) administration of 3 mg/kg TAK-242), and PND + APN + lipopolysaccharide (LPS) (i.p. administration of 2 mg/kg LPS). We first found that APN gastric infusion significantly improved learning and cognitive function in the Morris water maze (MWM) test after surgical trauma. Further experiments indicated that APN could inhibit the Toll-like receptor 4 (TLR4)/myeloid differentiation factor 88 (MyD88)/nuclear factor kappa B (NF-κb) p65 pathway to decrease the degree of oxidative damage (malondialdehyde (MDA) and superoxide dismutase (SOD)), microglia-mediated neuroinflammation (ionized calcium binding adapter molecule 1 (IBA1), caspase-1, tumor necrosis factor (TNF)-α, interleukin-1β (IL-1β), and interleukin-6 (IL-6)), and apoptosis (p53, Bcl2, Bax, and caspase 3) in hippocampus. By using LPS-specific agonist and TAK-242-specific inhibitor, the involvement of TLR4 engagement was confirmed. APN intragastric administration exerts a neuroprotective effect against cognitive deficits induced by peripheral trauma, and the possible mechanisms include the inhibition of neuroinflammation, oxidative stress, and apoptosis, mediated by the suppression of the TLR4/MyD88/NF-κb signaling pathway. We propose that oral APN may be a promising candidate for PND treatment.
Collapse
Affiliation(s)
- Zhijing Zhang
- Department of Anesthesiology, Affiliated Dongguan Hospital, Southern Medical University (Dongguan People's Hospital), 523000 Dongguan, China
| | - Lideng Guo
- Department of Anesthesiology, Affiliated Dongguan Hospital, Southern Medical University (Dongguan People's Hospital), 523000 Dongguan, China
- Guangdong Medical University, No. 2 East Wenming Road, Xiashan District, 524000 Zhanjiang, China
| | - Fei Yang
- Department of Anesthesiology, Affiliated Dongguan Hospital, Southern Medical University (Dongguan People's Hospital), 523000 Dongguan, China
- Southern Medical University, No. 1023, South Sha Tai Road, Jingxi Street, Baiyun District, 510000 Guangzhou, China
| | - Shanpan Peng
- Department of Anesthesiology, Affiliated Dongguan Hospital, Southern Medical University (Dongguan People's Hospital), 523000 Dongguan, China
- Guangdong Medical University, No. 2 East Wenming Road, Xiashan District, 524000 Zhanjiang, China
| | - Di Wang
- Department of Anesthesiology, Affiliated Dongguan Hospital, Southern Medical University (Dongguan People's Hospital), 523000 Dongguan, China
- Guangdong Medical University, No. 2 East Wenming Road, Xiashan District, 524000 Zhanjiang, China
| | - Xiawei Lai
- Department of Anesthesiology, Affiliated Dongguan Hospital, Southern Medical University (Dongguan People's Hospital), 523000 Dongguan, China
- Southern Medical University, No. 1023, South Sha Tai Road, Jingxi Street, Baiyun District, 510000 Guangzhou, China
| | - Baiqin Su
- Department of Anesthesiology, Affiliated Dongguan Hospital, Southern Medical University (Dongguan People's Hospital), 523000 Dongguan, China
| | - Haihui Xie
- Department of Anesthesiology, Affiliated Dongguan Hospital, Southern Medical University (Dongguan People's Hospital), 523000 Dongguan, China
| |
Collapse
|
3
|
Li W, Yi Q, Shi H. Hippocampal gene expression patterns in Sevoflurane anesthesia associated neurocognitive disorders: A bioinformatic analysis. Front Neurol 2022; 13:1084874. [PMID: 36561300 PMCID: PMC9763458 DOI: 10.3389/fneur.2022.1084874] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Accepted: 11/21/2022] [Indexed: 12/12/2022] Open
Abstract
