1
|
Yue Z, Liu M, Zhang B, Li F, Li C, Chen X, Li F, Liu L. Vitamin A regulates dermal papilla cell proliferation and apoptosis under heat stress via IGF1 and Wnt10b signaling. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 262:115328. [PMID: 37562175 DOI: 10.1016/j.ecoenv.2023.115328] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 07/11/2023] [Accepted: 08/02/2023] [Indexed: 08/12/2023]
Abstract
Heat stress (HS) negatively affects the development of hair follicles. The present study investigated the effect of vitamin A (VA) on the development of rabbit dermal papilla cells (DPCs) under HS and the underlying regulatory mechanisms. Addition of 0.4 mg/L VA to the culture medium significantly enhanced cell proliferation (P < 0.001) and inhibited the apoptosis of DPCs (P < 0.01). VA decreased the proportion of DPCs in G0/G1 stage of the cell cycle under HS along with the expression of caspase 3, heat shock protein 70 (HSP70), and microRNA 195 (miR-195) (P < 0.05). VA also activated the insulin-like growth factor 1 (IGF1) and Wnt10b/β-catenin signaling pathways. The results of the dual luciferase reporter assay showed that IGF1 expression was modulated by miR-195-5p. Over-expression of miR-195-5p in DPCs with HS+VA treatment significantly reduced cell viability and IGF1 signaling (P < 0.01) and increased apoptosis (P < 0.01) compared with the HS+VA group. The positive effects of VA on proliferation and apoptosis of DPCs under HS were significantly attenu-ated by blocking Wnt10b and β-catenin signaling with IWP-2 and XAV-939, respectively. These results demonstrate that VA can promote hair follicle development following HS via modulation of miR-195/IGF1 and Wnt10b/β-catenin signaling pathways.
Collapse
Affiliation(s)
- Zhengkai Yue
- Key Laboratory of Efficient Utilization of Non-grain Feed Resources (Co-construction by Ministry and Prov-ince), Ministry of Agriculture and Rural Affairs, Shandong Provincial Key Laboratory of Animal Biotechnol-ogy and Disease Control and Prevention, Department of Animal Science, Shandong Agricultural University, Taian, Shandong 271018, China
| | - Mengqi Liu
- Key Laboratory of Efficient Utilization of Non-grain Feed Resources (Co-construction by Ministry and Prov-ince), Ministry of Agriculture and Rural Affairs, Shandong Provincial Key Laboratory of Animal Biotechnol-ogy and Disease Control and Prevention, Department of Animal Science, Shandong Agricultural University, Taian, Shandong 271018, China
| | - Bin Zhang
- Key Laboratory of Efficient Utilization of Non-grain Feed Resources (Co-construction by Ministry and Prov-ince), Ministry of Agriculture and Rural Affairs, Shandong Provincial Key Laboratory of Animal Biotechnol-ogy and Disease Control and Prevention, Department of Animal Science, Shandong Agricultural University, Taian, Shandong 271018, China
| | - Fan Li
- Key Laboratory of Efficient Utilization of Non-grain Feed Resources (Co-construction by Ministry and Prov-ince), Ministry of Agriculture and Rural Affairs, Shandong Provincial Key Laboratory of Animal Biotechnol-ogy and Disease Control and Prevention, Department of Animal Science, Shandong Agricultural University, Taian, Shandong 271018, China
| | - Chenyang Li
- Key Laboratory of Efficient Utilization of Non-grain Feed Resources (Co-construction by Ministry and Prov-ince), Ministry of Agriculture and Rural Affairs, Shandong Provincial Key Laboratory of Animal Biotechnol-ogy and Disease Control and Prevention, Department of Animal Science, Shandong Agricultural University, Taian, Shandong 271018, China
| | - Xiaoyang Chen
- Key Laboratory of Efficient Utilization of Non-grain Feed Resources (Co-construction by Ministry and Prov-ince), Ministry of Agriculture and Rural Affairs, Shandong Provincial Key Laboratory of Animal Biotechnol-ogy and Disease Control and Prevention, Department of Animal Science, Shandong Agricultural University, Taian, Shandong 271018, China
| | - Fuchang Li
- Key Laboratory of Efficient Utilization of Non-grain Feed Resources (Co-construction by Ministry and Prov-ince), Ministry of Agriculture and Rural Affairs, Shandong Provincial Key Laboratory of Animal Biotechnol-ogy and Disease Control and Prevention, Department of Animal Science, Shandong Agricultural University, Taian, Shandong 271018, China.
| | - Lei Liu
- Key Laboratory of Efficient Utilization of Non-grain Feed Resources (Co-construction by Ministry and Prov-ince), Ministry of Agriculture and Rural Affairs, Shandong Provincial Key Laboratory of Animal Biotechnol-ogy and Disease Control and Prevention, Department of Animal Science, Shandong Agricultural University, Taian, Shandong 271018, China.
