1
|
das Neves SP, Delivanoglou N, Ren Y, Cucuzza CS, Makuch M, Almeida F, Sanchez G, Barber MJ, Rego S, Schrader R, Faroqi AH, Thomas JL, McLean PJ, Oliveira TG, Irani SR, Piehl F, Da Mesquita S. Meningeal lymphatic function promotes oligodendrocyte survival and brain myelination. Immunity 2024; 57:2328-2343.e8. [PMID: 39217987 PMCID: PMC11464205 DOI: 10.1016/j.immuni.2024.08.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 04/17/2024] [Accepted: 08/02/2024] [Indexed: 09/04/2024]
Abstract
The precise neurophysiological changes prompted by meningeal lymphatic dysfunction remain unclear. Here, we showed that inducing meningeal lymphatic vessel ablation in adult mice led to gene expression changes in glial cells, followed by reductions in mature oligodendrocyte numbers and specific lipid species in the brain. These phenomena were accompanied by altered meningeal adaptive immunity and brain myeloid cell activation. During brain remyelination, meningeal lymphatic dysfunction provoked a state of immunosuppression that contributed to delayed spontaneous oligodendrocyte replenishment and axonal loss. The deficiencies in mature oligodendrocytes and neuroinflammation due to impaired meningeal lymphatic function were solely recapitulated in immunocompetent mice. Patients diagnosed with multiple sclerosis presented reduced vascular endothelial growth factor C in the cerebrospinal fluid, particularly shortly after clinical relapses, possibly indicative of poor meningeal lymphatic function. These data demonstrate that meningeal lymphatics regulate oligodendrocyte function and brain myelination, which might have implications for human demyelinating diseases.
Collapse
Affiliation(s)
- Sofia P das Neves
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL 32224, USA
| | | | - Yingxue Ren
- Department of Quantitative Health Sciences, Mayo Clinic, Jacksonville, FL 32224, USA
| | - Chiara Starvaggi Cucuzza
- Department of Clinical Neuroscience, Karolinska Institutet, Center for Molecular Medicine, Karolinska University Hospital, Stockholm, Sweden; Centre for Neurology, Academic Specialist Center, Stockholm Health Services, Stockholm, Sweden
| | - Mateusz Makuch
- Oxford Autoimmune Neurology Group, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
| | - Francisco Almeida
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Campus Gualtar, 4710-057 Braga, Portugal; ICVS/3B's - PT Government Associate Laboratory, Braga, Guimarães, Portugal
| | - Guadalupe Sanchez
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL 32224, USA; Neuroscience Ph.D. Program, Mayo Clinic Graduate School of Biomedical Sciences, Mayo Clinic, Jacksonville, FL 32224, USA
| | - Megan J Barber
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL 32224, USA
| | - Shanon Rego
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL 32224, USA; Post-baccalaureate Research Education Program, Mayo Clinic Graduate School of Biomedical Sciences, Mayo Clinic, Jacksonville, FL 32224, USA
| | - Racquelle Schrader
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL 32224, USA; Post-baccalaureate Research Education Program, Mayo Clinic Graduate School of Biomedical Sciences, Mayo Clinic, Jacksonville, FL 32224, USA
| | - Ayman H Faroqi
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL 32224, USA; Neuroscience Ph.D. Program, Mayo Clinic Graduate School of Biomedical Sciences, Mayo Clinic, Jacksonville, FL 32224, USA
| | - Jean-Leon Thomas
- Department of Neurology, Yale University School of Medicine, New Haven, CT, USA; Paris Brain Institute, Université Pierre et Marie Curie Paris 06 UMRS1127, Sorbonne Université, Paris Brain Institute, Paris, France
| | - Pamela J McLean
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL 32224, USA; Neuroscience Ph.D. Program, Mayo Clinic Graduate School of Biomedical Sciences, Mayo Clinic, Jacksonville, FL 32224, USA
| | - Tiago Gil Oliveira
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Campus Gualtar, 4710-057 Braga, Portugal; ICVS/3B's - PT Government Associate Laboratory, Braga, Guimarães, Portugal; Department of Neuroradiology, Hospital de Braga, 4710-243 Braga, Portugal
| | - Sarosh R Irani
- Oxford Autoimmune Neurology Group, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK; Department of Clinical Neurology, John Radcliffe Hospital, Oxford, UK
| | - Fredrik Piehl
- Department of Clinical Neuroscience, Karolinska Institutet, Center for Molecular Medicine, Karolinska University Hospital, Stockholm, Sweden; Centre for Neurology, Academic Specialist Center, Stockholm Health Services, Stockholm, Sweden
| | - Sandro Da Mesquita
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL 32224, USA; Neuroscience Ph.D. Program, Mayo Clinic Graduate School of Biomedical Sciences, Mayo Clinic, Jacksonville, FL 32224, USA.