Background Several studies indicate general anesthetics can produce lasting effects on cognitive function. The commonly utilized anesthetic agent Sevoflurane has been implicated in neurodegenerative processes. The present study aimed to identify molecular underpinnings of Sevoflurane anesthesia linked neurocognitive changes by leveraging publically available datasets for bioinformatics analysis. Methods A Sevoflurane anesthesia related gene expression dataset was obtained. Sevoflurane related genes were obtained from the CTD database. Neurocognitive disorders (NCD) related genes were downloaded from DisGeNET and CTD. Intersecting differentially expressed genes between Sevoflurane and NCD were identified as cross-talk genes. A protein-protein interaction (PPI) network was constructed. Hub genes were selected using LASSO regression. Single sample gene set enrichment analysis; functional network analysis, pathway correlations, composite network analysis and drug sensitivity analysis were performed. Results Fourteen intersecting cross-talk genes potentially were identified. These were mainly involved in biological processes including peptidyl-serine phosphorylation, cellular response to starvation, and response to gamma radiation, regulation of p53 signaling pathway, AGE-RAGE signaling pathway and FoxO signaling. Egr1 showed a central role in the PPI network. Cdkn1a, Egr1, Gadd45a, Slc2a1, and Slc3a2 were identified as important or hub cross-talk genes. Among the interacting pathways, Interleukin-10 signaling and NF-kappa B signaling enriched among Sevoflurane-related DEGs were highly correlated with HIF-1 signaling enriched in NCD-related genes. Composite network analysis showed Egr1 interacted with AGE-RAGE signaling and Apelin signaling pathways, Cdkn1a, and Gadd45a. Cdkn1a was implicated in in FoxO signaling, PI3K-Akt signaling, ErbB signaling, and Oxytocin signaling pathways, and Gadd45a. Gadd45a was involved in NF-kappa B signaling and FoxO signaling pathways. Drug sensitivity analysis showed Egr1 was highly sensitive to GENIPIN. Conclusion A suite of bioinformatics analysis revealed several key candidate hippocampal genes and associated functional signaling pathways that could underlie Sevoflurane associated neurodegenerative processes.
Collapse
Affiliation(s)
- Weiwei Li
- Department of Anesthesiology, The Second Affiliated Hospital of the Shandong First Medical University, Taian, China
| | - Qijun Yi
- Department of Oncology, The Second Affiliated Hospital of the Shandong First Medical University, Taian, China
| | - Huijian Shi
- Department of Anesthesiology, The Second Affiliated Hospital of the Shandong First Medical University, Taian, China,*Correspondence: Huijian Shi
| |
Collapse
|
4
|
Sethi B, Kumar V, Mahato K, Coulter DW, Mahato RI. Recent advances in drug delivery and targeting to the brain. J Control Release 2022; 350:668-687. [PMID: 36057395 PMCID: PMC9884093 DOI: 10.1016/j.jconrel.2022.08.051] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Revised: 08/19/2022] [Accepted: 08/26/2022] [Indexed: 02/01/2023]
Abstract
Our body keeps separating the toxic chemicals in the blood from the brain. A significant number of drugs do not enter the central nervous system (CNS) due to the blood-brain barrier (BBB). Certain diseases, such as tumor growth and stroke, are known to increase the permeability of the BBB. However, the heterogeneity of this permeation makes it difficult and unpredictable to transport drugs to the brain. In recent years, research has been directed toward increasing drug penetration inside the brain, and nanomedicine has emerged as a promising approach. Active targeting requires one or more specific ligands on the surface of nanoparticles (NPs), which brain endothelial cells (ECs) recognize, allowing controlled drug delivery compared to conventional targeting strategies. This review highlights the mechanistic insights about different cell types contributing to the development and maintenance of the BBB and summarizes the recent advancement in brain-specific NPs for different pathological conditions. Furthermore, fundamental properties of brain-targeted NPs will be discussed, and the standard lesion features classified by neurological pathology are summarized.