| |
Collapse
|
2
|
Narvaes RF, Furini CRG. Role of Wnt signaling in synaptic plasticity and memory. Neurobiol Learn Mem 2021; 187:107558. [PMID: 34808336 DOI: 10.1016/j.nlm.2021.107558] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Revised: 10/15/2021] [Accepted: 11/15/2021] [Indexed: 12/24/2022]
Abstract
Ever since their discoveries, the Wnt pathways have been consistently associated with key features of cellular development, including metabolism, structure and cell fate. The three known pathways (the canonical Wnt/β-catenin and the two non-canonical Wnt/Ca++ and Wnt/JNK/PCP pathways) participate in complex networks of interaction with a wide range of regulators of cell function, such as GSK-3β, AKT, PKC and mTOR, among others. These proteins are known to be involved in the formation and maintenance of memory. Currently, studies with Wnt and memory have shown that the canonical and non-canonical pathways play key roles in different processes associated with memory. So, in this review we briefly summarize the different roles that Wnt signaling can play in neurons and in memory, as well as in Alzheimer's disease, focusing towards animal studies. We start with the molecular characterization of the family and its receptors, as well as the most commonly used drugs for pharmacological manipulations. Next, we describe its role in synaptic plasticity and memory, and how the regulations of these pathways affect crucial features of neuronal function. Furthermore, we succinctly present the current knowledge on how the Wnt pathways are implicated in Alzheimer's disease, and how studies are seeing them as a potential candidate for effective treatments. Lastly, we point toward challenges of Wnt research, and how knowledge on these pathways can lead towards a better understanding of neurobiological and pathological processes.
Collapse
Affiliation(s)
- Rodrigo F Narvaes
- Laboratory of Cognition and Memory Neurobiology, Brain Institute, Pontifical Catholic University of Rio Grande do Sul (PUCRS), Av. Ipiranga, 6690 - 3rd floor, 90610-000 Porto Alegre, RS, Brazil.
| | - Cristiane R G Furini
- Laboratory of Cognition and Memory Neurobiology, Brain Institute, Pontifical Catholic University of Rio Grande do Sul (PUCRS), Av. Ipiranga, 6690 - 3rd floor, 90610-000 Porto Alegre, RS, Brazil.
| |
Collapse
|
3
|
Ma H, Wang N, Wang X, Jia M, Li Y, Cui C. Wnt7a in Mouse Insular Cortex Contributes to Anxiety-like Behavior During Protracted Abstinence from Morphine. Neuroscience 2018; 394:164-176. [PMID: 30367944 DOI: 10.1016/j.neuroscience.2018.10.032] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2018] [Revised: 10/13/2018] [Accepted: 10/16/2018] [Indexed: 01/05/2023]
Abstract
Anxiety is considered an important protracted abstinence symptom that can aggravate craving and relapse risk in opioid addicts. Although the insular cortex (IC) has been reported to be a key brain region in mediating emotional and motivational alterations induced by drug consumption and withdrawal, the role of IC in anxiety related to protracted abstinence remains elusive. In this study, we found that: (1) anxiety-like behavior in morphine-dependent mice became significant after 28 days of withdrawal, while their physical symptoms became undetectable. (2) Activated glutamatergic neurons in the medial IC, but not the anterior or posterior IC were significantly increased after 28 days of withdrawal. Bilateral lesion of the medial IC, but not the anterior or posterior IC with ibotenic acid (IBO) alleviated the anxiety-like behavior. (3) Expression of Wnt7a in the medial IC was significantly increased after 28 days of withdrawal, and specific down-regulation of Wnt7a with AAV-shWnt7a also alleviated the anxiety-like behavior. The findings reveal the medial IC is involved in mediating anxiety-like behavior related to morphine protracted abstinence, in which Wnt7a plays a critical role.
Collapse
Affiliation(s)
- Hui Ma
- Department of Neurobiology, School of Basic Medical Sciences, Neuroscience Research Institute, Key Laboratory for Neuroscience of the Ministry of Education/National Health and Family Planning Commission, Peking University, Beijing, China
| | - Na Wang
- Department of Neurobiology, School of Basic Medical Sciences, Neuroscience Research Institute, Key Laboratory for Neuroscience of the Ministry of Education/National Health and Family Planning Commission, Peking University, Beijing, China
| | - Xinjuan Wang
- Department of Neurobiology, School of Basic Medical Sciences, Neuroscience Research Institute, Key Laboratory for Neuroscience of the Ministry of Education/National Health and Family Planning Commission, Peking University, Beijing, China
| | - Meng Jia
- Department of Neurobiology, School of Basic Medical Sciences, Neuroscience Research Institute, Key Laboratory for Neuroscience of the Ministry of Education/National Health and Family Planning Commission, Peking University, Beijing, China
| | - Yijing Li
- Department of Neurobiology, School of Basic Medical Sciences, Neuroscience Research Institute, Key Laboratory for Neuroscience of the Ministry of Education/National Health and Family Planning Commission, Peking University, Beijing, China
| | - Cailian Cui
- Department of Neurobiology, School of Basic Medical Sciences, Neuroscience Research Institute, Key Laboratory for Neuroscience of the Ministry of Education/National Health and Family Planning Commission, Peking University, Beijing, China.
| |
Collapse
|