| |
Collapse
|
2
|
Afonin AM, Piironen AK, de Sousa Maciel I, Ivanova M, Alatalo A, Whipp AM, Pulkkinen L, Rose RJ, van Kamp I, Kaprio J, Kanninen KM. Proteomic insights into mental health status: plasma markers in young adults. Transl Psychiatry 2024; 14:55. [PMID: 38267423 PMCID: PMC10808121 DOI: 10.1038/s41398-024-02751-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 01/05/2024] [Accepted: 01/08/2024] [Indexed: 01/26/2024] Open
Abstract
Global emphasis on enhancing prevention and treatment strategies necessitates an increased understanding of the biological mechanisms of psychopathology. Plasma proteomics is a powerful tool that has been applied in the context of specific mental disorders for biomarker identification. The p-factor, also known as the "general psychopathology factor", is a concept in psychopathology suggesting that there is a common underlying factor that contributes to the development of various forms of mental disorders. It has been proposed that the p-factor can be used to understand the overall mental health status of an individual. Here, we aimed to discover plasma proteins associated with the p-factor in 775 young adults in the FinnTwin12 cohort. Using liquid chromatography-tandem mass spectrometry, 13 proteins with a significant connection with the p-factor were identified, 8 of which were linked to epidermal growth factor receptor (EGFR) signaling. This exploratory study provides new insight into biological alterations associated with mental health status in young adults.
Collapse
Affiliation(s)
- Alexey M Afonin
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| | - Aino-Kaisa Piironen
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| | - Izaque de Sousa Maciel
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| | - Mariia Ivanova
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| | - Arto Alatalo
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| | - Alyce M Whipp
- Institute for Molecular Medicine Finland (FIMM), HiLIFE, University of Helsinki, Helsinki, Finland
| | - Lea Pulkkinen
- Department of Psychology, University of Jyvaskyla, Jyvaskyla, Finland
| | - Richard J Rose
- Department of Psychological & Brain Sciences, Indiana University, Bloomington, IN, USA
| | - Irene van Kamp
- Centre for Sustainability, Environment and Health, National Institute for Public Health and the Environment, Bilthoven, the Netherlands
| | - Jaakko Kaprio
- Institute for Molecular Medicine Finland (FIMM), HiLIFE, University of Helsinki, Helsinki, Finland
- Department of Public Health, University of Helsinki, Helsinki, Finland
| | - Katja M Kanninen
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland.
| |
Collapse
|
3
|
Tsermpini EE, Goričar K, Kores Plesničar B, Plemenitaš Ilješ A, Dolžan V. The Disease Model of Addiction: The Impact of Genetic Variability in the Oxidative Stress and Inflammation Pathways on Alcohol Dependance and Comorbid Psychosymptomatology. Antioxidants (Basel) 2023; 13:20. [PMID: 38275640 PMCID: PMC10812813 DOI: 10.3390/antiox13010020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2023] [Revised: 12/15/2023] [Accepted: 12/19/2023] [Indexed: 01/27/2024] Open
Abstract
Oxidative stress and neuroinflammation are involved in the pathogenesis of alcohol addiction. However, little is known regarding the effect of genetic, behavioral, psychological, and environmental sources of origin on the inflammation and oxidative stress pathways of patients with alcohol addiction. Our study aimed to evaluate the impact of selected common functional single-nucleotide polymorphisms in inflammation and oxidative stress genes on alcohol addiction, and common comorbid psychosymptomatology. Our study included 89 hospitalized alcohol-addicted patients and 93 healthy individuals, all Slovenian males. Their DNA was isolated from peripheral blood and patients were genotyped for PON1 rs705379, rs705381, rs854560, and rs662, SOD2 rs4880, GPX1 rs1050450, IL1B rs1143623, rs16944, and rs1071676, IL6 rs1800795, IL6R rs2228145, and miR146a rs2910164. Kruskal-Wallis and Mann-Whitney tests were used for the additive and dominant genetic models, respectively. Our findings suggested the involvement of IL6 rs1800795 in alcohol addiction. Moreover, our data indicated that the genetic variability of SOD2 and PON1, as well as IL1B and IL6R, may be related to comorbid psychosymptomatology, revealing a potential indirect means of association of both the oxidative stress and inflammation pathways.
