1
|
Banks PJ, Bennett PJ, Sekuler AB, Gruber AJ. Cannabis use is associated with sexually dimorphic changes in executive control of visuospatial decision-making. Front Integr Neurosci 2022; 16:884080. [PMID: 36081608 PMCID: PMC9445243 DOI: 10.3389/fnint.2022.884080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Accepted: 07/25/2022] [Indexed: 11/19/2022] Open
Abstract
When the outcome of a choice is less favorable than expected, humans and animals typically shift to an alternate choice option on subsequent trials. Several lines of evidence indicate that this “lose-shift” responding is an innate sensorimotor response strategy that is normally suppressed by executive function. Therefore, the lose-shift response provides a covert gauge of cognitive control over choice mechanisms. We report here that the spatial position, rather than visual features, of choice targets drives the lose-shift effect. Furthermore, the ability to inhibit lose-shift responding to gain reward is different among male and female habitual cannabis users. Increased self-reported cannabis use was concordant with suppressed response flexibility and an increased tendency to lose-shift in women, which reduced performance in a choice task in which random responding is the optimal strategy. On the other hand, increased cannabis use in men was concordant with reduced reliance on spatial cues during decision-making, and had no impact on the number of correct responses. These data (63,600 trials from 106 participants) provide strong evidence that spatial-motor processing is an important component of economic decision-making, and that its governance by executive systems is different in men and women who use cannabis frequently.
Collapse
Affiliation(s)
- Parker J. Banks
- Vision and Cognitive Neuroscience Lab, Department of Psychology, Neuroscience, and Behaviour, McMaster University, Hamilton, ON, Canada
| | - Patrick J. Bennett
- Vision and Cognitive Neuroscience Lab, Department of Psychology, Neuroscience, and Behaviour, McMaster University, Hamilton, ON, Canada
| | - Allison B. Sekuler
- Vision and Cognitive Neuroscience Lab, Department of Psychology, Neuroscience, and Behaviour, McMaster University, Hamilton, ON, Canada
- Rotman Research Institute, Baycrest Centre for Geriatric Care, North York, ON, Canada
- Department of Psychology, University of Toronto, Toronto, ON, Canada
| | - Aaron J. Gruber
- Department of Neuroscience, University of Lethbridge, Lethbridge, AB, Canada
- *Correspondence: Aaron J. Gruber
| |
Collapse
|
2
|
Donovan CH, Wong SA, Randolph SH, Stark RA, Gibb RL, Gruber AJ. Sex differences in rat decision-making: The confounding role of extraneous feeder sampling between trials. Behav Brain Res 2018; 342:62-69. [PMID: 29355674 DOI: 10.1016/j.bbr.2018.01.018] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2017] [Revised: 01/08/2018] [Accepted: 01/16/2018] [Indexed: 01/19/2023]
Abstract
Although male and female rats appear to perform differently in some tasks, a clear picture of sex differences in decision-making has yet to develop. This is in part due to significant variability arising from differences in strains and tasks. The aim of this study was to characterize the effects of sex on specific response elements in a reinforcement learning task so as to help identify potential explanations for this variability. We found that the primary difference between sexes was the propensity to approach feeders out of the task context. This extraneous feeder sampling affects choice on subsequent trials in both sexes by promoting a lose-shift response away from the last feeder sampled. Female rats, however, were more likely to engage in this extraneous feeder sampling, and therefore exhibited a greater rate of this effect. Once trials following extraneous sampling were removed, there were no significant sex differences in any of the tested measures. These data suggest that feeder approach outside of the task context, which is often not recorded, could produce a confound in sex-based differences of reinforcement sensitivity in some tasks.
Collapse
Affiliation(s)
- Clifford H Donovan
- Canadian Centre for Behavioural Neuroscience, Department of Neuroscience, University of Lethbridge, 4401 University Drive West, Lethbridge, AB, T1K 6T5, Canada
| | - Scott A Wong
- Canadian Centre for Behavioural Neuroscience, Department of Neuroscience, University of Lethbridge, 4401 University Drive West, Lethbridge, AB, T1K 6T5, Canada
| | - Sienna H Randolph
- Canadian Centre for Behavioural Neuroscience, Department of Neuroscience, University of Lethbridge, 4401 University Drive West, Lethbridge, AB, T1K 6T5, Canada
| | - Rachel A Stark
- Canadian Centre for Behavioural Neuroscience, Department of Neuroscience, University of Lethbridge, 4401 University Drive West, Lethbridge, AB, T1K 6T5, Canada
| | - Robbin L Gibb
- Canadian Centre for Behavioural Neuroscience, Department of Neuroscience, University of Lethbridge, 4401 University Drive West, Lethbridge, AB, T1K 6T5, Canada
| | - Aaron J Gruber
- Canadian Centre for Behavioural Neuroscience, Department of Neuroscience, University of Lethbridge, 4401 University Drive West, Lethbridge, AB, T1K 6T5, Canada.
| |
Collapse
|
3
|
Feeder Approach between Trials Is Increased by Uncertainty and Affects Subsequent Choices. eNeuro 2018; 4:eN-NWR-0437-17. [PMID: 29313000 PMCID: PMC5757189 DOI: 10.1523/eneuro.0437-17.2017] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2017] [Accepted: 12/14/2017] [Indexed: 01/16/2023] Open
Abstract
Animals quickly learn to approach sources of food. Here, we report on a form of approach in which rats made volitional orofacial contact with inactive feeders between trials of a self-paced operant task. This extraneous feeder sampling (EFS) was never reinforced and therefore imposed an opportunity and effort cost. EFS decreased during initial training but persisted thereafter. The relative rate of EFS to operant responding increased with novel changes to the operant chamber, reward devaluation by prefeeding, or lesions to the dorsolateral striatum. We speculate that this may function to increase exploration when the task is uncertain (early in learning or introduction of novel apparatus components), when the opportunity cost is low, or when the learned sensorimotor solution is compromised. Moreover, EFS strongly affected subsequent choices by triggering a lose-shift response away from the sampled feeder, even though it occurred outside of the trial context. This indicates that at least some behaviors occurring between trials impact future behaviors and should be considered in decision-making studies.
Collapse
|