Collapse
Affiliation(s)
- Bharti Sethi
- Department of Pharmaceutical Sciences, University of Nebraska Medical Center, Omaha NE 68198, USA
| | - Virender Kumar
- Department of Pharmaceutical Sciences, University of Nebraska Medical Center, Omaha NE 68198, USA
| | - Kalika Mahato
- College of Medicine, University of Nebraska Medical Center, Omaha NE 68198, USA
| | - Donald W Coulter
- Department of Pediatrics, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Ram I Mahato
- Department of Pharmaceutical Sciences, University of Nebraska Medical Center, Omaha NE 68198, USA.
| |
Collapse
|
5
|
Chong H, Xi Y, Zhou Y, Wang G. Protective effects of chlorogenic acid on isoflurane-induced cognitive impairment of aged mice. Food Sci Nutr 2022; 10:3492-3500. [PMID: 36249964 PMCID: PMC9548348 DOI: 10.1002/fsn3.2952] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Revised: 05/19/2022] [Accepted: 05/26/2022] [Indexed: 12/02/2022] Open
Abstract
Postoperative cognitive dysfunction (POCD) is characterized by impairment in cognitive functions in patients following anesthesia and surgery. Chlorogenic acid (CGA) is a plant-derived compound possessing numerous bioactive properties. The aim of this study was to investigate the therapeutic potential of CGA in isoflurane (ISO)-induced cognitive dysfunction of aged mice, and further identify the mechanisms involved in the protective effects of CGA. A total of 80 male C57BL/6 mice, 20-month-old, were randomly divided into control group, isoflurane group (ISO), and ISO + 30 mg/kg CGA group and ISO + 60 mg/kg CGA. CGA was given orally once daily for 7 days to the mice and they were exposed to ISO (1.5%; 4 h). The open-field and Morris water maze tests were used to investigate the cognitive function of mice. Pretreatment with CGA significantly attenuated ISO-induced cognitive impairment. The levels of IL-1β, TNF-α, IL-6, nuclear p65 NF-kB, cleaved caspase-3, and Bax were significantly increased, while the levels of IkBα and Bcl-2 were decreased in the hippocampus 24 h after the ISO anesthesia. All the mentioned effects induced by ISO were reversed by CGA pretreatment. Furthermore, ISO exposure induced marked downregulation of SOD, CAT, HO-1, and NQO-1 and elevation of MDA and nuclear translocation of Nrf2 in the hippocampus tissue. All these parameters were reversed by CGA treatment. Importantly, the higher dose of CGA (60 mg/kg) showed a greater neuroprotective effect. In conclusion, these findings suggest that CGA attenuates the ISO-induced cognitive impairment via its anti-inflammatory, anti-oxidative, and anti-apoptotic properties in aged mice.
Collapse
Affiliation(s)
- Hao Chong
- Department of AnesthesiologyBeijing Jishuitan HospitalBeijingChina
| | - Yang Xi
- Department of AnesthesiologyBeijing Jishuitan HospitalBeijingChina
| | - Yan Zhou
- Department of AnesthesiologyBeijing Jishuitan HospitalBeijingChina
| | - Geng Wang
- Department of AnesthesiologyBeijing Jishuitan HospitalBeijingChina
| |
Collapse
|
6
|
Wang XY, Liu WG, Hou AS, Song YX, Ma YL, Wu XD, Cao JB, Mi WD. Dysfunction of EAAT3 Aggravates LPS-Induced Post-Operative Cognitive Dysfunction. MEMBRANES 2022; 12:membranes12030317. [PMID: 35323793 PMCID: PMC8951453 DOI: 10.3390/membranes12030317] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Revised: 03/04/2022] [Accepted: 03/07/2022] [Indexed: 11/23/2022]
Abstract