Collapse
Affiliation(s)
- Evangelia Eirini Tsermpini
- Pharmacogenetics Laboratory, Institute of Biochemistry and Molecular Genetics, Faculty of Medicine, University of Ljubljana, 1000 Ljubljana, Slovenia; (E.E.T.); (K.G.)
| | - Katja Goričar
- Pharmacogenetics Laboratory, Institute of Biochemistry and Molecular Genetics, Faculty of Medicine, University of Ljubljana, 1000 Ljubljana, Slovenia; (E.E.T.); (K.G.)
| | - Blanka Kores Plesničar
- University Psychiatric Clinic, 1000 Ljubljana, Slovenia;
- Faculty of Medicine, University of Ljubljana, 1000 Ljubljana, Slovenia
| | - Anja Plemenitaš Ilješ
- Department of Psychiatry, University Clinical Centre Maribor, 2000 Maribor, Slovenia
| | - Vita Dolžan
- Pharmacogenetics Laboratory, Institute of Biochemistry and Molecular Genetics, Faculty of Medicine, University of Ljubljana, 1000 Ljubljana, Slovenia; (E.E.T.); (K.G.)
| |
Collapse
|
4
|
Zou Y, Grigorian A, Kennedy KG, Zai CC, Shao S, Kennedy JL, Andreazza AC, Ameis SH, Heyn C, Maclntosh BJ, Goldstein BI. Differential association of antioxidative defense genes with white matter integrity in youth bipolar disorder. Transl Psychiatry 2022; 12:504. [PMID: 36476443 PMCID: PMC9729619 DOI: 10.1038/s41398-022-02261-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/27/2022] [Revised: 11/03/2022] [Accepted: 11/18/2022] [Indexed: 12/12/2022] Open
Abstract
Oxidative stress is associated with white matter diffusion metrics in adults with bipolar disorder (BD). We examined the association of single-nucleotide polymorphisms in the oxidative stress system, superoxide dismutase-2 (SOD2) rs4880 and glutathione peroxidase-3 (GPX3) rs3792797 with fractional anisotropy (FA) and radial diffusivity (RD) in youth with BD. Participants included 104 youth (age 17.5 ± 1.7 years; 58 BD, 46 healthy controls). Saliva samples were obtained for genotyping, and diffusion tensor imaging was acquired. Voxel-wise whole-brain white matter diffusion analyses controlled for age, sex, and race. There were significant diagnosis-by-SOD2 rs4880 interaction effects for FA and RD in major white matter tracts. Within BD, the group with two copies of the G-allele (GG) showed lower FA and higher RD than A-allele carriers. Whereas within the control group, the GG group showed higher FA and lower RD than A-allele carriers. Additionally, FA was higher and RD was lower within the control GG group compared to the BD GG group. No significant findings were observed for GPX3 rs3793797. The current study revealed that, within matter tracts known to differ in BD, associations of SOD2 rs4880 GG genotype with both FA and RD differed between BD vs healthy control youth. The SOD2 enzyme encoded by the G-allele, has higher antioxidant capacity than the enzyme encoded by the A-allele. We speculate that the current findings of lower FA and higher RD of the BD GG group compared to the other groups reflects attenuation of the salutary antioxidant effects of GG genotype on white matter integrity in youth with BD, in part due to predisposition to oxidative stress. Future studies incorporating other genetic markers and oxidative stress biomarkers are warranted.
Collapse
Affiliation(s)
- Yi Zou
- grid.17063.330000 0001 2157 2938Department of Pharmacology, University of Toronto, Toronto, ON Canada ,grid.155956.b0000 0000 8793 5925Centre for Youth Bipolar Disorder, Centre for Addiction and Mental Health, Toronto, ON Canada
| | - Anahit Grigorian
- grid.155956.b0000 0000 8793 5925Centre for Youth Bipolar Disorder, Centre for Addiction and Mental Health, Toronto, ON Canada
| | - Kody G. Kennedy
- grid.17063.330000 0001 2157 2938Department of Pharmacology, University of Toronto, Toronto, ON Canada ,grid.155956.b0000 0000 8793 5925Centre for Youth Bipolar Disorder, Centre for Addiction and Mental Health, Toronto, ON Canada
| | - Clement C. Zai
- grid.155956.b0000 0000 8793 5925Psychiatric Neurogenetics Section, Tanenbaum Centre for Pharmacogenetics, Molecular Brain Science Department, Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, ON Canada ,grid.17063.330000 0001 2157 2938Department of Psychiatry, University of Toronto, Toronto, ON M5T 1R8 Canada
| | - Suyi Shao
- grid.17063.330000 0001 2157 2938Department of Pharmacology, University of Toronto, Toronto, ON Canada ,grid.155956.b0000 0000 8793 5925Centre for Youth Bipolar Disorder, Centre for Addiction and Mental Health, Toronto, ON Canada
| | - James L. Kennedy
- grid.155956.b0000 0000 8793 5925Psychiatric Neurogenetics Section, Tanenbaum Centre for Pharmacogenetics, Molecular Brain Science Department, Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, ON Canada ,grid.17063.330000 0001 2157 2938Department of Psychiatry, University of Toronto, Toronto, ON M5T 1R8 Canada
| | - Ana C. Andreazza
- grid.17063.330000 0001 2157 2938Department of Pharmacology, University of Toronto, Toronto, ON Canada ,grid.17063.330000 0001 2157 2938Department of Psychiatry, University of Toronto, Toronto, ON M5T 1R8 Canada
| | - Stephanie H. Ameis
- grid.155956.b0000 0000 8793 5925Cundill Centre for Child and Youth Depression, Margaret and Wallace McCain Centre for Child, Youth & Family Mental Health, Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, Canada ,grid.17063.330000 0001 2157 2938Department of Psychiatry, Temerty Faculty of Medicine, University of Toronto, Toronto, ON Canada ,grid.42327.300000 0004 0473 9646Department of Psychiatry, The Hospital for Sick Children, Toronto, ON Canada
| | - Chinthaka Heyn
- grid.413104.30000 0000 9743 1587Department of Medical Imaging, Sunnybrook Health Sciences Centre, Toronto, ON Canada
| | - Bradley J. Maclntosh
- grid.17063.330000 0001 2157 2938Heart and Stroke Foundation, Canadian Partnership for Stroke Recovery, Sunnybrook Research Institute, Toronto, ON Canada ,grid.17063.330000 0001 2157 2938Department of Medical Biophysics, University of Toronto, Toronto, ON Canada ,grid.17063.330000 0001 2157 2938Hurvitz Brain Sciences Program, Sunnybrook Research Institute, Toronto, ON Canada
| | - Benjamin I. Goldstein
- grid.17063.330000 0001 2157 2938Department of Pharmacology, University of Toronto, Toronto, ON Canada ,grid.155956.b0000 0000 8793 5925Centre for Youth Bipolar Disorder, Centre for Addiction and Mental Health, Toronto, ON Canada ,grid.17063.330000 0001 2157 2938Department of Psychiatry, University of Toronto, Toronto, ON M5T 1R8 Canada
| |
Collapse
|
5
|
Koinuma T, Hatano T, Kamagata K, Andica C, Mori A, Ogawa T, Takeshige-Amano H, Uchida W, Saiki S, Okuzumi A, Ueno SI, Oji Y, Saito Y, Hori M, Aoki S, Hattori N. Diffusion MRI Captures White Matter Microstructure Alterations in PRKN Disease. JOURNAL OF PARKINSONS DISEASE 2021; 11:1221-1235. [PMID: 33896850 PMCID: PMC8461664 DOI: 10.3233/jpd-202495] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