Numerous results have revealed an association between inhibited function of excitatory amino acid transporter 3 (EAAT3) and several neurodegenerative diseases. This was also corroborated by our previous studies which showed that the EAAT3 function was intimately linked to learning and memory. With this premise, we examined the role of EAAT3 in post-operative cognitive dysfunction (POCD) and explored the potential benefit of riluzole in countering POCD in the present study. We first established a recombinant adeno-associated-viral (rAAV)-mediated shRNA to knockdown SLC1A1/EAAT3 expression in the hippocampus of adult male mice. The mice then received an intracerebroventricular microinjection of 2 μg lipopolysaccharide (LPS) to construct the POCD model. In addition, for old male mice, 4 mg/kg of riluzole was intraperitoneally injected for three consecutive days, with the last injection administered 2 h before the LPS microinjection. Cognitive function was assessed using the Morris water maze 24 h following the LPS microinjection. Animal behavioral tests, as well as pathological and biochemical assays, were performed to clarify the role of EAAT3 function in POCD and evaluate the effect of activating the EAAT3 function by riluzole. In the present study, we established a mouse model with hippocampal SLC1A1/EAAT3 knockdown and found that hippocampal SLC1A1/EAAT3 knockdown aggravated LPS-induced learning and memory deficits in adult male mice. Meanwhile, LPS significantly inhibited the expression of EAAT3 membrane protein and the phosphorylation level of GluA1 protein in the hippocampus of adult male mice. Moreover, riluzole pretreatment significantly increased the expression of hippocampal EAAT3 membrane protein and also ameliorated LPS-induced cognitive impairment in elderly male mice. Taken together, our results demonstrated that the dysfunction of EAAT3 is an important risk factor for POCD susceptibility and therefore, it may become a promising target for POCD treatment.
Collapse
Affiliation(s)
- Xiao-Yan Wang
- Chinese PLA Medical School, Beijing 100853, China; (X.-Y.W.); (W.-G.L.)
- Department of Anesthesiology, The Fourth Medical Center of Chinese PLA General Hospital, Beijing 100037, China
| | - Wen-Gang Liu
- Chinese PLA Medical School, Beijing 100853, China; (X.-Y.W.); (W.-G.L.)
- Department of Anesthesiology, The First Medical Center of Chinese PLA General Hospital, Beijing 100853, China; (A.-S.H.); (Y.-X.S.); (Y.-L.M.); (X.-D.W.)
| | - Ai-Sheng Hou
- Department of Anesthesiology, The First Medical Center of Chinese PLA General Hospital, Beijing 100853, China; (A.-S.H.); (Y.-X.S.); (Y.-L.M.); (X.-D.W.)
| | - Yu-Xiang Song
- Department of Anesthesiology, The First Medical Center of Chinese PLA General Hospital, Beijing 100853, China; (A.-S.H.); (Y.-X.S.); (Y.-L.M.); (X.-D.W.)
| | - Yu-Long Ma
- Department of Anesthesiology, The First Medical Center of Chinese PLA General Hospital, Beijing 100853, China; (A.-S.H.); (Y.-X.S.); (Y.-L.M.); (X.-D.W.)
| | - Xiao-Dong Wu
- Department of Anesthesiology, The First Medical Center of Chinese PLA General Hospital, Beijing 100853, China; (A.-S.H.); (Y.-X.S.); (Y.-L.M.); (X.-D.W.)
| | - Jiang-Bei Cao
- Department of Anesthesiology, The First Medical Center of Chinese PLA General Hospital, Beijing 100853, China; (A.-S.H.); (Y.-X.S.); (Y.-L.M.); (X.-D.W.)
- Correspondence: (J.-B.C.); (W.-D.M.)
| | - Wei-Dong Mi
- Department of Anesthesiology, The First Medical Center of Chinese PLA General Hospital, Beijing 100853, China; (A.-S.H.); (Y.-X.S.); (Y.-L.M.); (X.-D.W.)