BACKGROUND Although pathological studies usually indicate pure dopaminergic neuronal degeneration in patients with parkin (PRKN) mutations, there is no evidence to date regarding white matter (WM) pathology. A previous diffusion MRI study has revealed WM microstructural alterations caused by systemic oxidative stress in idiopathic Parkinson's disease (PD), and we found that PRKN patients have systemic oxidative stress in serum biomarker studies. Thus, we hypothesized that PRKN mutations might lead to WM abnormalities. OBJECTIVE To investigate whether there are WM microstructural abnormalities in early-onset PD patients with PRKN mutations using diffusion tensor imaging (DTI). METHODS Nine PRKN patients and 15 age- and sex-matched healthy controls were recruited. DTI measures were acquired on a 3T MR scanner using a b value of 1,000 s/mm2 along 32 isotropic diffusion gradients. The DTI measures were compared between groups using tract-based spatial statistics (TBSS) analysis. Correlation analysis was also performed between the DTI parameters and several serum oxidative stress markers obtained in a previously conducted metabolomic analysis. RESULTS Although the WM volumes were not significantly different, the TBSS analysis revealed a corresponding decrease in fractional anisotropy and an increase in mean diffusivity and radial diffusivity in WM areas, such as the anterior and superior corona radiata and uncinate fasciculus, in PRKN patients compared with controls. Furthermore, 9-hydroxystearate, an oxidative stress marker, and disease duration were positively correlated with several parameters in PRKN patients. CONCLUSION This pilot study suggests that WM microstructural impairments occur in PRKN patients and are associated with disease duration and oxidative stress.
Collapse
Affiliation(s)
- Takahiro Koinuma
- Department of Neurology, Faculty of Medicine, Juntendo University, Tokyo, Japan
| | - Taku Hatano
- Department of Neurology, Faculty of Medicine, Juntendo University, Tokyo, Japan
| | - Koji Kamagata
- Department of Radiology, Faculty of Medicine, Juntendo University, Tokyo, Japan
| | - Christina Andica
- Department of Radiology, Faculty of Medicine, Juntendo University, Tokyo, Japan
| | - Akio Mori
- Department of Neurology, Faculty of Medicine, Juntendo University, Tokyo, Japan
| | - Takashi Ogawa
- Department of Neurology, Faculty of Medicine, Juntendo University, Tokyo, Japan
| | | | - Wataru Uchida
- Department of Radiology, Faculty of Medicine, Juntendo University, Tokyo, Japan.,Graduate School of Human Health Sciences, Department of Radiological Sciences, Tokyo Metropolitan University, Tokyo, Japan
| | - Shinji Saiki
- Department of Neurology, Faculty of Medicine, Juntendo University, Tokyo, Japan
| | - Ayami Okuzumi
- Department of Neurology, Faculty of Medicine, Juntendo University, Tokyo, Japan
| | - Shin-Ichi Ueno
- Department of Neurology, Faculty of Medicine, Juntendo University, Tokyo, Japan
| | - Yutaka Oji
- Department of Neurology, Faculty of Medicine, Juntendo University, Tokyo, Japan
| | - Yuya Saito
- Department of Radiology, Faculty of Medicine, Juntendo University, Tokyo, Japan
| | - Masaaki Hori
- Department of Radiology, Faculty of Medicine, Juntendo University, Tokyo, Japan.,Department of Radiology, Toho University Omori Medical Center, Tokyo, Japan
| | - Shigeki Aoki
- Department of Radiology, Faculty of Medicine, Juntendo University, Tokyo, Japan
| | - Nobutaka Hattori
- Department of Neurology, Faculty of Medicine, Juntendo University, Tokyo, Japan
| |
Collapse
|
6
|
Erdman VV, Nasibullin TR, Tuktarova IA, Timasheva YR, Danilko KV, Viktorova TV, Mustafina OE. The Study of Association of Polymorphic Markers of the SOD1, SOD2, and SOD3 Genes with Longevity. RUSS J GENET+ 2021. [DOI: 10.1134/s1022795420120066] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
7
|
Brand MD. Riding the tiger - physiological and pathological effects of superoxide and hydrogen peroxide generated in the mitochondrial matrix. Crit Rev Biochem Mol Biol 2020; 55:592-661. [PMID: 33148057 DOI: 10.1080/10409238.2020.1828258] [Citation(s) in RCA: 62] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Elevated mitochondrial matrix superoxide and/or hydrogen peroxide concentrations drive a wide range of physiological responses and pathologies. Concentrations of superoxide and hydrogen peroxide in the mitochondrial matrix are set mainly by rates of production, the activities of superoxide dismutase-2 (SOD2) and peroxiredoxin-3 (PRDX3), and by diffusion of hydrogen peroxide to the cytosol. These considerations can be used to generate criteria for assessing whether changes in matrix superoxide or hydrogen peroxide are both necessary and sufficient to drive redox signaling and pathology: is a phenotype affected by suppressing superoxide and hydrogen peroxide production; by manipulating the levels of SOD2, PRDX3 or mitochondria-targeted catalase; and by adding mitochondria-targeted SOD/catalase mimetics or mitochondria-targeted antioxidants? Is the pathology associated with variants in SOD2 and PRDX3 genes? Filtering the large literature on mitochondrial redox signaling using these criteria highlights considerable evidence that mitochondrial superoxide and hydrogen peroxide drive physiological responses involved in cellular stress management, including apoptosis, autophagy, propagation of endoplasmic reticulum stress, cellular senescence, HIF1α signaling, and immune responses. They also affect cell proliferation, migration, differentiation, and the cell cycle. Filtering the huge literature on pathologies highlights strong experimental evidence that 30-40 pathologies may be driven by mitochondrial matrix superoxide or hydrogen peroxide. These can be grouped into overlapping and interacting categories: metabolic, cardiovascular, inflammatory, and neurological diseases; cancer; ischemia/reperfusion injury; aging and its diseases; external insults, and genetic diseases. Understanding the involvement of mitochondrial matrix superoxide and hydrogen peroxide concentrations in these diseases can facilitate the rational development of appropriate therapies.
Collapse
|
8
|
Chen H, Sheng X, Qin R, Luo C, Li M, Liu R, Zhang B, Xu Y, Zhao H, Bai F. Aberrant White Matter Microstructure as a Potential Diagnostic Marker in Alzheimer's Disease by Automated Fiber Quantification. Front Neurosci 2020; 14:570123. [PMID: 33071742 PMCID: PMC7541946 DOI: 10.3389/fnins.2020.570123] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2020] [Accepted: 08/19/2020] [Indexed: 12/22/2022] Open
Abstract
Neuroimaging evidence has suggested white matter microstructure are heavily affected in Alzheimer's disease (AD). However, whether white matter dysfunction is localized at the specific regions of fiber tracts and whether they would be a potential biomarker for AD remain unclear. By automated fiber quantification (AFQ), we applied diffusion tensor images from 25 healthy controls (HC), 24 amnestic mild cognitive impairment (aMCI) patients and 18 AD patients to create tract profiles along 16 major white matter fibers. We compared diffusion metrics [Fractional anisotropy (FA), mean diffusivity (MD), axial diffusivity (DA), and radial diffusivity (DR)] between groups. To assess the diagnostic value, we applied a random forest (RF) classifier, a type of machine learning method. In the global tract level, we found that aMCI and AD patients showed higher MD, DA, and DR values in some fiber tracts mostly in the left hemisphere compared to HC. In the point-wise level, widespread disruption were distributed on specific locations of different tracts. The point-wise MD measurements presented the best classification performance with respect to differentiating AD from HC. The two most important variables were localized in the prefrontal potion of left uncinate fasciculus and anterior thalamic radiation. In addition, the point-wise DA in the posterior component of the left cingulum cingulate displayed the most robust discriminative ability to identify AD from aMCI. Our findings provide evidence that white matter abnormalities based on the AFQ method could be as a diagnostic biomarker in AD.