- Correspondence: (J.-B.C.); (W.-D.M.)
| |
Collapse
|
7
|
Li Z, Chen Q, Liu J, Du Y. Physical Exercise Ameliorates the Cognitive Function and Attenuates the Neuroinflammation of Alzheimer's Disease via miR-129-5p. Dement Geriatr Cogn Disord 2021; 49:163-169. [PMID: 32434194 DOI: 10.1159/000507285] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/18/2019] [Accepted: 03/13/2020] [Indexed: 11/19/2022] Open
Abstract
INTRODUCTION Physical exercise has a significant neuroprotective role in Alzheimer's disease (AD), but the underlying mechanisms remain elusive. OBJECTIVE This study aimed to explore the molecular mechanisms of physical exercise by analyzing the role of microRNA-129-5p (miR-129-5p) in AD mice and patients. METHODS AD mice and patients were treated with 4-week and 3-month physical exercise, respectively. The expression of miR-129-5p was measured using quantitative real-time PCR. The Morris water-maze test was used for cognition evaluation, and enzyme-linked immunosorbent assay was used for inflammation analysis. RESULTS In both AD mice and patients, the expression of miR-129-5p was elevated by physical exercise. By in vivoregulation of miR-129-5p, we found that the improved cognitive function and reduced inflammatory responses were reversed by the knockdown of miR-129-5p. In patients with AD, the serum expression of miR-129-5p was further found to be correlated with the serum levels of cognitive function markers and proinflammatory cytokines. CONCLUSION All data indicated that the expression of miR-129-5p in AD mice and patients is significantly upregulated by physical exercise. The knockdown of miR-129-5p can abrogate the neuroprotective effect of exercise on cognition and neuroinflammation in AD mice. This study provides a novel insight into the molecular mechanisms underlying the neuroprotective effect of physical exercise in AD, and miR-129-5p may provide a novel therapeutic target for AD treatment.
Collapse
Affiliation(s)
- Zhen Li
- Department of Neurology, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, China.,Department of Neurology, Yidu Central Hospital of Weifang, Weifang, China
| | - Qi Chen
- Department of Neurosurgery, Qingzhou Hospital Affiliated to Shandong First Medical University, Weifang, China.,Department of Neurosurgery, Qingzhou People's Hospital, Weifang, China
| | - Jinxia Liu
- Department of Neurology, Yidu Central Hospital of Weifang, Weifang, China
| | - Yifeng Du
- Department of Neurology, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, China,
| |
Collapse
|
8
|
Liu G, Sun Y, Liu F. Curcumin Reduces Neuroinflammation and Improves the Impairments of Anesthetics on Learning and Memory by Regulating the Expression of miR-181a-5p. Neuroimmunomodulation 2021; 28:38-46. [PMID: 33849031 DOI: 10.1159/000514548] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Accepted: 01/14/2021] [Indexed: 11/19/2022] Open
Abstract
OBJECTIVE The purpose of this study was to explore the role of curcumin (Cur) in isoflurane (ISO)-induced learning and memory dysfunction in Sprague-Dawley rats and further elucidate the mechanism of the protective effect produced by Cur. METHODS Rat models of cognitive impairment were established by inhaling 3% ISO. The Morris water maze test was used to assess the cognitive function of rats. ELISA and qRT-PCR were used to analyze the protein levels of pro-inflammatory cytokines and expression levels of miR-181a-5p, respectively. RESULTS Cur significantly improved the ISO-induced cognitive dysfunction in rats and alleviated the ISO-induced neuroinflammation. miR-181a-5p was overexpressed in ISO-induced rats, while Cur treatment significantly reduced the expression of miR-181a-5p. Overexpression of miR-181a-5p promoted the cognitive impairment and the release of inflammatory cytokines and reversed the neuroprotective effect of Cur. CONCLUSION Cur has a protective effect on ISO-induced cognitive dysfunction, which may be achieved by regulating the expression of miR-181a-5p.