Collapse
Affiliation(s)
- Haifeng Chen
- Department of Neurology, Drum Tower Hospital, Medical School of Nanjing University, Nanjing, China.,The State Key Laboratory of Pharmaceutical Biotechnology, Institute of Brain Science, Nanjing University, Nanjing, China.,Jiangsu Province Stroke Center for Diagnosis and Therapy, Nanjing, China.,Nanjing Neuropsychiatry Clinic Medical Center, Nanjing, China
| | - Xiaoning Sheng
- Department of Neurology, Drum Tower Hospital, Medical School of Nanjing University, Nanjing, China.,The State Key Laboratory of Pharmaceutical Biotechnology, Institute of Brain Science, Nanjing University, Nanjing, China.,Jiangsu Province Stroke Center for Diagnosis and Therapy, Nanjing, China.,Nanjing Neuropsychiatry Clinic Medical Center, Nanjing, China
| | - Ruomeng Qin
- Department of Neurology, Drum Tower Hospital, Medical School of Nanjing University, Nanjing, China.,The State Key Laboratory of Pharmaceutical Biotechnology, Institute of Brain Science, Nanjing University, Nanjing, China.,Jiangsu Province Stroke Center for Diagnosis and Therapy, Nanjing, China.,Nanjing Neuropsychiatry Clinic Medical Center, Nanjing, China
| | - Caimei Luo
- Department of Neurology, Drum Tower Hospital, Medical School of Nanjing University, Nanjing, China.,The State Key Laboratory of Pharmaceutical Biotechnology, Institute of Brain Science, Nanjing University, Nanjing, China.,Jiangsu Province Stroke Center for Diagnosis and Therapy, Nanjing, China.,Nanjing Neuropsychiatry Clinic Medical Center, Nanjing, China
| | - Mengchun Li
- Department of Neurology, Drum Tower Hospital, Medical School of Nanjing University, Nanjing, China.,The State Key Laboratory of Pharmaceutical Biotechnology, Institute of Brain Science, Nanjing University, Nanjing, China.,Jiangsu Province Stroke Center for Diagnosis and Therapy, Nanjing, China.,Nanjing Neuropsychiatry Clinic Medical Center, Nanjing, China
| | - Renyuan Liu
- Department of Radiology, Drum Tower Hospital, Medical School of Nanjing University, Nanjing, China
| | - Bing Zhang
- Department of Radiology, Drum Tower Hospital, Medical School of Nanjing University, Nanjing, China
| | - Yun Xu
- Department of Neurology, Drum Tower Hospital, Medical School of Nanjing University, Nanjing, China.,The State Key Laboratory of Pharmaceutical Biotechnology, Institute of Brain Science, Nanjing University, Nanjing, China.,Jiangsu Province Stroke Center for Diagnosis and Therapy, Nanjing, China.,Nanjing Neuropsychiatry Clinic Medical Center, Nanjing, China
| | - Hui Zhao
- Department of Neurology, Drum Tower Hospital, Medical School of Nanjing University, Nanjing, China.,The State Key Laboratory of Pharmaceutical Biotechnology, Institute of Brain Science, Nanjing University, Nanjing, China.,Jiangsu Province Stroke Center for Diagnosis and Therapy, Nanjing, China.,Nanjing Neuropsychiatry Clinic Medical Center, Nanjing, China
| | - Feng Bai
- Department of Neurology, Drum Tower Hospital, Medical School of Nanjing University, Nanjing, China.,The State Key Laboratory of Pharmaceutical Biotechnology, Institute of Brain Science, Nanjing University, Nanjing, China.,Jiangsu Province Stroke Center for Diagnosis and Therapy, Nanjing, China.,Nanjing Neuropsychiatry Clinic Medical Center, Nanjing, China
| |
Collapse
|
9
|
Abdullah A, Mohd Murshid N, Makpol S. Antioxidant Modulation of mTOR and Sirtuin Pathways in Age-Related Neurodegenerative Diseases. Mol Neurobiol 2020; 57:5193-5207. [PMID: 32865663 DOI: 10.1007/s12035-020-02083-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Accepted: 08/19/2020] [Indexed: 12/11/2022]
Abstract
In the human body, cell division and metabolism are expected to transpire uneventfully for approximately 25 years. Then, secondary metabolism and cell damage products accumulate, and ageing phenotypes are acquired, causing the progression of disease. Among these age-related diseases, neurodegenerative diseases have attracted considerable attention because of their irreversibility, the absence of effective treatment and their relationship with social and economic pressures. Mechanistic (formerly mammalian) target of rapamycin (mTOR), sirtuin (SIRT) and insulin/insulin growth factor 1 (IGF1) signalling pathways are among the most important pathways in ageing-associated conditions, such as neurodegeneration. These longevity-related pathways are associated with a diversity of various processes, including metabolism, cognition, stress reaction and brain plasticity. In this review, we discuss the roles of sirtuin and mTOR in ageing and neurodegeneration, with an emphasis on their regulation of autophagy, apoptosis and mitochondrial energy metabolism. The intervention of neurodegeneration using potential antioxidants, including vitamins, phytochemicals, resveratrol, herbals, curcumin, coenzyme Q10 and minerals, specifically aimed at retaining mitochondrial function in the treatment of Alzheimer's disease, Parkinson's disease and Huntington's disease is highlighted.
Collapse
Affiliation(s)
- Asmaa Abdullah
- Department of Biochemistry, Faculty of Medicine, Universiti Kebangsaan Malaysia Medical Centre, Level 17, Preclinical Building, Jalan Yaacob Latif, Bandar Tun Razak, Cheras, 56000, Kuala Lumpur, Malaysia
| | - Nuraqila Mohd Murshid
- Department of Biochemistry, Faculty of Medicine, Universiti Kebangsaan Malaysia Medical Centre, Level 17, Preclinical Building, Jalan Yaacob Latif, Bandar Tun Razak, Cheras, 56000, Kuala Lumpur, Malaysia
| | - Suzana Makpol
- Department of Biochemistry, Faculty of Medicine, Universiti Kebangsaan Malaysia Medical Centre, Level 17, Preclinical Building, Jalan Yaacob Latif, Bandar Tun Razak, Cheras, 56000, Kuala Lumpur, Malaysia.
| |
Collapse
|
10
|
Metabolic Biomarkers in Aging and Anti-Aging Research. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1178:247-264. [PMID: 31493231 DOI: 10.1007/978-3-030-25650-0_13] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Although human life expectancy has increased significantly over the last two centuries, this has not been paralleled by a similar rise in healthy life expectancy. Thus, an important goal of anti-aging research has been to reduce the impact of age-associated diseases as a way of extending the human healthspan. This review will explore some of the potential avenues which have emerged from this research as the most promising strategies and drug targets for therapeutic interventions to promote healthy aging.
Collapse
|
11
|
Targeting Mitochondrial Defects to Increase Longevity in Animal Models of Neurodegenerative Diseases. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1134:89-110. [PMID: 30919333 DOI: 10.1007/978-3-030-12668-1_5] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Bioenergetic homeostasis is a vital process maintaining cellular health and has primary importance in neuronal cells due to their high energy demand markedly at synapses. Mitochondria, the metabolic hubs of the cells, are the organelles responsible for producing energy in the form of ATP by using nutrients and oxygen. Defects in mitochondrial homeostasis result in energy deprivation and can lead to disrupted neuronal functions. Mitochondrial defects adversely contribute to the pathogenesis of neurodegenerative diseases such as Alzheimer's (AD) and Parkinson's disease (PD). Mitochondrial defects not only include reduced ATP levels but also increased reactive oxygen species (ROS) leading to cellular damage. Here, we detail the mechanisms that lead to neuronal pathologies involving mitochondrial defects. Furthermore, we discuss how to target these mitochondrial defects in order to have beneficial effects as novel and complementary therapeutic avenues in neurodegenerative diseases. The critical evaluation of these strategies and their potential outcome can pave the way for finding novel therapies for neurodegenerative pathologies.
Collapse
|