Collapse
Affiliation(s)
- Guizhen Liu
- Department of Anesthesiology, Laiyang Central Hospital, Yantai City, China
| | - Yuchuan Sun
- Department of Anesthesiology, Laiyang Central Hospital, Yantai City, China
| | - Fei Liu
- Department of Anesthesiology, Laiyang Central Hospital, Yantai City, China
| |
Collapse
|
9
|
Han D, Li Z, Liu T, Yang N, Li Y, He J, Qian M, Kuang Z, Zhang W, Ni C, Guo X. Prebiotics Regulation of Intestinal Microbiota Attenuates Cognitive Dysfunction Induced by Surgery Stimulation in APP/PS1 Mice. Aging Dis 2020; 11:1029-1045. [PMID: 33014520 PMCID: PMC7505279 DOI: 10.14336/ad.2020.0106] [Citation(s) in RCA: 55] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2019] [Accepted: 01/06/2020] [Indexed: 12/15/2022] Open
Abstract
Emerging evidence indicates that the intestinal microbiota could interact with the central nervous system and modulate multiple pathophysiological changes, including the integrity of intestinal barrier and blood-brain barrier, as well as neuroinflammatory response. In the present study, we investigated the potential role of intestinal microbiota in the pathophysiological process of postoperative cognitive dysfunction. Six-month-old APP/PS1 mice were subjected to partial hepatectomy to establish surgery model and exhibited cognitive dysfunction. The expressions of inflammatory mediators increased and tight junction proteins (ZO-1 and Occludin) levels decreased in the intestine and hippocampus. The 16S ribosomal RNA gene sequencing showed altered β diversity and intestinal microbiota richness after surgery, including genus Rodentibacter, Bacteroides, Ruminococcaceae_UCG_014 and Faecalibaculum, as well as family Eggerthellaceae and Muribaculaceae. Furthermore, prebiotics (Xylooligosaccharides, XOS) intervention effectively attenuated surgery-induced cognitive dysfunction and intestinal microbiota alteration, reduced inflammatory responses, and improved the integrity of tight junction barrier in the intestine and hippocampus. In summary, the present study indicates that intestinal microbiota alteration, the related intestinal barrier and blood-brain barrier damage, and inflammatory responses participate the pathophysiological process of postoperative cognitive dysfunction. Prebiotics intervention could be a potential preventative approach.
Collapse
Affiliation(s)
- Dengyang Han
- 1Department of Anesthesiology, Peking University Third Hospital, Beijing, China
| | - Zhengqian Li
- 1Department of Anesthesiology, Peking University Third Hospital, Beijing, China
| | - Taotao Liu
- 1Department of Anesthesiology, Peking University Third Hospital, Beijing, China
| | - Ning Yang
- 1Department of Anesthesiology, Peking University Third Hospital, Beijing, China
| | - Yue Li
- 1Department of Anesthesiology, Peking University Third Hospital, Beijing, China
| | - Jindan He
- 1Department of Anesthesiology, Peking University Third Hospital, Beijing, China
| | - Min Qian
- 1Department of Anesthesiology, Peking University Third Hospital, Beijing, China
| | - Zhongshen Kuang
- 1Department of Anesthesiology, Peking University Third Hospital, Beijing, China
| | - Wen Zhang
- 2National Institute on Drug Dependence and Beijing Key Laboratory of Drug Dependence, Peking University, Beijing, China
| | - Cheng Ni
- 1Department of Anesthesiology, Peking University Third Hospital, Beijing, China
| | - Xiangyang Guo
- 1Department of Anesthesiology, Peking University Third Hospital, Beijing, China
| |
Collapse
|
10
|
Cui H, Xu Z, Qu C. Tetramethylpyrazine ameliorates isoflurane-induced cognitive dysfunction by inhibiting neuroinflammation via miR-150 in rats. Exp Ther Med 2020; 20:3878-3887. [PMID: 32855738 DOI: 10.3892/etm.2020.9110] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2019] [Accepted: 07/10/2020] [Indexed: 12/20/2022] Open
Abstract
Tetramethylpyrazine (TMP) has neuroprotective effects in the pathogenesis of some human diseases, such as Parkinson's disease. The present study aimed to investigate the role of TMP in isoflurane-induced cognitive dysfunction in rats, and further identify the mechanisms involved in the protective effects of TMP. The Morris water maze test was used to evaluate the cognitive function of rats exposed to isoflurane or treated with TMP. ELISA was conducted to evaluate the effects of isoflurane or TMP on neuroinflammation. The expression of microRNA-150 (miR-150) was measured using reverse transcription-quantitative PCR, and the potential target genes of miR-150 were predicted and verified. The impaired cognitive function induced by isoflurane in the rats was significantly ameliorated by treatment with TMP. In addition, TMP treatment in rats attenuated neuroinflammation caused by isoflurane. The expression of miR-150 was inhibited by isoflurane exposure, but was enhanced by TMP treatment in rats. Furthermore, the overexpression of miR-150 alleviated the isoflurane-induced cognitive dysfunction and neuroinflammation, while the neuroprotective effects of TMP were significantly abrogated by the knockdown of miR-150. AKT3 was a direct target of miR-150, and its mRNA expression was significantly decreased by the overexpression of miR-150 in isoflurane- and TMP-treated rats. These results demonstrated the protective effects of TMP against isoflurane-induced cognitive dysfunction, which were achieved by attenuating neuroinflammation via the regulation of the miR-150/AKT3 pathway. In addition, miR-150 may serve as a novel therapeutic target for the alleviation of cognitive dysfunction induced by anesthetics.
Collapse
Affiliation(s)
- Huaqing Cui
- Department of Anesthesia and Perioperative Medicine, Dongying Hospital of Traditional Chinese Medicine, Dongying, Shandong 257055, P.R. China
| | - Zhonghui Xu
- Department of Anesthesia and Perioperative Medicine, Dongying Hospital of Traditional Chinese Medicine, Dongying, Shandong 257055, P.R. China
| | - Chunshan Qu
- Department of Anesthesia and Perioperative Medicine, Dongying Hospital of Traditional Chinese Medicine, Dongying, Shandong 257055, P.R. China
| |
Collapse
|
11
|
Liang R, Ou S, Han Y, Xu J, Zhou S. Plasma amyloid beta level changes in aged mice with cognitive dysfunction following sevoflurane exposure. Exp Gerontol 2019; 129:110737. [PMID: 31521721 DOI: 10.1016/j.exger.2019.110737] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2019] [Revised: 07/05/2019] [Accepted: 09/12/2019] [Indexed: 02/06/2023]
Abstract
INTRODUCTION Previous studies have stated that cognitive impairment induced by anesthetics was associated with amyloid beta (Aβ). However, few researchers have investigated the transport of Aβ inside and outside of the brain. AIM We attempted to probe the effects of sevoflurane on cognitive functions, the plasma Aβ, and transporters of Aβ in aged mice. The receptor for advanced glycation end-products (RAGE) is an Aβ influx protein, and Low-density lipoprotein receptor-related protein-1 (LRP-1) is an Aβ efflux protein. METHODS Aged mice were divided into the control group and the sevoflurane group. The mice were exposed to 100% oxygen or 2.5% sevoflurane for 2 h. The abilities of spatial learning and memory in mice were tested using the Morris water maze. Aβ concentrations of plasma were measured with enzyme-linked immunosorbent assay kits. The RAGE and LRP-1 gene levels in the brain were assessed with quantitative polymerase chain reaction, and the protein levels were determined by western blot analysis. The locations of RAGE in the brain were confirmed via immunofluorescence. RESULTS In the sevoflurane group mice, the escape latency was increased on the 5th day of training, and the time spent in the target quadrant was decreased on the 7th day after anesthesia. Sevoflurane reduced the concentration of plasma Aβ1-40. In addition, sevoflurane increased both gene and protein levels of RAGE in the brain, and increased RAGE proteins co-localized with the hippocampal vascular endothelial cells. CONCLUSION RAGE over-expression in the hippocampal vascular endothelial cells possibly resulted in the excessive transport of the plasma Aβ1-40 into the brain after treatment with sevoflurane, which was associated with sevoflurane-induced cognitive dysfunction in aged mice.
Collapse
Affiliation(s)
- Rui Liang
- Department of Anesthesiology, The Fifth Affiliated Hospital, Sun Yat-Sen University, Zhuhai 519000, China
| | - Shanshan Ou
- Department of Anesthesiology, The Fifth Affiliated Hospital, Sun Yat-Sen University, Zhuhai 519000, China
| | - Yuxiang Han
- Department of Anesthesiology, The Fifth Affiliated Hospital, Sun Yat-Sen University, Zhuhai 519000, China
| | - Jie Xu
- Department of Anatomy and Neurobiology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, China.
| | - Shaopeng Zhou
- Department of Anesthesiology, The Fifth Affiliated Hospital, Sun Yat-Sen University, Zhuhai 519000, China.
| |
Collapse
|
12
|
Nan K, Han Y, Fang Q, Huang C, Yu L, Ge W, Xiang F, Tao YX, Cao H, Li J. HMGB1 gene silencing inhibits neuroinflammation via down-regulation of NF-κB signaling in primary hippocampal neurons induced by Aβ25–35. Int Immunopharmacol 2019; 67:294-301. [DOI: 10.1016/j.intimp.2018.12.027] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2018] [Revised: 12/04/2018] [Accepted: 12/11/2018] [Indexed: 12/15/2022]
|
13
|
Chen L, Xie W, Xie W, Zhuang W, Jiang C, Liu N. Apigenin attenuates isoflurane-induced cognitive dysfunction via epigenetic regulation and neuroinflammation in aged rats. Arch Gerontol Geriatr 2017; 73:29-36. [PMID: 28743056 DOI: 10.1016/j.archger.2017.07.004] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2017] [Revised: 06/19/2017] [Accepted: 07/05/2017] [Indexed: 12/27/2022]
Abstract
PURPOSE OF THE RESEARCH Post operational cognitive dysfunction (POCD) occurs in patients after anesthesia and surgery. Abnormal histone acetylation and neuroinflammation are key factors in the pathogenesis of cognitive impairment. Apigenin not only has an anti-inflammatory activity but also modifies histone acetylation. We aimed to investigate whether apigenin can attenuate isoflurane exposure-induced cognitive decline by regulating histone acetylation and inflammatory signaling. MATERIALS AND METHODS Spatial learning and memory were assessed by Morris water maze test. Levels of histone acetylation, BDNF and downstream signaling, and inflammatory components were analyzed. PRINCIPAL RESULTS Isoflurane exposure in aged rats lead to impaired spatial learning and memory. These rats exhibited dysregulated histone H3K9 and H4K12 acetylation, which was accompanied by reduced BDNF expression and suppressed BDNF downstream signaling pathway. Apigenin restored histone acetylation and BDNF signaling. Apigenin also suppressed isoflurane exposure induced upregulation of proinflammatory cytokines and NFκB signaling pathway. MAJOR CONCLUSIONS Memory impairment induced by isoflurane exposure is associated with dysregulated histone acetylation in the hippocampus, which affects BDNF expression and hence BDNF downstream signaling pathway. Apigenin recovers cognitive function by restoring histone acetylation and suppressing neuroinflammation.
Collapse
Affiliation(s)
- Lin Chen
- Department of Anesthesiology, Hui'an Hospital, No. 182 Zhongshan North Road, Quanzhou 362000, China
| | - Wenji Xie
- Department of Anesthesiology, Quanzhou First Hospital, No. 248-252 Dong Road, Quanzhou 362000, China.
| | - Wenqin Xie
- Department of Anesthesiology, Quanzhou First Hospital, No. 248-252 Dong Road, Quanzhou 362000, China
| | - Weiqiang Zhuang
- Department of Anesthesiology, Hui'an Hospital, No. 182 Zhongshan North Road, Quanzhou 362000, China
| | - Changcheng Jiang
- Department of Anesthesiology, Quanzhou First Hospital, No. 248-252 Dong Road, Quanzhou 362000, China
| | - Naizhen Liu
- Department of Anesthesiology, Quanzhou First Hospital, No. 248-252 Dong Road, Quanzhou 362000, China
| |
Collapse
|